All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 2m4s
320 lines
12 KiB
Markdown
320 lines
12 KiB
Markdown
---
|
||
tags:
|
||
- biokemi
|
||
- anteckningar
|
||
- nukleotidnedbrytning
|
||
förelÀsare: Martin Lidell
|
||
date: 2025-12-09
|
||
---
|
||
Nukleotidnedbrytning
|
||
LPG001
|
||
Martin Lidell
|
||
|
||
---
|
||
|
||
## Lecture outline
|
||
|
||
- Nucleotides â short repetition of structural parts
|
||
- Functions of nucleotides
|
||
- Degradation of nucleic acids from food sources
|
||
- Degradation of purine nucleotides
|
||
- Degradation of pyrimidine nucleotides
|
||
- Two diseases related to purine nucleotides
|
||
- Gout â a very common disease
|
||
- Adenosine deaminase deficiency â a very rare disease
|
||
|
||
---
|
||
|
||
## What is a nucleotide?
|
||
|
||
- Nucleotide = Phosphate(s) + Pentose + Nitrogenous base
|
||
- Nucleoside = Pentose + Nitrogenous base
|
||
- Adenosine monophosphate
|
||
- OH (in ribose) or H (in deoxyribose)
|
||
|
||
---
|
||
|
||
## The nitrogenous bases â purines and pyrimidines
|
||
|
||
- Five bases
|
||
- PURINES: Purine, Adenine, Guanine
|
||
- PYRIMIDINES: Pyrimidine, Cytosine, Uracil (in RNA), Thymine (in DNA)
|
||
- Two rings; two purines
|
||
- Three pyrimidines; pyramide from above; CUT
|
||
|
||
---
|
||
|
||
## Functions of nucleotides â some examples
|
||
|
||
- Building blocks for DNA and RNA (store and translate genetic information)
|
||
- Building blocks for important biomolecules (e.g. Coenzyme A)
|
||
- Signaling molecules (both extra- and intracellular) (e.g. cAMP, adenosine signaling â a nucleoside)
|
||
- âActivatorsâ of biomolecules used for biosynthesis
|
||
- UDP-Glucose (activated form of glucose; glucose donor in glycogen synthesis)
|
||
|
||
---
|
||
|
||
## Overview of nucleotide metabolism
|
||
|
||
- Nucleotides
|
||
- De novo synthesis
|
||
- Salvage synthesis (synthesis from reused nitrogenous bases and sugars)
|
||
- DNA and RNA synthesis
|
||
- Conversion to other important biomolecules
|
||
- Degradation
|
||
|
||
- From degradation:
|
||
- Nitrogenous bases â
|
||
- Reuse for nucleotide synthesis (salvage)
|
||
- Further degradation â
|
||
- Purines â Urate + Urea
|
||
- Pyrimidines â Urea + Energy or energy-rich molecules
|
||
- Sugar moiety â
|
||
- Reuse for nucleotide synthesis (salvage)
|
||
- Energy source (ATP or energy-rich molecules)
|
||
|
||
---
|
||
|
||
## Expensive with de novo synthesis of nucleotides â the salvage pathway is cheaper
|
||
|
||
- De novo pathway vs salvage pathway
|
||
- PRPP; 5-Phosphoribosyl 1-pyrophosphate
|
||
|
||
---
|
||
|
||
## Degradation of nucleic acids from food sources
|
||
|
||
- Degradation of dietary nucleic acids occur in the small intestine
|
||
- Nucleases, secreted by the pancreas, hydrolyze RNA and DNA to oligonucleotides
|
||
- Oligonucleotides are further hydrolyzed by pancreatic phosphodiesterases, producing mononucleotides
|
||
- In the intestinal mucosal cells (intestinal epithelial cells), nucleotidases remove the phosphate groups, releasing nucleosides that are further degraded to free bases and sugars by nucleosidases
|
||
- The liberated bases can potentially be used in salvage pathways for nucleotide synthesis (however, at least the purines appear to be degraded to a large extent already in the intestinal cells)
|
||
|
||
---
|
||
|
||
## Nucleotide degradation pathways
|
||
|
||
- Nucleotides â Degradation â
|
||
- Nitrogenous bases â
|
||
- Reuse for nucleotide synthesis (salvage)
|
||
- Further degradation â
|
||
- Purines â Urate + Urea
|
||
- Pyrimidines â Urea + Energy or energy-rich molecules
|
||
- Sugar moiety â
|
||
- Reuse for nucleotide synthesis (salvage)
|
||
- Energy source (ATP or energy-rich molecules)
|
||
|
||
---
|
||
|
||
## Degradation of purine nucleotides â formation of uric acid
|
||
|
||
- GMP â (via nucleotidases) â Guanosine
|
||
- Nucleotidases convert the nucleotides into nucleosides
|
||
- Guanosine â Guanine (and further degradation)
|
||
- Pathway towards hypoxanthine, xanthine and uric acid
|
||
|
||
---
|
||
|
||
## Adenosine deaminase â an important enzyme in the degradation of adenosine
|
||
|
||
- Adenosine is deaminated to inosine by adenosine deaminase
|
||
- Toxic ammonia converted into urea in the liver
|
||
- Parallel pathway: GMP â Guanosine â Guanine, etc.
