1
0

vault backup: 2025-12-05 15:15:25
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m49s

This commit is contained in:
2025-12-05 15:15:26 +01:00
parent dbbb844213
commit b716564929

View File

@@ -30,18 +30,63 @@ Vad händer med NADH/FADH?
## Komplex I: NADH-Q-oxidoreduktas
2é från NADH
$4H^+$ pumpas för varje NADH
$H^+$ tas upp från matrix
Får 4.5 $H^+$
Fyra ej kontinuerliga, vertikala $H^+$-kanaler
Sammanbundna både på matrixsidan och mellanmembransidan.
1. längsgående horisontell 𝛼-helix mot matrix
2. b-hårsnål-helix motiv mot MMU
- $Q + 2e^- → Q^{2-}$ → konformationsändring av 1 & 2 ovanför
- gör att protoner som bundit in på matrix-sidan kommer släppas lös på MMU-sidan
NADH + Q + $5H^+_{matrix}$ → $NAD^+$ + $QH_2$ + $4H^+_{mmv}$
## Komplex II: Succinat-Q-reduktas
Kopplat till TCA
## Komplex III: Q-Cytrokrom-oxidoreduktas
2é från $FADH_2$ via komplex II
Får 3 $H^+$
Q-pool
- allt Q & Q$H_2$ som finns i membranet
Q-cykeln
- -2é från Q$H_2$ cytc kan ta emot é
1. $QH_2$ 1 é → cytc
- 1é→ Q → $Q^-$
- får en radikal som är bunden, så den lossar inte (ofarlig)
2. $QH_2$ 1 é → cytc
- 1é→ $Q^-$ → $Q^{2-}$ → $QH_2$ (sista tar upp $2H^+$ från matrix)
$QH_2$ + $2CytC_{oxi}$ + $2H^+_{matrix}$ → Q + $2cytc_{reducerad}$ + 4$H^+_{mellanmembran}$
## Komplex IV: Cytokrom-C-oxidas
$2é + 2H^+ + 1/2 O_2 → H_2O$
- kallas cellandningen
- kallas cellandningen eller respiration
Är konservativt, dvs viktigt protein.
Krävs 4 st komplex.
Får 3 $H^+$
1. 2 $Cytc_{red}$ reducerar
1. Fe
2. Cu
3. 2$Cytc_{ox}$ bildas
2. $O_2$ binder in → peroxid
1. blått reducerat (i slide)
2. rött oxiderat (i slide)
3. 2$Cytc_{red}$ binder → spjälkning av perioxid till 2HO
1. Får en $2CytC_{ox}$
4. 2$H^+$ tas från matrix → 2$H_2O$
Summering: 4 $Cytc_{red}$ + 8$H^+_{mat}$ + $O_2$ → 4$cytc_{ox}$ + 2 $H_2O$ + 4 $H^+_{mellanmembran}$
# Sammanfattning om Komplex
I 1,3,4 är fördelaktig att ge sig av elektron.
Mesta energi används för att flytta mellan matrix och
Kemisk energi som bygger upp elektrisk energi
Verkar viktigt: Följ vad som händer med de 2 elektronerna över de olika komplexen
Får totalt upp ungefär:
- ~10 $H^+$/$NADH^+$ (kan variera i olika källor)
- ~6 $H^+$/$FADH_2$ (kan variera i olika källor)
$FADH_2$ är värt något minde
# Fråga
---
Varför bildas gradienten av protoner och inte av tex $Na^+$ eller $Cl^-$?
@@ -80,7 +125,6 @@ Redoxpotentialen bestämmer ordningen av hur elektroner går igenom komplexen i
---
# Elektrokemik gradient
# $\frac{MMV: H+ H+ H+}{MAT: H+}$
Gör att vi får:
@@ -96,10 +140,70 @@ När é avges följer protoner med
→ upptag av $H^+$ från matrix, frisläppning i MMU
$H_2O$ 🚰 bärare av protoner $H_3O^+$
---
# Fråga 2
Vilken typer av aminosyror är lämpliga för protontransporter?
- Aspartinsyra och Glutaminsyra har det lättast men Lys/His och Arg kan också
- de har negativt laddad
# Respirasom
Komplex med 2 av komplex I, III och IV
- dvs de som pumpar elektroner
- ligger nära för att minska avståndet, elektroner rör sig inte långt
- avstång ~15Å mellan é-bärare
- Gör att é-transporten blir effektiv (möjlig)
# ATP-syntas
Den använder sig av den elektrokemiska gradienten.
Hittas i mitokondriens inre membran.
Består av två delar
- en som sitter i membranet och
- en som sitter i matrix
- Roterar när $H^+$ släpps igenom
- $F_1$ i matrix, ATP-syntes
I $F_0$ finns det: (snurrar inte)
- a-subenheten är en halvkanaler för $H^+$
- $H^+$ binder från MMV till Asp/Glu → neutraliseras → $H^+$ överförs till c-ring → subenheten flyttar ett steg (45 grader i eukaryota)
- c-ring:
- när den snurrat ett halvt varm kan $H^+$ frigöras i matrix
- sker snabbt och kontinuerligt
- mellan 8-14 subenheter
$F_1$ finns (i matrix)
- 𝛼-subenhet - varannan i ringen
- β-subenhet - varannan i ringen
- här sker ATP-syntesen
- pendlar mellan open/tight/loose konformationer i ett varv
- **L**oose = ADP+Pi binder in
- **T**ight = ATP bildas
- **O**pen = frisläppning av ATP
- γ-subenheter (gamma) - sitter i mitten
- förandrade till c-ringen och roterar med den asymmetri = olika interaktion vid de tre β-subenheterna
- nyckel för omvandling av β-subenheterna
- ε-subenheter (epsilon)
- namedrop!
- bildar tillsammans en ring av 6-subenheter
- 3 ATP per varv
ADP + Pi <→ ATP
- $H^+$ → $H_2C$
- $H_2O$ → $H^+$
~ 100 ATP/s & ATP-syntas
~ 4$H^+$/ATP
Förenkling:
- Rotor: c, γ, ε.
- Stator/Statiska: a, b, α₃β₃, δ.