1
0
Files
medical-notes/content/Biokemi/Metabolism/🧬 Nukleotidnedbrytning/đŸ‘šđŸ»â€đŸ« Slides.md
Johan Dahlin 81790199af
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 2m4s
vault backup: 2025-12-09 15:12:34
2025-12-09 15:12:34 +01:00

320 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
---
tags:
- biokemi
- anteckningar
- nukleotidnedbrytning
förelÀsare: Martin Lidell
date: 2025-12-09
---
Nukleotidnedbrytning
LPG001
Martin Lidell
---
## Lecture outline
- Nucleotides – short repetition of structural parts
- Functions of nucleotides
- Degradation of nucleic acids from food sources
- Degradation of purine nucleotides
- Degradation of pyrimidine nucleotides
- Two diseases related to purine nucleotides
- Gout – a very common disease
- Adenosine deaminase deficiency – a very rare disease
---
## What is a nucleotide?
- Nucleotide = Phosphate(s) + Pentose + Nitrogenous base
- Nucleoside = Pentose + Nitrogenous base
- Adenosine monophosphate
- OH (in ribose) or H (in deoxyribose)
---
## The nitrogenous bases – purines and pyrimidines
- Five bases
- PURINES: Purine, Adenine, Guanine
- PYRIMIDINES: Pyrimidine, Cytosine, Uracil (in RNA), Thymine (in DNA)
- Two rings; two purines
- Three pyrimidines; pyramide from above; CUT
---
## Functions of nucleotides – some examples
- Building blocks for DNA and RNA (store and translate genetic information)
- Building blocks for important biomolecules (e.g. Coenzyme A)
- Signaling molecules (both extra- and intracellular) (e.g. cAMP, adenosine signaling – a nucleoside)
- “Activators” of biomolecules used for biosynthesis
- UDP-Glucose (activated form of glucose; glucose donor in glycogen synthesis)
---
## Overview of nucleotide metabolism
- Nucleotides
- De novo synthesis
- Salvage synthesis (synthesis from reused nitrogenous bases and sugars)
- DNA and RNA synthesis
- Conversion to other important biomolecules
- Degradation
- From degradation:
- Nitrogenous bases →
- Reuse for nucleotide synthesis (salvage)
- Further degradation →
- Purines → Urate + Urea
- Pyrimidines → Urea + Energy or energy-rich molecules
- Sugar moiety →
- Reuse for nucleotide synthesis (salvage)
- Energy source (ATP or energy-rich molecules)
---
## Expensive with de novo synthesis of nucleotides – the salvage pathway is cheaper
- De novo pathway vs salvage pathway
- PRPP; 5-Phosphoribosyl 1-pyrophosphate
---
## Degradation of nucleic acids from food sources
- Degradation of dietary nucleic acids occur in the small intestine
- Nucleases, secreted by the pancreas, hydrolyze RNA and DNA to oligonucleotides
- Oligonucleotides are further hydrolyzed by pancreatic phosphodiesterases, producing mononucleotides
- In the intestinal mucosal cells (intestinal epithelial cells), nucleotidases remove the phosphate groups, releasing nucleosides that are further degraded to free bases and sugars by nucleosidases
- The liberated bases can potentially be used in salvage pathways for nucleotide synthesis (however, at least the purines appear to be degraded to a large extent already in the intestinal cells)
---
## Nucleotide degradation pathways
- Nucleotides → Degradation →
- Nitrogenous bases →
- Reuse for nucleotide synthesis (salvage)
- Further degradation →
- Purines → Urate + Urea
- Pyrimidines → Urea + Energy or energy-rich molecules
- Sugar moiety →
- Reuse for nucleotide synthesis (salvage)
- Energy source (ATP or energy-rich molecules)
---
## Degradation of purine nucleotides – formation of uric acid
- GMP → (via nucleotidases) → Guanosine
- Nucleotidases convert the nucleotides into nucleosides
- Guanosine → Guanine (and further degradation)
- Pathway towards hypoxanthine, xanthine and uric acid
---
## Adenosine deaminase – an important enzyme in the degradation of adenosine
- Adenosine is deaminated to inosine by adenosine deaminase
- Toxic ammonia converted into urea in the liver
- Parallel pathway: GMP → Guanosine → Guanine, etc.