|
||
|
||
---
|
||
|
||
## The sugar parts are removed by nucleoside phosphorylase
|
||
|
||
- GMP â Guanosine
|
||
- Sugar phosphates options:
|
||
1. Reuse for nucleotide synthesis (convert to PRPP)
|
||
2. Use for energy production or generation of energy-containing molecules
|
||
- The sugar parts are removed by nucleoside phosphorylase
|
||
|
||
---
|
||
|
||
## GMP and AMP degradation converge at the level of xanthine that is further metabolized to uric acid
|
||
|
||
- Toxic ammonia converted into urea in the liver
|
||
- Uric acid (urate) excreted in the urine
|
||
|
||
---
|
||
|
||
## Degradation of pyrimidine nucleotides
|
||
|
||
- Pathways for CMP, UMP and dTMP
|
||
- Intermediates within brackets refer to metabolites from dTMP degradation
|
||
|
||
---
|
||
|
||
## CMP and UMP degradation converge at the level of uridine
|
||
|
||
- Nucleotidases convert the nucleotides into nucleosides
|
||
- CMP, UMP â Uridine
|
||
- Toxic ammonia converted into urea in the liver
|
||
|
||
---
|
||
|
||
## The sugar part is removed by a phosphorylase to generate the free pyrimidine bases
|
||
|
||
- Options for sugar phosphates:
|
||
1. Reuse for nucleotide synthesis (convert to PRPP)
|
||
2. Use for energy production or generation of energy-containing molecules
|
||
|
||
- Options for free bases:
|
||
1. Reuse for nucleotide synthesis
|
||
2. Use for energy production (ATP) or generation of energy-containing molecules
|
||
|
||
---
|
||
|
||
## Complete degradation of nitrogenous bases for ATP production or generation of energy-containing molecules
|
||
|
||
- From CMP and UMP:
|
||
- Acetyl CoA (Propionyl CoA) â ATP, fatty acids or ketone bodies
|
||
- From dTMP:
|
||
- Succinyl CoA (CAC intermediate) â ATP or glucose production
|
||
- Enzymes/intermediates:
|
||
- Methylmalonate semialdehyde dehydrogenase
|
||
- Propionyl CoA carboxylase
|
||
- Methylmalonyl CoA
|
||
- Methylmalonyl CoA mutase
|
||
- Toxic ammonia converted into urea in the liver
|
||
|
||
---
|
||
|
||
## What happens with the sugar moiety produced during nucleotide degradation?
|
||
|
||
- Ribose-1-phosphate â (Phosphopentomutase) â Ribose-5-phosphate
|
||
- Deoxyribose-1-phosphate â Deoxyribose-5-phosphate
|
||
- Ribose-5-phosphate can enter the pentose phosphate pathway (transketolase and transaldolase)
|
||
- Deoxyribose-5-phosphate â (Deoxyribose phosphate aldolase) â Glyceraldehyde-3-phosphate + Acetaldehyde
|
||
- Fructose-6-phosphate + Glyceraldehyde-3-phosphate â glycolysis/gluconeogenesis connection
|
||
- Acetyl CoA from acetaldehyde â ATP, fatty acids or ketone bodies
|
||
- Can be reused for nucleotide synthesis (converted to PRPP)
|
||
|
||
Endproducts used for energy production or generation of energy-containing molecules:
|
||
|
||
- Fructose-6-phosphate and glyceraldehyde-3-phosphate: ATP or glucose production
|
||
- Acetyl CoA: ATP, fatty acids or ketone bodies
|
||
|
||
---
|
||
|
||
## Full degradation of pyrimidines and purines
|
||
|
||
**Pyrimidines**
|
||
|
||
- Generate ammonia (NHâ) that is converted into UREA by the liver and excreted in the urine
|
||
- Metabolites that can be used for energy production (ATP) or converted into energy-containing molecules such as glucose (liver), fatty acids and ketone bodies
|
||
|
||
**Purines**
|
||
|
||
- Primarily generate URIC ACID (urate) that is excreted in the urine
|
||
- Some ammonia is also produced; converted into urea by the liver
|
||
|
||
---
|
||
|
||
## Gikt â frĂ„n âthe disease of kingsâ till folksjukdom
|
||
|
||
- Vid för höga uratnivĂ„er i blodet (>6â7 mg/dl) fĂ€lls urat ut som saltkristaller (ofta natriumurat)
|
||
- Kristallerna lÀgger sig i leder, senor och omgivande vÀvnad (vanligast Àr stortÄns grundled) och orsakar dÀr inflammation
|
||
- Vanligaste artritsjukdomen (uppskattad förekomst i Sverige, 1â2 % av befolkningen)
|
||
- De höga uratnivÄerna i blodet beror antingen pÄ ökad syntes eller pÄ minskad utsöndring av urat
|
||
- Beror oftast pÄ livsstilsfaktorer, lÀkemedelsbehandling eller annan sjukdom
|
||
|
||
Preventiva ÄtgÀrder inkluderar bland annat:
|
||
|
||
- Minskat intag av alkohol. Vid metabolism av etanol bildas laktat som kompetitivt hÀmmar utsöndring av urat i tubuli
|
||
- Minskat intag av purinrika livsmedel (frÀmst inÀlvsmat, sardiner, ansjovis och musslor, men Àven övrig fet fisk, skaldjur och kött)
|
||
|
||
---
|
||
|
||
## LĂ€kemedelsbehandling av gikt â strategi 1
|
||
|
||
- HÀmma bildningen av urat genom att hÀmma enzymet xantinoxidas som ansvarar för sista steget i nedbrytningen av puriner
|
||
- Exempel pÄ lÀkemedelssubstanser som hÀmmar produktionen av urinsyra:
|
||
- Allopurinol (hypoxantinanalog)
|
||
- Febuxostat
|
||
|
||
---
|
||
|
||
## LĂ€kemedelsbehandling av gikt â strategi 2
|
||
|
||
- HÀmma reabsorptionen av urat frÄn urinen i njurtubuli genom att inhibera urattransportörer (dessa Äterför normalt en stor del av utsöndrat urat till blodet)
|
||
- Ger sÀnkta uratnivÄer i blodet dÄ mer urat avgÄr med urinen
|
||
- Exempel pÄ substans: Probenecid
|
||
|
||
---
|
||
|
||
## SvÄr kombinerad immunbrist (SCID)
|
||
|
||
- SCID (Severe Combined Immunodeficiency) â samlingsnamn pĂ„ ett flertal ovanliga sjukdomar som beror pĂ„ avsaknad av immunceller som T- och B-lymfocyter, vilket leder till ett defekt immunsystem
|
||
