vault backup: 2025-11-25 10:18:48
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m16s
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m16s
This commit is contained in:
BIN
content/Biokemi/Cellulära processer/.DS_Store
vendored
BIN
content/Biokemi/Cellulära processer/.DS_Store
vendored
Binary file not shown.
@@ -4,4 +4,6 @@ tags:
|
||||
- translation
|
||||
- anteckningar
|
||||
föreläsare: Ana Luis
|
||||
url: https://www.youtube.com/watch?v=gjjp-NUaCXE
|
||||
date: 2024-11-25
|
||||
---
|
||||
|
||||
@@ -0,0 +1,7 @@
|
||||
- tRNA stuktur och funktion.
|
||||
- Aminoacylering av tRNA.
|
||||
- Ribosomens struktur och funktion.
|
||||
- Mekanismen för proteinsyntes (initiering, elongering, translokation och terminering).
|
||||
- Regleringsmekanismer för proteinsyntesen
|
||||
|
||||
Beskriva överföringen av genetisk information från mRNA till protein.
|
||||
561
content/Biokemi/Cellulära processer/Translation/Slides.md
Normal file
561
content/Biokemi/Cellulära processer/Translation/Slides.md
Normal file
@@ -0,0 +1,561 @@
|
||||
|
||||
Chapter 8 and Chapter 20
|
||||
Ana Luis
|
||||
ana.luis@medkem.gu.se
|
||||
2025/04/28
|
||||
|
||||
---
|
||||
|
||||
Protein Biosynthesis
|
||||
|
||||
(Translation)
|
||||
Chapter 8 and Chapter 20
|
||||
Ana Luis
|
||||
ana.luis@medkem.gu.se
|
||||
2025/04/28
|
||||
|
||||
----
|
||||
|
||||
Learning goals
|
||||
|
||||
• Explain how nucleic acid information is translated into an amino acid sequence and define the role of aminoacyl tRNA synthetases in this process
|
||||
• Protein biosynthesis requires the translation of nucleotide sequences into amino acid sequences
|
||||
• Describe features of the genetic code
|
||||
• tRNA structure and function
|
||||
• Aminoacyl-tRNA synthetases establish the genetic code
|
||||
|
||||
• Define the role of ribosomes in protein synthesis
|
||||
• Structure and function of ribosomes
|
||||
• Mechanism of protein synthesis (initiation, elongation, translocation and termination)
|
||||
|
||||
• Describe how certain chemicals can inhibit protein synthesis
|
||||
• Antibiotics and toxins inhibit protein synthesis
|
||||
|
||||
----
|
||||
|
||||
Why is important to understand the translation mechanisms?
|
||||
![[Pasted image 20251125093128.png]]
|
||||
### TRANSLATION
|
||||
|
||||
#### Inhibition of translation of specific mRNAs can lead to diseasess
|
||||
- Fragile X mental retardation syndrome:
|
||||
- absence of the set of protein isoforms, derived from
|
||||
alternative splicing of the Fragile X mental retardation
|
||||
gene 1 (FMR1)
|
||||
|
||||
#### Bacterial toxins can block of protein biosynthesis protein biosynthesis
|
||||
- Diphtheria toxin
|
||||
|
||||
#### Several antibiotics are inhibitors
|
||||
- Streptomycin
|
||||
- Tetracycline
|
||||
- …..
