All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 2m4s
245 lines
7.5 KiB
Markdown
245 lines
7.5 KiB
Markdown
---
|
||
fÜreläsare: Martin Lidell
|
||
tags:
|
||
- biokemi
|
||
- glykogen
|
||
- slides
|
||
date: 2025-12-03
|
||
---
|
||
|
||
# Glykogenmetabolism â fĂśreläsningsupplägg
|
||
⢠Glykogen â en lagringsform av glukos
|
||
⢠Glykogens funktioner
|
||
⢠Hur sker nedbrytningen av glykogen?
|
||
⢠Hur bildas glykogen?
|
||
⢠Hur regleras glykogenmetabolismen?
|
||
|
||
Gerty and Carl Cori
|
||
The Nobel Prize in Physiology or Medicine 1947
|
||
"for their discovery of the course of the catalytic conversion of glycogen"
|
||
|
||
Triglycerider â en reducerad och vattenfri form av energiupplagring
|
||
1 gram fett innehüller ca 6.75 ggr mer energi än hydrerad glykogen
|
||
(1 g glykogen binder normalt 2 g vatten)
|
||
Del av Tabell 9.1 i âOm kroppens omsättning av kolhydrat, fett och alkoholâ,
|
||
Anders Eklund, Studentlitteratur, 2004
|
||
|
||
Triglycerider en effektivare form av energilagring â varfĂśr har vi dĂĽ glykogen?
|
||
VarfĂśr behĂśver vi glykogen?
|
||
Hjärnan behÜver glukos även mellan mültider
|
||
Muskel kan använda glukos som energikälla vid arbete; även anaerobt
|
||
(fettsyror kan ej användas vid anaerobt arbete)
|
||
Glukos kan ej bildas frĂĽn fettsyror
|
||
Kroppen behĂśver ett lager av glukos!
|
||
|
||
Glukos â en essentiell energikälla
|
||
Problem:
|
||
Glukos kan inte lagras eftersom molekylen är osmotiskt aktiv.
|
||
HĂśga koncentrationer av glukos skulle fĂśrstĂśra den osmotiska balansen i en cell och orsaka cellskador/celldĂśd.
|
||
Table 27.1 in âBiochemistry, 4th edâ, Garrett and Grisham, Brooks/Cole, 2010
|
||
|
||
Hur kan en tillräcklig mängd glukos lagras utan att orsaka cellskador?
|
||
LĂśsning:
|
||
Glukos lagras som icke-osmotiskt aktiv polymer
|
||
⢠Glykogen (djur)
|
||
⢠Stärkelse; amylos och amylopektin (växter)
|
||
Polymererna kan ses som lättmobiliserade lagringsformer av glukos, vilken kan frisättas när energi behÜvs
|
||
|
||
Glykogen â en väldigt stor och grenad polymer av âglukosenheterâ
|
||
Strukturen är optimerad fÜr att lagra/frigÜra energi snabbt
|
||
Glykogenet tillgodoser behovet av glukos pĂĽ kort sikt
|
||
Glykogenmetabolismen styrs av allostera effektorer och hormoner
|
||
Vi kan lagra upp till ca 450 g glykogen; ungefär 1/3 i levern
|
||
och resterande del främst i skelettmuskulaturen.
|
||
|
||
Two types of glycosidic bonds in glycogen
|
||
a-1,4-glycosidic linkages in linear parts
|
||
a-1,6-glycosidic linkages at branching points
|
||
|
||
b-particles / a-rosettes
|
||
The elementary particle of glycogen is sometimes called the b-particle.
|
||
The particle is about 21 nm in diameter, consists of up to 55000 glucose residues with about 2000 nonreducing ends.
|
||
20â40 b-particles can cluster together to form a-rosettes.
|
||
|
||
Different functions of glycogen in liver and muscle
|
||
Liver glycogen serves in the maintenance of the blood glucose level between meals.
|
||
Muscle glycogen serves as an energy reserve for the muscle itself. Muscles lack glucose-6-phosphatase and cannot release glucose to blood.
|
||
|
||
The three steps in glycogen degradation (glycogenolysis)
|
||
1. release of glucose 1-phosphate from glycogen
|
||
2. remodeling of the glycogen substrate to permit further degradation
|
||
3. conversion of glucose 1-phosphate into glucose 6-phosphate for further metabolism
|
||
|
||
Polysaccharides can be degraded by hydrolysis or phosphorolysis
|
||
|
||
Glycogen phosphorylase â key enzyme in glycogen degradation
|
||
Cleaves substrate by addition of orthophosphate (Pi) to yield glucose 1-phosphate
|
||
Phosphorolysis
|
||
Allosteric enzyme regulated by reversible covalent modification
|
||
|
||
Glycogen phosphorylase cannot cleave Îą-1,6 bonds, stops 4 residues from branch â limited degradation
|
||
|
||
Debranching enzyme needed â dual activity: transferase + Îą-1,6-glucosidase
|
||
|
||
Îą-1,6 linkage hydrolyzed â glucose + shortened glycogen
|
||
|
||
Phosphoglucomutase converts G1P â G6P (reversible)
|
||
|
||
Glucose-6-phosphatase in liver/kidney allows release of glucose to blood
|
||
|
||
Metabolism of G6P:
|
||
1. fuel (muscle)
|
||
2. glucose release (liver)
|
||
3. NADPH/ribose-5-P (many tissues)
|
||
|
||
Four steps in glycogen synthesis:
|
||
1. UDP-glucose activation