- Utan behandling leder SCID till svÄr infektionsbenÀgenhet och drabbade individer avlider ofta redan under det första levnadsÄret
|
||
- Adenosindeaminasbrist; mycket ovanlig form av SCID i Sverige
|
||
- Autosomal recessiv nedÀrvning (mutationer i ADA-genen orsakar dysfunktionellt adenosindeaminas)
|
||
- En nÀrmast total brist pÄ immuncellerna T- och B-lymfocyter ses vid adenosindeaminasbrist
|
||
|
||
---
|
||
|
||
## SvĂ„r kombinerad immunbrist (SCID) â till följd av adenosindeaminasbrist
|
||
|
||
Möjlig koppling mellan enzymdefekt och avsaknad av immunceller:
|
||
|
||
- Muterat adenosindeaminas som förlorat sin funktion â ansamling av deoxyadenosin som omvandlas till dATP â syntes av övriga deoxyribonukleotider hĂ€mmas (dATP hĂ€mmar ribonukleotidreduktas) â syntes, replikation och reparation av skadat DNA hĂ€mmas â pĂ„verkar framförallt snabbt prolifererande celler (celltyper med hög omsĂ€ttning) som dĂ„ genomgĂ„r apoptos (âprogrammerat sjĂ€lvmordâ)
|
||
- T- och B-lymfocyter under utveckling Àr mycket snabbt prolifererande celler och tros dÀrför pÄverkas i speciellt hög grad av tillstÄndet
|
||
|
||
Behandling â gĂ„r ut pĂ„ att ge tillgĂ„ng till âfriskt enzymâ:
|
||
|
||
- Hematopoetisk stamcellstransplantation (benmÀrgstransplantation) frÄn frisk donator
|
||
- Enzymsubstitutionsbehandling, dvs enzymet ges som lÀkemedel (PEG-konjugat ADA injiceras subkutant)
|
||
- Genterapi; âfrisk ADA-genâ introduceras i individens egna hematopoetiska stamceller
|
||
|
||
---
|
||
|
||
## Genterapi vid adenosindeaminasbrist
|
||
|
||
- Har utförts pÄ ett fÄtal individer dÀr det inte varit möjligt att hitta lÀmplig donator
|
||
|
||
Ăversikt:
|
||
|
||
- Virus, med en frisk kopia av ADA-genen tillverkas
|
||
- De virus man anvÀnder saknar förmÄgan att ge upphov till sjukdom men har kvar egenskapen att bygga in nya gener i vÄr arvsmassa
|
||
- Virusen infekterar sedan hematopoetiska stamceller isolerade frÄn den sjuka individens benmÀrg och för pÄ sÄ sÀtt in den friska genen i dessa celler
|
||
- Cellerna ges tillbaka till den sjuka individen som dĂ€rmed har fĂ„tt âfriska stamcellerâ som kan bilda friska T-lymfocyter
|
||
|
||
---
|
||
|
||
## Sammanfattning av nukleotidnedbrytning
|
||
|
||
- Nukleotider har flera viktiga funktioner förutom att bilda nukleinsyrorna DNA och RNA
|
||
- Fem kvÀvebaser:
|
||
- TvÄ puriner; tvÄ ringar; GA
|
||
- Tre pyrimidiner; pyramid frÄn ovan; CUT
|
||
|
||
- De novo syntes av nukleotider Àr dyrt vilket gör att baserna och sockerenheterna Ätervinns i hög grad
|
||
|
||
Om fullstÀndig nedbrytning av nukleotider:
|
||
|
||
- Sockerdelen kan anvÀndas direkt som energikÀlla (ATP) eller omvandlas till energirika produkter
|
||
- KvÀvebaserna:
|
||
- Puriner: URINSYRA (URAT) + mindre mÀngd urea
|
||
- Pyrimidiner: UREA + energirika molekyler som kan anvÀndas för direkt produktion av ATP eller omvandlas till energirika produkter
|
||
|
||
- Defekter i nukleotidmetabolism kan orsaka sjukdom:
|
||
- Gikt; mycket vanlig artritsjukdom; uratkristaller i leder pga höga uratnivÄer i blodet
|
||
- Adenosindeaminasbrist (form av SCID); mycket ovanlig sjukdom; defekt adenosinnedbrytning orsakar nÀrmast total brist pÄ T- och B-lymfocyter; mycket infektionskÀnsliga
|
||
|
||
---
|
||
|
||
## LĂ€sanvisningar
|
||
|
||
- Detta förelÀsningsmaterial
|
||
- Biochemistry, 10th ed, Berg et al.
|
||
- 2023 W.H. Freeman, Macmillian Learning
|
||
- Kapitel 26: sidorna 809â810
|
||
|
||
- InstuderingsfrĂ„gor â finns upplagt pĂ„ Canvas
|
||
|
||
Har ni nÄgra frÄgor?
|
||
Hör gÀrna av er till mig med ett meddelande pÄ Canvas
|
||
|
||
**Nukleotidnedbrytning** |