|
||||
|
||||
⸻
|
||||
|
||||
Translation = the process of protein biosynthesis
|
||||
|
||||
Adenine (A)
|
||||
Cytosine (C)
|
||||
Guanine (G)
|
||||
Uracil (U)
|
||||
Nucleic acid
|
||||
|
||||
→
|
||||
|
||||
Amino acids
|
||||
(A) Alanine
|
||||
(R) Arginine
|
||||
(N) Asparagine
|
||||
(D) Aspartic acid
|
||||
(C) Cysteine
|
||||
(E) Glutamic acid
|
||||
(Q) Glutamine
|
||||
(G) Glycine
|
||||
(H) Histidine
|
||||
(I) Isoleucine
|
||||
(L) Leucine
|
||||
(K) Lysine
|
||||
(M) Methionine
|
||||
(F) Phenylalanine
|
||||
(P) Proline
|
||||
(S) Serine
|
||||
(T) Threonine
|
||||
(W) Tryptophan
|
||||
(Y) Tyrosine
|
||||
(V) Valine
|
||||
|
||||
-----
|
||||
|
||||
Translation = the process of protein biosynthesis
|
||||
|
||||
The basics of protein biosynthesis are the same across all kingdoms of life:
|
||||
• mRNA is decoded in the 5′-to-3′ direction one codon at a time
|
||||
• the protein is synthesized in the amino-to-carboxyl direction
|
||||
mRNA
|
||||
A U G G U G G C U A A G C G G U G A
|
||||
Methionine Valine Alanine Lisine Arginine Stop
|
||||
5’ 3’
|
||||
Amino group
|
||||
Carboxyl group
|
||||
Amino group
|
||||
Carboxyl
|
||||
|
||||
⸻
|
||||
|
||||
tRNA
|
||||
|
||||
a.a.
|
||||
Translation = the process of protein biosynthesis
|
||||
• anticodon - portion of the tRNA that base pairs with the codon
|
||||
C G I
|
||||
3’ 5’
|
||||
G C C
|
||||
5’ 3’
|
||||
Codon
|
||||
• codon - three coding bases on the mRNA template
|
||||
• transfer RNA (tRNA) - function as adaptor molecules between a codon and
|
||||
an amino acid (a.a.)
|
||||
Anticodon
|
||||
mRNA
|
||||
The basics of protein biosynthesis are the same across all kingdoms of life:
|
||||
The correct protein biosynthesis requires an accurate recognition of codons by anticodons
|
||||
|
||||
-----
|
||||
|
||||
General characteristics of Transfer RNA (tRNA) molecules
|
||||
|
||||
• Each tRNA is a single chain containing between 73 and 93 nucleotides.
|
||||
• The secondary structure resembles a cloverleaf
|
||||
(~50% of the nucleotides are base-paired)
|
||||
Five groups of bases are not base-paired, but participate in
|
||||
hydrogen-bonding interactions:
|
||||
• 3′ CCA terminal region (acceptor stem)
|
||||
• TψC loop
|
||||
• “extra arm”
|
||||
• anticodon loop
|
||||
• DHU loop
|
||||
• The three-dimensional structure is L-shaped
|
||||
• tRNAs contain 7 to 15 unusual bases
|
||||
• methylated or demethylated derivatives
|
||||
of A, U, C, and G
|
||||
|
||||
⸻
|
||||
|
||||
• At the 3’ end, an activated amino acid is attached to a hydroxyl group of
|
||||
adenosine in the CCA region of the acceptor stem
|
||||
• the CCA region has the ability to change its conformation during protein synthesis
|
||||
• The anticodon loop is near the center of the sequence
|
||||
General characteristics of tRNA molecules
|
||||
|
||||
⸻
|
||||
|
||||
Genetic code
|
||||
|
||||
C G I
|
||||
3’ 5’
|
||||
G C C
|
||||
5’ 3’
|
||||
Codon
|
||||
Anticodon
|
||||
mRNA
|
||||
• Genetic code: the relation between the sequence of bases in DNA
|
||||
and the sequence of amino acids in proteins
|
||||
mRNA
|
||||
A U G G U G G C U A A G C G G U G A
|
||||
Methionine Valine Alanine Lysine Arginine Stop
|
||||
5’ 3’
|
||||
DNA
|
||||
PROTEIN
|
||||
|
||||
⸻
|
||||
|
||||
Amino acids are encoded by groups of three bases starting from a fixed point
|
||||
|
||||
• Features of the Genetic code:
|
||||
– three nucleotides (codon) encode an amino acid
|
||||
– has directionality
|
||||
– nonoverlapping
|
||||
– has no punctuation
|
||||
– is degenerate (most amino acids are encoded by more
|
||||
than one codon)
|
||||
mRNA
|
||||
A U G G U G G C U A A G C G G U G A
|
||||
Methionine Valine Alanine Lysine Arginine Stop
|
||||
5’ 3’
|
||||
• 61 codons encode specify amino acids (20 in total)
|
||||
• 3 codons are stop codons that designate termination
|
||||
of translation.
