All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m21s
245 lines
7.5 KiB
Markdown
245 lines
7.5 KiB
Markdown
---
|
||
föreläsare: Martin Lidell
|
||
tags:
|
||
- biokemi
|
||
- glykogen
|
||
- slides
|
||
date: 2025-12-03
|
||
---
|
||
|
||
# Glykogenmetabolism – föreläsningsupplägg
|
||
• Glykogen – en lagringsform av glukos
|
||
• Glykogens funktioner
|
||
• Hur sker nedbrytningen av glykogen?
|
||
• Hur bildas glykogen?
|
||
• Hur regleras glykogenmetabolismen?
|
||
|
||
Gerty and Carl Cori
|
||
The Nobel Prize in Physiology or Medicine 1947
|
||
"for their discovery of the course of the catalytic conversion of glycogen"
|
||
|
||
Triglycerider – en reducerad och vattenfri form av energiupplagring
|
||
1 gram fett innehåller ca 6.75 ggr mer energi än hydrerad glykogen
|
||
(1 g glykogen binder normalt 2 g vatten)
|
||
Del av Tabell 9.1 i ”Om kroppens omsättning av kolhydrat, fett och alkohol”,
|
||
Anders Eklund, Studentlitteratur, 2004
|
||
|
||
Triglycerider en effektivare form av energilagring – varför har vi då glykogen?
|
||
Varför behöver vi glykogen?
|
||
Hjärnan behöver glukos även mellan måltider
|
||
Muskel kan använda glukos som energikälla vid arbete; även anaerobt
|
||
(fettsyror kan ej användas vid anaerobt arbete)
|
||
Glukos kan ej bildas från fettsyror
|
||
Kroppen behöver ett lager av glukos!
|
||
|
||
Glukos – en essentiell energikälla
|
||
Problem:
|
||
Glukos kan inte lagras eftersom molekylen är osmotiskt aktiv.
|
||
Höga koncentrationer av glukos skulle förstöra den osmotiska balansen i en cell och orsaka cellskador/celldöd.
|
||
Table 27.1 in ”Biochemistry, 4th ed”, Garrett and Grisham, Brooks/Cole, 2010
|
||
|
||
Hur kan en tillräcklig mängd glukos lagras utan att orsaka cellskador?
|
||
Lösning:
|
||
Glukos lagras som icke-osmotiskt aktiv polymer
|
||
• Glykogen (djur)
|
||
• Stärkelse; amylos och amylopektin (växter)
|
||
Polymererna kan ses som lättmobiliserade lagringsformer av glukos, vilken kan frisättas när energi behövs
|
||
|
||
Glykogen – en väldigt stor och grenad polymer av “glukosenheter”
|
||
Strukturen är optimerad för att lagra/frigöra energi snabbt
|
||
Glykogenet tillgodoser behovet av glukos på kort sikt
|
||
Glykogenmetabolismen styrs av allostera effektorer och hormoner
|
||
Vi kan lagra upp till ca 450 g glykogen; ungefär 1/3 i levern
|
||
och resterande del främst i skelettmuskulaturen.
|
||
|
||
Two types of glycosidic bonds in glycogen
|
||
a-1,4-glycosidic linkages in linear parts
|
||
a-1,6-glycosidic linkages at branching points
|
||
|
||
b-particles / a-rosettes
|
||
The elementary particle of glycogen is sometimes called the b-particle.
|
||
The particle is about 21 nm in diameter, consists of up to 55000 glucose residues with about 2000 nonreducing ends.
|
||
20–40 b-particles can cluster together to form a-rosettes.
|
||
|
||
Different functions of glycogen in liver and muscle
|
||
Liver glycogen serves in the maintenance of the blood glucose level between meals.
|
||
Muscle glycogen serves as an energy reserve for the muscle itself. Muscles lack glucose-6-phosphatase and cannot release glucose to blood.
|
||
|
||
The three steps in glycogen degradation (glycogenolysis)
|
||
1. release of glucose 1-phosphate from glycogen
|
||
2. remodeling of the glycogen substrate to permit further degradation
|
||
3. conversion of glucose 1-phosphate into glucose 6-phosphate for further metabolism
|
||
|
||
Polysaccharides can be degraded by hydrolysis or phosphorolysis
|
||
|
||
Glycogen phosphorylase – key enzyme in glycogen degradation
|
||
Cleaves substrate by addition of orthophosphate (Pi) to yield glucose 1-phosphate
|
||
Phosphorolysis
|
||
Allosteric enzyme regulated by reversible covalent modification
|
||
|
||
Glycogen phosphorylase cannot cleave α-1,6 bonds, stops 4 residues from branch → limited degradation
|
||
|
||
Debranching enzyme needed — dual activity: transferase + α-1,6-glucosidase
|
||
|
||
α-1,6 linkage hydrolyzed → glucose + shortened glycogen
|
||
|
||
Phosphoglucomutase converts G1P → G6P (reversible)
|
||
|
||
Glucose-6-phosphatase in liver/kidney allows release of glucose to blood
|
||
|
||
Metabolism of G6P:
|
||
1. fuel (muscle)
|
||
2. glucose release (liver)
|
||
3. NADPH/ribose-5-P (many tissues)
|
||
|
||
Four steps in glycogen synthesis:
|
||
1. UDP-glucose activation
|
||
2. primer
|
||
