1
0
Files
medical-notes/content/Fysiologi/Canvas/Del I/Block 3 - Hjärnans kortikala funktioner/Cirkadiansk rytm, sömn och medvetande.md
Johan Dahlin 9d186a13b2
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 5m15s
vault backup: 2026-01-19 14:08:41
2026-01-19 14:08:41 +01:00

334 lines
4.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Cirkadiansk rytm, sömn och medvetande.pdf
**OCR Transcript**
- Pages: 25
- OCR Engine: pymupdf
- Quality Score: 1.00
---
## Page 1
Cirkadiansk rytm, Sömn och
Medvetande
Eric Hanse HT 2025
---
## Page 2
Circadian rhythms appeared 2-3 billions years ago
Sleep, like ageing17,18, may be an inescapable consequence
of aerobic metabolism.
---
## Page 3
Circadian organization in mammals
Hastings et al 2018 Nat Rev Neurosci 19:453-469
---
## Page 4
The central clock in nucl. suprachiasmaticus
(SCN) synchronizes circadian rhythms
Control
After lesion of the SCN
---
## Page 5
Model for the circadian clock
---
## Page 6
The molecular clock is based on delayed negative
feedback
---
## Page 7
The SCN does not keep an exact 24 hour
cycle if not entrained
”The third eye”
-melanopsin-containing
ganglion cells
sleep
wake
---
## Page 8
SCN signals to the rest of the brain and body
both electrically and with hormones
Higher frequency of action potentials during the day
Homones, for example:
Cortisol highest levels when we wake up
Melatonin a “dark hormone”, released from corpus pineale
Welsh et al (1995) Neuron 14:697
---
## Page 9
Pracucci et al 2023 Nat Comm 14:7108
Alfonso et al 2023 Nat Neurosci 26:64-78
I.c.[Cl-] is higher during wake and lower
during sleep in cortical pyramidal neurons
---
## Page 10
Sleep
“Sleep is the readily reversible state of
reduced responsiveness to and
interaction with the environment”
---
## Page 11
Why do we sleep?
Processing of memories
”Brain wash”
Hauglund et al 2025 Cell 188: 1-17
Brodt et al 2023 Neuron 111: 1050-1075
---
## Page 12
NA, 5-HT, Histamin
High
Low
Very Low
Ach
High
Low
High
Orexin
High
Low
Low
Energy consumption
High
Somewhat lower
High
Awake, NREM and REM
Hobson (2005) Nature 437:1254
---
## Page 13
The ”wake nucleus” in the hypothalamus
(LHA) excites the modulatory transmitter
systems using Glu/Orexin
Saper et al (2005) Nature 437:1257
LC Locus Coeruleus
BF Basal forebrain
LH Lateral Hypothalamus
VLPO VenteroLateralPreOptic
TMN - TuberoMammillary Nucl
LDT/PPT LateroDorsal- and PeduncoPontine
Tegmental nucl
---
## Page 14
The ”sleep nucleus” in the hypothalamus
(VLPO) inhibits the modulatory transmitter
systems using GABA/Galanin
Saper et al (2005) Nature 437:1257
---
## Page 15
The cells in LHA and VLPO are under
circadian control by the SCN via the DMH in
the hypothalamus
Saper et al (2005) Nature 437:1257
---
## Page 16
SCN
DMH
VLPO
GABA/Galanin
NA, 5-HT,
NA, ACh
Light
Meals, Temperature,
Emotions / Cognition
-
LHA
Orexin
+
-
-
Somnogenic
factors
Somnogenic
factors
+
-
Sleep control
-
Somnogenic
factors
-
---
## Page 17
Adenosine is an ”somnogenic”
factor contributing to sleep pressure
---
## Page 18
Three different brain states:
Wake, NREM & REM
Wake
Non-REM
REM
NA, 5-HT, Histamin
High
Low
Low
ACh
High
Low
HIGH
Orexin
High
Low
Low
EEG
Desynchronized
Synchronized
Desynchronized
Energy consumption
High
Moderate
High
Muscle tonus
High
Moderate
Low
Breating / Heart rate
Regular
Regular
Oregelbunden
Temperature regulation
Functioning
Functioning
Non-functioning
Eye movements
Vision
Slow
Fast (REM)
---
## Page 19
Timofeev & Chauvette (2018) Neuron 97:1200-1202
Modulatory transmitters and changes of e.c. ion
conc. regulate the activity of cortical neurons
EMG
I.c.
EEG
---
## Page 20
An optimal level of neuronal network
activity in the brain - Criticality
Hengen & Shew (2025) Neuron 113:1-17
---
## Page 21
Loss of consciousness during sleep and
anaesthesia because ”decoupling” of cortical
pyramidal neurons?
Marvan et al (2021) Neurosci Conscious 7: 1-17
---
## Page 22
Cortical pyramidal neuron with two action potential
initiation zones comparing Content with Context
Granato et al 2024 Neurosci and Biobehav Rev 161: 105688
”Predictive coding” and
”Predictive error”
---
## Page 23
Simultaneous apical feedback and basal
feedforward inputs provide synergistic firing
output
Larkum (2012) TiNS 36:141-149
---
## Page 24
Promoting apical and basal coupling enables
consciousness
Suzuki & Larkum (2020) Neuron 180: 666-676
---
## Page 25
(No content)
---