All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 5m15s
334 lines
4.2 KiB
Markdown
334 lines
4.2 KiB
Markdown
# Cirkadiansk rytm, sömn och medvetande.pdf
|
||
|
||
**OCR Transcript**
|
||
|
||
- Pages: 25
|
||
- OCR Engine: pymupdf
|
||
- Quality Score: 1.00
|
||
|
||
---
|
||
|
||
## Page 1
|
||
|
||
Cirkadiansk rytm, Sömn och
|
||
Medvetande
|
||
Eric Hanse HT 2025
|
||
|
||
|
||
---
|
||
|
||
## Page 2
|
||
|
||
Circadian rhythms appeared 2-3 billions years ago
|
||
Sleep, like ageing17,18, may be an inescapable consequence
|
||
of aerobic metabolism.
|
||
|
||
|
||
---
|
||
|
||
## Page 3
|
||
|
||
Circadian organization in mammals
|
||
Hastings et al 2018 Nat Rev Neurosci 19:453-469
|
||
|
||
|
||
---
|
||
|
||
## Page 4
|
||
|
||
The central clock in nucl. suprachiasmaticus
|
||
(SCN) synchronizes circadian rhythms
|
||
Control
|
||
After lesion of the SCN
|
||
|
||
|
||
---
|
||
|
||
## Page 5
|
||
|
||
Model for the circadian clock
|
||
|
||
|
||
---
|
||
|
||
## Page 6
|
||
|
||
The molecular clock is based on delayed negative
|
||
feedback
|
||
|
||
|
||
---
|
||
|
||
## Page 7
|
||
|
||
The SCN does not keep an exact 24 hour
|
||
cycle if not entrained
|
||
”The third eye”
|
||
-melanopsin-containing
|
||
ganglion cells
|
||
sleep
|
||
wake
|
||
|
||
|
||
---
|
||
|
||
## Page 8
|
||
|
||
SCN signals to the rest of the brain and body
|
||
both electrically and with hormones
|
||
Higher frequency of action potentials during the day
|
||
Homones, for example:
|
||
Cortisol – highest levels when we wake up
|
||
Melatonin – a “dark hormone”, released from corpus pineale
|
||
Welsh et al (1995) Neuron 14:697
|
||
|
||
|
||
---
|
||
|
||
## Page 9
|
||
|
||
Pracucci et al 2023 Nat Comm 14:7108
|
||
Alfonso et al 2023 Nat Neurosci 26:64-78
|
||
I.c.[Cl-] is higher during wake and lower
|
||
during sleep in cortical pyramidal neurons
|
||
|
||
|
||
---
|
||
|
||
## Page 10
|
||
|
||
Sleep
|
||
“Sleep is the readily reversible state of
|
||
reduced responsiveness to and
|
||
interaction with the environment”
|
||
|
||
|
||
---
|
||
|
||
## Page 11
|
||
|
||
Why do we sleep?
|
||
Processing of memories
|
||
”Brain wash”
|
||
Hauglund et al 2025 Cell 188: 1-17
|
||
Brodt et al 2023 Neuron 111: 1050-1075
|
||
|
||
|
||
---
|
||
|
||
## Page 12
|
||
|
||
NA, 5-HT, Histamin
|
||
High
|
||
Low
|
||
Very Low
|
||
Ach
|
||
High
|
||
Low
|
||
High
|
||
Orexin
|
||
High
|
||
Low
|
||
Low
|
||
Energy consumption
|
||
High
|
||
Somewhat lower
|
||
High
|
||
Awake, NREM and REM
|
||
Hobson (2005) Nature 437:1254
|
||
|
||
|
||
---
|
||
|
||
## Page 13
|
||
|
||
The ”wake nucleus” in the hypothalamus
|
||
(LHA) excites the modulatory transmitter
|
||
systems using Glu/Orexin
|
||
Saper et al (2005) Nature 437:1257
|
||
LC –Locus Coeruleus
|
||
BF – Basal forebrain
|
||
LH – Lateral Hypothalamus
|
||
VLPO – VenteroLateralPreOptic
|
||
TMN - TuberoMammillary Nucl
|
||