3. elongation
|
||
4. branching
|
||
(occurs in cytosol)
|
||
|
||
UDP-glucose: activated glucose donor
|
||
Synthesized from G1P + UTP, catalyzed by UDP-glucose pyrophosphorylase
|
||
Driven by pyrophosphate hydrolysis
|
||
|
||
Glycogen synthase: key enzyme in glycogenesis
|
||
Adds glucosyl units to non-reducing end via α-1,4 bonds
|
||
Needs existing chain ≥4 residues
|
||
|
||
Glycogen synthesis requires primer:
|
||
Glycogenin (two subunits)
|
||
Autocatalytic polymerization on tyrosine
|
||
UDP-glucose donor
|
||
Synthase later extends chain
|
||
|
||
Branching enzyme:
|
||
Break α-1,4, form α-1,6
|
||
Transfers block of ~7 residues
|
||
Rules:
|
||
• chain ≥11 long
|
||
• block includes non-reducing end
|
||
• new branch ≥4 residues away from existing
|
||
|
||
Summary of glycogen synthesis
|
||
|
||
Glycogen metabolism control:
|
||
Key enzymes: glycogen phosphorylase & glycogen synthase
|
||
Mechanisms:
|
||
• Allosteric regulation (glucose, G6P, AMP, ATP)
|
||
• Reversible phosphorylation (glucagon, epinephrine, insulin)
|
||
|
||
Regulation of glycogen degradation:
|
||
Phosphorylase b ↔ phosphorylase a
|
||
R ↔ T states
|
||
Allosterics + phosphorylation
|
||
|
||
Different isozymes:
|
||
Liver vs muscle glycogen phosphorylase → different responses
|
||
|
||
Liver phosphorylase:
|
||
Purpose: export glucose
|
||
Acts as glucose sensor:
|
||
• senses glucose → inactive
|
||
• no glucose → active
|
||
|
||
Muscle phosphorylase:
|
||
Purpose: energy for contraction
|
||
Sensors:
|
||
• AMP → activate
|
||
• ATP/G6P → inhibit
|
||
|
||
Regulation of glycogen synthase:
|
||
G6P sensor:
|
||
• senses G6P → activate
|
||
• no G6P → inactive
|
||
Phosphorylated form = inactive (b)
|
||
Dephosphorylated = active (a)
|
||
|
||
Allosteric summary:
|
||
Glc-6-P stimulates synthesis
|
||
AMP stimulates degradation (muscle)
|
||
ATP & G6P inhibit degradation (muscle)
|
||
Glucose inhibits degradation (liver)
|
||
|
||
Hormones:
|
||
INSULIN
|
||
• released when blood glucose high
|
||
• stimulates glucose uptake and storage as glycogen/fat
|
||
|
||
GLUCAGON
|
||
• low blood glucose
|
||
• targets liver to raise blood glucose via glycogenolysis & gluconeogenesis
|
||
|
||
ADRENALINE
|
||
• stress
|
||
• activates glycogenolysis & lipolysis
|
||
|
||
Hormonal overview:
|
||
• Insulin → favors synthesis
|
||
• Glucagon/Epinephrine → favor degradation
|
||
Mechanism: phosphorylation states of phosphorylase and synthase
|
||
|
||
Hormonal stimulation of phosphorylase:
|
||
Glucagon/epinephrine → kinase cascades → active phosphorylase
|
||
|
||
Phosphorylase kinase activated by Ca2+ + phosphorylation
|
||
|
||
Protein phosphatase 1 (PP1):
|
||
Dephosphorylates phosphorylase & kinase → inhibits degradation
|
||
|
||
Hormonal regulation of PP1:
|
||
• Glucagon/Epi inhibit PP1
|
||
• Insulin activates PP1
|
||
|
||
Hormonal inhibition of glycogen synthase:
|
||
Glucagon/Epi → phosphorylation → inactive synthase
|
||
|
||
Insulin stimulation of glycogen synthase:
|
||
Insulin inactivates GSK3, activates PP1 → activates synthase (dephosphorylation)
|
||
|
||
Insulin favors synthesis:
|
||
PP1 activates synthase + inactivates phosphorylase
|
||
|
||
Glucagon/Epi favor degradation:
|
||
PKA activation → phosphorylase activation + synthase inhibition
|
||
|
||
Summary table:
|
||
Glucagon (liver): synthesis ↓, degradation ↑
|
||
Epinephrine (muscle/liver): synthesis ↓, degradation ↑
|
||
Insulin: synthesis ↑, degradation ↓
|
||
|
||
Enzymes involved:
|
||
Degradation:
|
||
• Glycogen phosphorylase
|
||
• Debranching enzyme
|
||
• Phosphoglucomutase
|
||
• Glucose-6-phosphatase
|
||
• Protein kinase A
|
||
• Phosphorylase kinase
|
||
• PP1
|
||
|
||
# Synthesis:
|
||
• Hexokinase/glucokinase
|
||
• Phosphoglucomutase
|
||
• UDP-glucose pyrophosphorylase
|
||
• Inorganic pyrophosphatase
|
||
• Glycogenin
|
||
• Glycogen synthase
|
||
• Branching enzyme
|
||
• Protein kinase A
|
||
• GSK3
|
||
• PP1
|
||
|
||
# Summary:
|
||
• Liver glycogen maintains blood glucose
|
||
• Muscle glycogen fuels muscle
|
||
• Glycogen phosphorylase → breakdown
|
||
• Glycogen synthase → synthesis
|
||
• Regulated by allosterics + hormones
|
||
• Glucagon/Epi → degradation
|
||
• Insulin → synthesis
|
||
|
||
Läsanvisningar:
|
||
Kapitel 21 i Biochemistry, 10th ed, Berg et al. 2023
|
||
Instuderingsfrågor på Canvas |