|
||||
|
||||
⸻
|
||||
|
||||
’Wobble’ effect in base-pairing
|
||||
|
||||
’Wobble’ effect: Some tRNA molecules can recognize more than one codon
|
||||
tRNA a.a.
|
||||
1
|
||||
C G I
|
||||
3’ 5’
|
||||
G C C
|
||||
5’ 3’
|
||||
Codon
|
||||
Anticodon
|
||||
mRNA
|
||||
tRNA a.a.
|
||||
1
|
||||
C G I
|
||||
3’ 5’
|
||||
G C A
|
||||
5’ 3’
|
||||
Codon
|
||||
Anticodon
|
||||
mRNA
|
||||
|
||||
⸻
|
||||
|
||||
’Wobble’ effect in base-pairing
|
||||
|
||||
Anticodons base-pair with codons
|
||||
’Wobble’ effect: Some tRNA molecules can recognize more than one codon
|
||||
Codons that differ in either of their first two bases (from 5’) must be recognized by different tRNAs.
|
||||
The first base of the anticodon (5’) determines the degree of wobble
|
||||
• The redundancy, or degeneracy, of the genetic code indicates that recognition of
|
||||
the third base of a codon is sometimes less discriminating than the other two
|
||||
“wobble” = steric freedom in the pairing of the first base of the anticodon with the third base of the codon
|
||||
|
||||
⸻
|
||||
|
||||
’Wobble’ effect in base-pairing
|
||||
|
||||
“wobble hypothesis”: established hypothesis that predicts the binding of anticodons to codons
|
||||
TABLE 30.2 Allowed pairings at the third base of the
|
||||
codon according to the wobble hypothesis
|
||||
Anticodons base-pair with codons
|
||||
C
|
||||
C
|
||||
G
|
||||
|
||||
⸻
|
||||
|
||||
’Wobble’ effect in base-pairing
|
||||
|
||||
“wobble hypothesis”: established hypothesis that predicts the binding of anticodons to codons
|
||||
TABLE 30.2 Allowed pairings at the third base of the
|
||||
codon according to the wobble hypothesis
|
||||
C
|
||||
U
|
||||
A/
|
||||
G
|
||||
|
||||
⸻
|
||||
|
||||
’Wobble’ effect in base-pairing
|
||||
|
||||
“wobble hypothesis”: established hypothesis that predicts the binding of anticodons to codons
|
||||
TABLE 30.2 Allowed pairings at the third base of the codon
|
||||
Example: If first base of the anticodon is inosine, the
|
||||
anticodon can recognize three different codons
|
||||
Inosine is formed by the deamination of adenosine
|
||||
• has a heterocyclic nitrogen base that can form
|
||||
hydrogen bonds with adenine, cytosine and uracil
|
||||
The purine base inosine pairs with cytidine, uridine or adenosine
|
||||
|
||||
⸻
|
||||
|
||||
Amino acids required for protein biosynthesis must first be attached to specific tRNA molecules
|
||||
|
||||
• The attachment of a given amino acid to a particular tRNA establishes the genetic code
|
||||
Aminoacyl-tRNA synthetases
|
||||
Aminoacyl-tRNA synthetases attach specific amino acids to tRNAs
|
||||
tRNA
|
||||
amino acid
|
||||
Aminoacyl-tRNA
|
||||
amino
|
||||
• acid
|
||||
|
||||
⸻
|
||||
|
||||
Ester linkages couple amino acids to tRNA
|
||||
|
||||
The process of attaching an amino acid to tRNA is called aminosylation
|
||||
CCA arm of tRNA
|
||||
• Amino acids are bound to the 3’end of the tRNA via an ester bond
|
||||
between the carboxyl group on the amino acid and either the 2’ or 3’
|
||||
hydroxyl group of the terminal adenosine of the tRNA
|
||||
3’
|
||||
Aminoacyl-tRNA: Amino acid bound to tRNA
|
||||
3’
|
||||
|
||||
⸻
|
||||
|
||||
Each aminoacyl-tRNA synthetase is specific for a given amino acid
|
||||
|
||||
How aminoacyl-tRNA synthetases evolve to differentiate between different amino acids?