|
||
2. primer
|
||
3. elongation
|
||
4. branching
|
||
(occurs in cytosol)
|
||
|
||
UDP-glucose: activated glucose donor
|
||
Synthesized from G1P + UTP, catalyzed by UDP-glucose pyrophosphorylase
|
||
Driven by pyrophosphate hydrolysis
|
||
|
||
Glycogen synthase: key enzyme in glycogenesis
|
||
Adds glucosyl units to non-reducing end via Îą-1,4 bonds
|
||
Needs existing chain âĽ4 residues
|
||
|
||
Glycogen synthesis requires primer:
|
||
Glycogenin (two subunits)
|
||
Autocatalytic polymerization on tyrosine
|
||
UDP-glucose donor
|
||
Synthase later extends chain
|
||
|
||
Branching enzyme:
|
||
Break Îą-1,4, form Îą-1,6
|
||
Transfers block of ~7 residues
|
||
Rules:
|
||
⢠chain âĽ11 long
|
||
⢠block includes non-reducing end
|
||
⢠new branch âĽ4 residues away from existing
|
||
|
||
Summary of glycogen synthesis
|
||
|
||
Glycogen metabolism control:
|
||
Key enzymes: glycogen phosphorylase & glycogen synthase
|
||
Mechanisms:
|
||
⢠Allosteric regulation (glucose, G6P, AMP, ATP)
|
||
⢠Reversible phosphorylation (glucagon, epinephrine, insulin)
|
||
|
||
Regulation of glycogen degradation:
|
||
Phosphorylase b â phosphorylase a
|
||
R â T states
|
||
Allosterics + phosphorylation
|
||
|
||
Different isozymes:
|
||
Liver vs muscle glycogen phosphorylase â different responses
|
||
|
||
Liver phosphorylase:
|
||
Purpose: export glucose
|
||
Acts as glucose sensor:
|
||
⢠senses glucose â inactive
|
||
⢠no glucose â active
|
||
|
||
Muscle phosphorylase:
|
||
Purpose: energy for contraction
|
||
Sensors:
|
||
⢠AMP â activate
|
||
⢠ATP/G6P â inhibit
|
||
|
||
Regulation of glycogen synthase:
|
||
G6P sensor:
|
||
⢠senses G6P â activate
|
||
⢠no G6P â inactive
|
||
Phosphorylated form = inactive (b)
|
||
Dephosphorylated = active (a)
|
||
|
||
Allosteric summary:
|
||
Glc-6-P stimulates synthesis
|
||
AMP stimulates degradation (muscle)
|
||
ATP & G6P inhibit degradation (muscle)
|
||
Glucose inhibits degradation (liver)
|
||
|
||
Hormones:
|
||
INSULIN
|
||
⢠released when blood glucose high
|
||
⢠stimulates glucose uptake and storage as glycogen/fat
|
||
|
||
GLUCAGON
|
||
⢠low blood glucose
|
||
⢠targets liver to raise blood glucose via glycogenolysis & gluconeogenesis
|
||
|
||
ADRENALINE
|
||
⢠stress
|
||
⢠activates glycogenolysis & lipolysis
|
||
|
||
Hormonal overview:
|
||
⢠Insulin â favors synthesis
|
||
⢠Glucagon/Epinephrine â favor degradation
|
||
Mechanism: phosphorylation states of phosphorylase and synthase
|
||
|
||
Hormonal stimulation of phosphorylase:
|
||
Glucagon/epinephrine â kinase cascades â active phosphorylase
|
||
|
||
Phosphorylase kinase activated by Ca2+ + phosphorylation
|
||
|
||
Protein phosphatase 1 (PP1):
|
||
Dephosphorylates phosphorylase & kinase â inhibits degradation
|
||
|
||
Hormonal regulation of PP1:
|
||
⢠Glucagon/Epi inhibit PP1
|
||
⢠Insulin activates PP1
|
||
|
||
Hormonal inhibition of glycogen synthase:
|
||
Glucagon/Epi â phosphorylation â inactive synthase
|
||
|
||
Insulin stimulation of glycogen synthase:
|
||
Insulin inactivates GSK3, activates PP1 â activates synthase (dephosphorylation)
|
||
|
||
Insulin favors synthesis:
|
||
PP1 activates synthase + inactivates phosphorylase
|
||
|
||
Glucagon/Epi favor degradation:
|
||
PKA activation â phosphorylase activation + synthase inhibition
|
||
|
||
Summary table:
|
||
Glucagon (liver): synthesis â, degradation â
|
||
Epinephrine (muscle/liver): synthesis â, degradation â
|
||
Insulin: synthesis â, degradation â
|
||
|
||
Enzymes involved:
|
||
Degradation:
|
||
⢠Glycogen phosphorylase
|
||
⢠Debranching enzyme
|
||
⢠Phosphoglucomutase
|
||
⢠Glucose-6-phosphatase
|
||
⢠Protein kinase A
|
||
⢠Phosphorylase kinase
|
||
⢠PP1
|
||
|
||
# Synthesis:
|
||
⢠Hexokinase/glucokinase
|
||
⢠Phosphoglucomutase
|
||
⢠UDP-glucose pyrophosphorylase
|
||
⢠Inorganic pyrophosphatase
|
||
⢠Glycogenin
|
||
⢠Glycogen synthase
|
||
⢠Branching enzyme
|
||
⢠Protein kinase A
|
||
⢠GSK3
|
||
⢠PP1
|
||
|
||
# Summary:
|
||
⢠Liver glycogen maintains blood glucose
|
||
⢠Muscle glycogen fuels muscle
|
||
⢠Glycogen phosphorylase â breakdown
|
||
⢠Glycogen synthase â synthesis
|
||
⢠Regulated by allosterics + hormones
|
||
⢠Glucagon/Epi â degradation
|
||
⢠Insulin â synthesis
|
||
|
||
Läsanvisningar:
|
||
Kapitel 21 i Biochemistry, 10th ed, Berg et al. 2023
|
||
InstuderingsfrĂĽgor pĂĽ Canvas |