---
## The sugar parts are removed by nucleoside phosphorylase
- GMP → Guanosine
- Sugar phosphates options:
1. Reuse for nucleotide synthesis (convert to PRPP)
2. Use for energy production or generation of energy-containing molecules
- The sugar parts are removed by nucleoside phosphorylase
---
## GMP and AMP degradation converge at the level of xanthine that is further metabolized to uric acid
- Toxic ammonia converted into urea in the liver
- Uric acid (urate) excreted in the urine
---
## Degradation of pyrimidine nucleotides
- Pathways for CMP, UMP and dTMP
- Intermediates within brackets refer to metabolites from dTMP degradation
---
## CMP and UMP degradation converge at the level of uridine
- Nucleotidases convert the nucleotides into nucleosides
- CMP, UMP → Uridine
- Toxic ammonia converted into urea in the liver
---
## The sugar part is removed by a phosphorylase to generate the free pyrimidine bases
- Options for sugar phosphates:
1. Reuse for nucleotide synthesis (convert to PRPP)
2. Use for energy production or generation of energy-containing molecules
- Options for free bases:
1. Reuse for nucleotide synthesis
2. Use for energy production (ATP) or generation of energy-containing molecules
---
## Complete degradation of nitrogenous bases for ATP production or generation of energy-containing molecules
- From CMP and UMP:
- Acetyl CoA (Propionyl CoA) → ATP, fatty acids or ketone bodies
- From dTMP:
- Succinyl CoA (CAC intermediate) → ATP or glucose production
- Enzymes/intermediates:
- Methylmalonate semialdehyde dehydrogenase
- Propionyl CoA carboxylase
- Methylmalonyl CoA
- Methylmalonyl CoA mutase
- Toxic ammonia converted into urea in the liver
---
## What happens with the sugar moiety produced during nucleotide degradation?
- Ribose-1-phosphate ↔ (Phosphopentomutase) ↔ Ribose-5-phosphate
- Deoxyribose-1-phosphate ↔ Deoxyribose-5-phosphate
- Ribose-5-phosphate can enter the pentose phosphate pathway (transketolase and transaldolase)
- Deoxyribose-5-phosphate → (Deoxyribose phosphate aldolase) → Glyceraldehyde-3-phosphate + Acetaldehyde
- Fructose-6-phosphate + Glyceraldehyde-3-phosphate → glycolysis/gluconeogenesis connection
- Acetyl CoA from acetaldehyde → ATP, fatty acids or ketone bodies
- Can be reused for nucleotide synthesis (converted to PRPP)
Endproducts used for energy production or generation of energy-containing molecules:
- Fructose-6-phosphate and glyceraldehyde-3-phosphate: ATP or glucose production
- Acetyl CoA: ATP, fatty acids or ketone bodies
---
## Full degradation of pyrimidines and purines
**Pyrimidines**
- Generate ammonia (NH₃) that is converted into UREA by the liver and excreted in the urine
- Metabolites that can be used for energy production (ATP) or converted into energy-containing molecules such as glucose (liver), fatty acids and ketone bodies
**Purines**
- Primarily generate URIC ACID (urate) that is excreted in the urine
- Some ammonia is also produced; converted into urea by the liver
---
## Gikt – frĂ„n ”the disease of kings” till folksjukdom
- Vid för höga uratnivĂ„er i blodet (>6–7 mg/dl) fĂ€lls urat ut som saltkristaller (ofta natriumurat)
- Kristallerna lÀgger sig i leder, senor och omgivande vÀvnad (vanligast Àr stortÄns grundled) och orsakar dÀr inflammation
- Vanligaste artritsjukdomen (uppskattad förekomst i Sverige, 1–2 % av befolkningen)
- De höga uratnivÄerna i blodet beror antingen pÄ ökad syntes eller pÄ minskad utsöndring av urat
- Beror oftast pÄ livsstilsfaktorer, lÀkemedelsbehandling eller annan sjukdom
Preventiva ÄtgÀrder inkluderar bland annat:
- Minskat intag av alkohol. Vid metabolism av etanol bildas laktat som kompetitivt hÀmmar utsöndring av urat i tubuli
- Minskat intag av purinrika livsmedel (frÀmst inÀlvsmat, sardiner, ansjovis och musslor, men Àven övrig fet fisk, skaldjur och kött)
---
## LĂ€kemedelsbehandling av gikt – strategi 1
- HÀmma bildningen av urat genom att hÀmma enzymet xantinoxidas som ansvarar för sista steget i nedbrytningen av puriner