|
||||
A closer look at the amino acid threonine, valine and serine
|
||||
|
||||
⸻
|
||||
|
||||
Threonyl-tRNA Synthetase contains an activation site
|
||||
|
||||
Each aminoacyl-tRNA synthetase is specific for a given amino acid
|
||||
How aminoacyl-tRNA synthetases evolve to differentiate Threonine, Valine and Serine?
|
||||
Activation site
|
||||
responsible for activating threonine by binding it
|
||||
to adenosine triphospate (ATP) and further
|
||||
transfer of these amino acid to the tRNA molecule
|
||||
• Aminoacyl-tRNA synthetases have highly
|
||||
discriminating amino acid activation sites
|
||||
|
||||
⸻
|
||||
|
||||
Each aminoacyl-tRNA synthetase is specific for a given amino acid
|
||||
|
||||
• To avoid coupling to the incorrect amino acid, threonyl-tRNA synthetase (tRNAThr)
|
||||
contains a zinc ion at the active site that binds to the amino and hydroxyl groups
|
||||
of threonine
|
||||
• Valine is similar in overall structure to threonine but
|
||||
lacks the hydroxyl group, so it does not bind to tRNAThr
|
||||
• Serine is occasionally linked to tRNAThr because
|
||||
of the presence of the hydroxyl group
|
||||
(Thr)
|
||||
(Val)
|
||||
(Ser)
|
||||
How aminoacyl-tRNA synthetases evolve to differentiate Threonine, Valine and Serine?
|
||||
|
||||
⸻
|
||||
|
||||
Threonyl-tRNA Synthetase contains an activation site and an editing site
|
||||
|
||||
Activation site
|
||||
responsible for activating threonine by binding it
|
||||
to adenosine triphospate (ATP) and further
|
||||
transfer of these amino acid to the tRNA molecule
|
||||
Editing site:
|
||||
acts as a profreader and removes any incorrect
|
||||
bound amino acid from the tRNA molecule
|
||||
|
||||
⸻
|
||||
|
||||
Proofreading by Aminoacyl-tRNA Synthetases Increases the Fidelity of Protein Biosynthesis
|
||||
|
||||
• Threonyl-tRNA synthetase has an editing site that hydrolyzes Serine if this
|
||||
is linked to threonine-tRNA
|
||||
• Because Thr contains an extra methyl group, it is sterically excluded
|
||||
from the editing site
|
||||
• The aminoacylated CCA arm of the tRNA is flexible and can swing out
|
||||
of the activation site and into the editing site to remove Ser
|
||||
• Most aminoacyl-tRNA synthetases contain editing sites and
|
||||
activation sites to ensure very high fidelity.