LDT/PPT – LateroDorsal- and PeduncoPontine
|
||
Tegmental nucl
|
||
|
||
|
||
---
|
||
|
||
## Page 14
|
||
|
||
The ”sleep nucleus” in the hypothalamus
|
||
(VLPO) inhibits the modulatory transmitter
|
||
systems using GABA/Galanin
|
||
Saper et al (2005) Nature 437:1257
|
||
|
||
|
||
---
|
||
|
||
## Page 15
|
||
|
||
The cells in LHA and VLPO are under
|
||
circadian control by the SCN via the DMH in
|
||
the hypothalamus
|
||
Saper et al (2005) Nature 437:1257
|
||
|
||
|
||
---
|
||
|
||
## Page 16
|
||
|
||
SCN
|
||
DMH
|
||
VLPO
|
||
GABA/Galanin
|
||
NA, 5-HT,
|
||
NA, ACh
|
||
Light
|
||
Meals, Temperature,
|
||
Emotions / Cognition
|
||
-
|
||
LHA
|
||
Orexin
|
||
+
|
||
-
|
||
-
|
||
Somnogenic
|
||
factors
|
||
Somnogenic
|
||
factors
|
||
+
|
||
-
|
||
Sleep control
|
||
-
|
||
Somnogenic
|
||
factors
|
||
-
|
||
|
||
|
||
---
|
||
|
||
## Page 17
|
||
|
||
Adenosine is an ”somnogenic”
|
||
factor contributing to sleep pressure
|
||
|
||
|
||
---
|
||
|
||
## Page 18
|
||
|
||
Three different brain states:
|
||
Wake, NREM & REM
|
||
Wake
|
||
Non-REM
|
||
REM
|
||
NA, 5-HT, Histamin
|
||
High
|
||
Low
|
||
Low
|
||
ACh
|
||
High
|
||
Low
|
||
HIGH
|
||
Orexin
|
||
High
|
||
Low
|
||
Low
|
||
EEG
|
||
Desynchronized
|
||
Synchronized
|
||
Desynchronized
|
||
Energy consumption
|
||
High
|
||
Moderate
|
||
High
|
||
Muscle tonus
|
||
High
|
||
Moderate
|
||
Low
|
||
Breating / Heart rate
|
||
Regular
|
||
Regular
|
||
Oregelbunden
|
||
Temperature regulation
|
||
Functioning
|
||
Functioning
|
||
Non-functioning
|
||
Eye movements
|
||
Vision
|
||
Slow
|
||
Fast (REM)
|
||
|
||
|
||
---
|
||
|
||
## Page 19
|
||
|
||
Timofeev & Chauvette (2018) Neuron 97:1200-1202
|
||
Modulatory transmitters and changes of e.c. ion
|
||
conc. regulate the activity of cortical neurons
|
||
EMG
|
||
I.c.
|
||
EEG
|
||
|
||
|
||
---
|
||
|
||
## Page 20
|
||
|
||
An optimal level of neuronal network
|
||
activity in the brain - Criticality
|
||
Hengen & Shew (2025) Neuron 113:1-17
|
||
|
||
|
||
---
|
||
|
||
## Page 21
|
||
|
||
Loss of consciousness during sleep and
|
||
anaesthesia because ”decoupling” of cortical
|
||
pyramidal neurons?
|
||
Marvan et al (2021) Neurosci Conscious 7: 1-17
|
||
|
||
|
||
---
|
||
|
||
## Page 22
|
||
|
||
Cortical pyramidal neuron with two action potential
|
||
initiation zones comparing Content with Context
|
||
Granato et al 2024 Neurosci and Biobehav Rev 161: 105688
|
||
”Predictive coding” and
|
||
”Predictive error”
|
||
|
||
|
||
---
|
||
|
||
## Page 23
|
||
|
||
Simultaneous apical feedback and basal
|
||
feedforward inputs provide synergistic firing
|
||
output
|
||
Larkum (2012) TiNS 36:141-149
|
||
|
||
|
||
---
|
||
|
||
## Page 24
|
||
|
||
Promoting apical and basal coupling enables
|
||
consciousness
|
||
Suzuki & Larkum (2020) Neuron 180: 666-676
|
||
|
||
|
||
---
|
||
|
||
## Page 25
|
||
|
||
(No content)
|
||
|
||
---
|
||
|