- Exempel pÄ lÀkemedelssubstanser som hÀmmar produktionen av urinsyra:
- Allopurinol (hypoxantinanalog)
- Febuxostat
---
## LĂ€kemedelsbehandling av gikt – strategi 2
- HÀmma reabsorptionen av urat frÄn urinen i njurtubuli genom att inhibera urattransportörer (dessa Äterför normalt en stor del av utsöndrat urat till blodet)
- Ger sÀnkta uratnivÄer i blodet dÄ mer urat avgÄr med urinen
- Exempel pÄ substans: Probenecid
---
## SvÄr kombinerad immunbrist (SCID)
- SCID (Severe Combined Immunodeficiency) – samlingsnamn pĂ„ ett flertal ovanliga sjukdomar som beror pĂ„ avsaknad av immunceller som T- och B-lymfocyter, vilket leder till ett defekt immunsystem
- Utan behandling leder SCID till svÄr infektionsbenÀgenhet och drabbade individer avlider ofta redan under det första levnadsÄret
- Adenosindeaminasbrist; mycket ovanlig form av SCID i Sverige
- Autosomal recessiv nedÀrvning (mutationer i ADA-genen orsakar dysfunktionellt adenosindeaminas)
- En nÀrmast total brist pÄ immuncellerna T- och B-lymfocyter ses vid adenosindeaminasbrist
---
## SvĂ„r kombinerad immunbrist (SCID) – till följd av adenosindeaminasbrist
Möjlig koppling mellan enzymdefekt och avsaknad av immunceller:
- Muterat adenosindeaminas som förlorat sin funktion → ansamling av deoxyadenosin som omvandlas till dATP → syntes av övriga deoxyribonukleotider hĂ€mmas (dATP hĂ€mmar ribonukleotidreduktas) → syntes, replikation och reparation av skadat DNA hĂ€mmas → pĂ„verkar framförallt snabbt prolifererande celler (celltyper med hög omsĂ€ttning) som dĂ„ genomgĂ„r apoptos (”programmerat sjĂ€lvmord”)
- T- och B-lymfocyter under utveckling Àr mycket snabbt prolifererande celler och tros dÀrför pÄverkas i speciellt hög grad av tillstÄndet
Behandling – gĂ„r ut pĂ„ att ge tillgĂ„ng till ”friskt enzym”:
- Hematopoetisk stamcellstransplantation (benmÀrgstransplantation) frÄn frisk donator
- Enzymsubstitutionsbehandling, dvs enzymet ges som lÀkemedel (PEG-konjugat ADA injiceras subkutant)
- Genterapi; ”frisk ADA-gen” introduceras i individens egna hematopoetiska stamceller
---
## Genterapi vid adenosindeaminasbrist
- Har utförts pÄ ett fÄtal individer dÀr det inte varit möjligt att hitta lÀmplig donator
Översikt:
- Virus, med en frisk kopia av ADA-genen tillverkas
- De virus man anvÀnder saknar förmÄgan att ge upphov till sjukdom men har kvar egenskapen att bygga in nya gener i vÄr arvsmassa
- Virusen infekterar sedan hematopoetiska stamceller isolerade frÄn den sjuka individens benmÀrg och för pÄ sÄ sÀtt in den friska genen i dessa celler
- Cellerna ges tillbaka till den sjuka individen som dĂ€rmed har fĂ„tt ”friska stamceller” som kan bilda friska T-lymfocyter
---
## Sammanfattning av nukleotidnedbrytning
- Nukleotider har flera viktiga funktioner förutom att bilda nukleinsyrorna DNA och RNA
- Fem kvÀvebaser:
- TvÄ puriner; tvÄ ringar; GA
- Tre pyrimidiner; pyramid frÄn ovan; CUT
- De novo syntes av nukleotider Àr dyrt vilket gör att baserna och sockerenheterna Ätervinns i hög grad
Om fullstÀndig nedbrytning av nukleotider:
- Sockerdelen kan anvÀndas direkt som energikÀlla (ATP) eller omvandlas till energirika produkter
- KvÀvebaserna:
- Puriner: URINSYRA (URAT) + mindre mÀngd urea
- Pyrimidiner: UREA + energirika molekyler som kan anvÀndas för direkt produktion av ATP eller omvandlas till energirika produkter
- Defekter i nukleotidmetabolism kan orsaka sjukdom:
- Gikt; mycket vanlig artritsjukdom; uratkristaller i leder pga höga uratnivÄer i blodet
- Adenosindeaminasbrist (form av SCID); mycket ovanlig sjukdom; defekt adenosinnedbrytning orsakar nÀrmast total brist pÄ T- och B-lymfocyter; mycket infektionskÀnsliga
---
## LĂ€sanvisningar
- Detta förelÀsningsmaterial
- Biochemistry, 10th ed, Berg et al.
- 2023 W.H. Freeman, Macmillian Learning
- Kapitel 26: sidorna 809–810
- InstuderingsfrĂ„gor – finns upplagt pĂ„ Canvas
Har ni nÄgra frÄgor?
Hör gÀrna av er till mig med ett meddelande pÄ Canvas
**Nukleotidnedbrytning**