|
||||
Threonyl-tRNA synthetase Thr-tRNA
|
||||
|
||||
⸻
|
||||
|
||||
Aminoacyl-tRNA synthetases interaction with tRNA
|
||||
|
||||
Threonine-tRNA synthetase
|
||||
tRNA
|
||||
• Threonine-tRNA synthetases bind to both the acceptor stem
|
||||
and the anticodon loop of the tRNA
|
||||
Aminoacyl-tRNA synthetases assign a particular amino acid to a specific tRNA - the true translators of the genetic
|
||||
code
|
||||
• Some synthetases recognize their tRNA partners primarily on
|
||||
the basis of their anticodons
|
||||
• Synthetases may also recognize other
|
||||
aspects of tRNA structure that vary among
|
||||
different tRNAs
|
||||
• many of the recognition sites are loops rich in
|
||||
unusual bases
|
||||
Number of interactions between tRNA
|
||||
and aminoacyl-tRNA synsthetases
|
||||
|
||||
⸻
|
||||
|
||||
The ribosome is the site of protein synthesis
|
||||
|
||||
Ribosomes coordinate the interplay of aminoacyl-tRNAs, mRNA, and proteins
|
||||
aminoacyl-tRNAs
|
||||
|
||||
⸻
|
||||
|
||||
The E. coli ribosome has a sedimentation coefficient of 70S
|
||||
|
||||
composed of:
|
||||
• large (50S) subunit
|
||||
• small (30S) subunit
|
||||
34 proteins (L1–L34)
|
||||
23S rRNA
|
||||
5S rRNA
|
||||
21 proteins (S1–S21)
|
||||
16S rRNA
|
||||
• Two-thirds of the mass of ribosomes is RNA
|
||||
• Ribosomal RNA (rRNA) is the catalyst for protein synthesis
|
||||
|
||||
⸻
|
||||
|
||||
The ribosome has three binding sites for transfer RNAs
|
||||
|
||||
• Three tRNA-binding sites:
|
||||
• A site (aminoacyl)
|
||||
• P site (peptidyl)
|
||||
• E site (exit)
|
||||
• mRNA fragment is bound within the 30S subunit
|
||||
• Each tRNA contacts both 30S and 50S subunits
|
||||
|
||||
⸻
|
||||
|
||||
Overview of mechanism of protein biosynthesis
|
||||
|
||||
Initiation, Elongation, Translocation and Termination
|
||||
Initiation
|
||||
|
||||
⸻
|
||||
|
||||
Initiation of translation
|
||||
|
||||
• Each initiator region usually displays:
|
||||
• start codon: AUG (Met) or sometimes GUG, rarely UUG
|
||||
• purine-rich sequence ~10 nt upstream
|
||||
• Bacterial mRNAs often encode several polypeptides
|
||||
• Shine–Dalgarno sequence = purine-rich region binding rRNA to position initiator codon in P site
|
||||
|
||||
⸻
|
||||
|
||||
Bacterial protein synthesis is initiated by N-formylmethionyl-transfer RNA
|
||||
|
||||
Steps:
|
||||
1. Met linked to tRNAfMet by aminoacyl-tRNA synthetase
|
||||
2. Met amino group is formylated
|
||||
3. fMet-tRNAfMet placed in P site
|
||||
(note: tRNAMet inserts internal Met)
|
||||
|
||||
⸻
|
||||
|
||||
Initiation factors (IF1, IF2, IF3)
|
||||
1. IF1 + IF3 bind 30S to prevent premature binding to 50S
|
||||
2. IF2(GTP) + fMet-tRNAfMet + mRNA bind to 30S → 30S initiation complex
|
||||
3. Structural changes release IF1 + IF3
|
||||
4. IF2 stimulates 50S binding + GTP hydrolysis → 70S initiation complex
|
||||
Streptomycin binds 30S and blocks fMet-tRNAfMet binding (bacteria)
|
||||
|
||||
⸻
|
||||
|
||||
Elongation
|
||||
|
||||
Elongation factors deliver aminoacyl-tRNAs to the ribosome
|
||||
|
||||
⸻
|
||||
|
||||
Elongation factors deliver aminoacyl-tRNAs
|
||||
|
||||
Steps:
|
||||
1. EF-Tu-GTP binds aminoacyl-tRNA → delivers to A site
|
||||
2. Correct codon recognition → GTP hydrolysis → EF-Tu-GDP leaves
|
||||
3. EF-Ts binds EF-Tu-GDP
|
||||
4. EF-Ts releases GDP → GTP binds → EF-Tu-GTP regenerated
|
||||
Tetracycline binds 30S → blocks aminoacyl-tRNA binding
|
||||
|
||||
⸻
|
||||
|
||||
Elongation – peptidyl transferase
|
||||
|
||||
• Amino group of A-site tRNA attacks carbonyl of P-site peptidyl-tRNA
|
||||
• Peptidyl transferase center on 50S catalyzes peptide bond formation
|
||||
• Reaction is thermodynamically spontaneous but accelerated by ribosome positioning/orientation
|
||||
|
||||
⸻
|
||||
|
||||
Translocation
|
||||
|
||||
Translocation repositions tRNAs and mRNA
|
||||
EF-G (translocase) catalyzes 1-codon movement (requires GTP)
|
||||
1. EF-G-GTP binds near A site
|
||||
2. GTP hydrolysis → conformational change → peptidyl-tRNA shifts A→P
|
||||
After peptide bond formation: chain is in P site (50S), anticodon still in A site (30S)
|
||||
|
||||
⸻
|
||||
|
||||
Termination
|
||||
|
||||
Release factors (RFs):
|
||||
• RF1 + RF2 recognize stop codons (UAA, UGA, UAG)
|
||||
• RF3 (GTPase) removes RF1/RF2
|
||||
RF1/RF2 bind stop codon in A site
|
||||
RFs contain conserved GGQ motif with methylated Gln → promotes hydrolysis of ester linkage → releases polypeptide
|
||||
|
||||
⸻
|
||||
|
||||
Bacteria: transcription and translation are coupled
|
||||
|
||||
Minimal time gap between transcription and translation
|
||||
Polysome: multiple ribosomes translating one mRNA simultaneously
|
||||
|
||||
⸻
|
||||
|
||||
Difference between bacterial and eukaryotic protein biosynthesis
|
||||
|
||||
Bacteria 70S: 50S+30S
|
||||
Eukaryotes 80S: 60S+40S
|
||||
Initiation differences:
|
||||
• Initiating amino acid = Met (not fMet)
|
||||
• No Shine–Dalgarno
|
||||
• Start site usually first AUG from 5’ end
|
||||
• Many more eIFs
|
||||
Eukaryotic mRNA circularization: 5’-cap proteins + PABP at 3’-poly(A) interact → circular mRNA
|
||||
|
||||
⸻
|
||||
|
||||
TABLE 30.4 Antibiotic inhibitors of protein biosynthesis
|
||||
|
||||
Streptomycin/aminoglycosides — inhibit initiation + misreading (bacteria)
|
||||
Tetracycline — blocks aminoacyl-tRNA binding (30S)
|
||||
Chloramphenicol — inhibits peptidyl transferase (50S)
|
||||
Cycloheximide — inhibits translocation (eukaryotes)
|
||||
Erythromycin — blocks translocation (50S)
|
||||
Puromycin — premature termination (aa-tRNA analog)
|
||||
|
||||
⸻
|
||||
|
||||
Diphtheria toxin
|
||||
|
||||
Blocks protein biosynthesis in eukaryotes by inhibiting translocation
|
||||
|
||||
⸻
|
||||
|
||||
Concepts
|
||||
|
||||
DNA
|
||||
RNA
|
||||
Protein
|
||||
Translation
|
||||
Transcription
|
||||
Messenger RNA (mRNA)
|
||||
Initiation factors
|
||||
Elongation factors
|
||||
Release factors
|
||||
Aminoacyl tRNA synthetases
|
||||
Transfer RNA (tRNA)
|
||||
Ribosome (ribosomal RNA + proteins)
|
||||
EF1 EF2 EF3
|
||||
EF-Tu EF-Ts EF-G
|
||||
RF1 RF2 RF3
|
||||
• Genetic code
|
||||
• Degeneracy
|
||||
• Codon
|
||||
• Anticodon
|
||||
• Transfer RNA
|
||||
• ’Wobble’ effect
|
||||
• Aminoacyl-tRNA synthetases
|
||||
• Aminoacyl-tRNA
|
||||
• Aminosylation
|
||||
• Aminoacyl-tRNA synthetases activation site
|
||||
• Aminoacyl-tRNA synthetases editing site
|
||||
• Ribosome
|
||||
• Ribosomal RNA
|
||||
• Ribosome E site, P site and A site
|
||||
• Shine-Dalgarno sequence
|
||||
• Initiation, elongation, translocation, termination
|
||||
• Initiation factors
|
||||
• Elongation factors
|
||||
• Termination factors
|
||||
• Polysome
|
||||
• Inhibition of trancription
|
||||
32
content/Biokemi/Cellulära processer/Translation/Stoff.md
Normal file
32
content/Biokemi/Cellulära processer/Translation/Stoff.md
Normal file
@@ -0,0 +1,32 @@
|
||||
```
|
||||
mRNA kodas i 5'-till-3'-riktning ett kodon i taget
|
||||
Proteinet är syntetiserat från amino- till karboxyl-riktning
|
||||
tRNA är en adaptormolekyl mellan kodonet och aminosyran
|
||||
antikodonet parar med kodonet och är komplementar, innehåller samma information bakvänt
|
||||
För att kunna syntetisera protein måste kodonet läsas av korrekt av antikodonen
|
||||
tRNA är en kedja som innehåller mellan 73 och 93 nukleotider
|
||||
tRNA innehåller 7 till 15 ovanliga baser, metylerade eller demetylerade derivat
|
||||
Sekundärstruktuern av tRNA ser ut som ett klöverlöv
|
||||
Fem grupper av bases i tRNA är inte basparade men deltar i vätebindingar
|
||||
tRNAs sätter fast aminosyror i 3 CCA-terminalaregionen som också heter acceptor stem
|
||||
tRNAs 3' ände har först en adenosine med en hydroxylgrupp som sitter fast med aminosyran
|
||||
tRNAs 3D-struktur ser ut som ett L
|
||||
tRNAs antikodonloop sitter i mitten av sekvensen
|
||||
Genetiska koden är relationen mellan basparen i DNA och sekvensen av aminosyror i proteiner
|
||||
Genetiska koden karakteriseras av: 3 nukleotider (kodon), går i en riktning, överlappar inte, ingen punktuation
|
||||
Den genetiska koden är degenererad: flera kodon kodar för samma aminosyra, vilket minskar effekten av vanliga mutationer
|
||||
Det finns 3 kodon sekvenser som terminerar translationen (UAA, UAG, UGA)
|
||||
61 kodon kodar för 20 aminosyror
|
||||
Vissa tRNA-molekyler kan känna igen fler än ett kodon, det heter Wobble-effekten
|
||||
Den tredje nukleotiden i ett kodon kan ’svaja’ lite, den har större sterisk frihet och behöver inte alltid baspara strikt
|
||||
Svajhypotesen förutser vilket antikodon som kan binda till ett visst kodon
|
||||
Inosin bildas genom deaminering av adenosin och kan bilda vätebindningar med adenin, cytosin och uracil
|
||||
Aminoacyl-tRNA-syntetaser kopplar specifika aminosyror till tRNA
|
||||
När man kopplar en aminosyra till tRNA heter det aminoacylisering
|
||||
Aminosyror kopplar till 2' eller 3'-hydroxylgruppen på det terminala adenosin i tRNA
|
||||
Varje aminosyra har ett specifikt enzym (aminoacyl-tRNA-syntetas), som katalyserar kopplingen av just den aminosyran till rätt tRNA-molekyl.
|
||||
Aminoacyl-tRNA-syntetas har en redigeringsplats som korrekturläser och tar bort felaktigt bundna aminosyror
|
||||
Aminoacyl-tRNA-syntetas har en aktiveringsplats som aktiverar rätt aminosyra genom att binda den till ATP innan den förs över till tRNA.
|
||||
Aktiveringsplatsen försöker välja rätt aminosyra, och redigeringsplatsen fångar upp och tar bort de små fel som ändå passerar vilket ger mycket hög noggrannhet.
|
||||
|
||||
```
|
||||
Reference in New Issue
Block a user