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Action potentials "in action”

_ Functional cell assemblies,
The withdrawal reflex or engrams

Distribution within gray horns to
other segments of the spinal cord
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Excitability
— the likelihood of evoking action potentials
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Synaptic and Intrinsic Excitability

Na channels
Ca channels
Extrasynaptic GluRs

Intrinsic K channels
inhibition Cl channels
Extrasyn GABARs

Glutamate _
synapses Synaptic
excitation
.
GABA Synaptic
synapses inhibtion




Modulation and Plasticity of Excitability
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Plasticity — based on neuronal activity - aims to create / erase engrams
Modulation — based on realease of modulatory neurotransmitters —
modulate the accessability of engrams
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Electrophysiology — different levels of reductionism

Single protein  Single synapse Single cell Cell assemblies Network oscillations
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Membrane potential
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Pumps, concentration differences and
equilibrium potential

-60 to -75 mV

Nernst equation

Ejon 2.303 (RT/ZF) |Og([j°”]u/[jon]i) Na*(150) Eya = +56

_ lion],/ .
Ejon 61.54 |Og( u/[Jon]i)
lon concentrations in human cerebrospinal fluid and serum (in mM)

Ex=-102

Cerebrospinal fluid Serum Correlation (135) “
K* 2.9 4.2 No
Na* 147 140 Yes
cr 125 100 No Intracellular Extracellular
Ca?* Total 1.2 2.4 Yes
a?t

Ca2' Free 1.0 1.2 "(120) Eg =-76

Mg?* Total 1.2 0.8 No

Mg?* Free 1.0 0.5
Lyckenvik et al (2025) Brain Commun 24:fcaf201
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lon channels
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TRENDS in Pharmacological Sciences

Trends in Pharmacological Sciences (2008) 29:11

00 ms

The resting permeability
for K*is much higher
than for Na* but the
driving force (at resting
membrane potential) is
much higher for Na*than
for K*. The resultant
currents for K* and Na*
are therefore equal

The Sodium “Leak” Has Finally Been Plugged
Neuron 54, May 24, 2007
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Action potential — "all-or-none”

- Repolarizing phase: Na* channels
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Resting state: All gated Na* . Hyperpolarization: K* channels
(deb elos:l. (Na* M :ms 2 remain open; Na* channels closed
closed; inactivation gates open)
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Propagation of the action potential

(A) Myelinated axon Oligodendrocyte
( y 8 Yy

Node of
Ranvier

Na* channels

: : x
Point A Point B Point C

Local depolarization causes neighboring
Na* channels to open and generates an
action potential here

K
1=2
Point A \\ Point B Point C
am Na' channels inactivate, while
K channels open. Membrane potential
repolarizes and axon is refractory here
The process is repeated
| the action potential along
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Point A
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Muscle Cutaneous Fiber diameter Conduction
nerve nerve (wm) velocity (ms)

Myelin
Myelinated

Diameter Large l A-C 13-20 80-120
Small I AB 612 35-75

Temperatur Smallest 1 Ad 1-5 5-30
Unmyelinated v C 0.2-1.5 0.5-2




Extracellular recording of action potentials




Refractory period following the action
potential

Absolute refractory period

Relative refractory period
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Absolute refractory period = Voltage-gated Na*-channels
are inactivated, making a new action potential impossible.

Relative refractory period = Voltage-gated Na*-channels de-
inactivates during this period and the membrane potential is

hyperpolarized. A stronger than normal depol is required to
evoke an action potential.



Optical recording of the action potential

Hochbaum et al (2014) All-optical electrophysiology in mammalian neurons using
engineered microbial rhodopsins Nature Methods 11: 825-833



Synaptic excitation and inhibition

Excitatory synapse
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Glu and GABA synapses
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Cortical pyramidal cell:
ca. 30000 Glutamate synapses (90%)
ca. 2000 GABA synapses (10%)

Kasthuri et al (2015) Saturated reconstruction of a
volume of neocortex Cell 162: 648661

Megias, Emri, Freund & Gulyds (2001) Neuroscience 102:527



Presynaptic release of transmitter vesicle

Dynamin

Fusion Clathrin

Synaptotagmin

NSF SNAREs
SNAPs

SNARE-mediated exocytosis
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(2) SNARE complexes form to pull
membranes together

(4) Ca**-bound synaptotagmin catalyzes
membrane fusion




Glutamate uptake in astrocytes

Glutamatergic synapse Astrocyte Capillary
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Synapses are usually small and unreliable, but
many (and plastic)

: 3 guantal parameters determine the signalling
=< strength of a synaptic connection
2N

S - Synaptic strength=nxpxgqg

_ Bleac— | N n = no. of release sites

/a o \: | ege

&) ’ P é - p = release probability

ko ) - . , The probability that an action potential will cause the release of one vesicle
NS g = quantal size

The magnitude of the postsynaptic response to one vesicle

Recording from one synapse




The Glutamate synapse
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1. The AMPA receptor channel:
-opened by glutamate

-permeates Na* and K*

-gives rise to a brief (ca. 10 ms) EPSP

2. The NMDA receptor channel:

-opened by glutamate (and Gly/D-Ser) + depol
-permeates Na*, K* and Ca2*

- gives rise to a brief long-lasting (ca. 100 ms) EPSP

-is necessary for the induction of synaptic plasticity; Long-
term potentiation (LTP) och long-term depression (LTD).

3. Metabotropic glutamate receptors (mGluRs) are G-
protein coupled receptors that, for example, can give rise
to Ca?* release from ER and facilitate synaptic plasticity.

L-glutamate

Nature Reviews | Neuroscience
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The GABA synapse
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Resolving native GABA , receptor structures
from the humanbrain
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The i.c. CI concentration determines the
response of the GABA, receptor channels
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Intrinsic excitability — all ion channels of the neuron,
except the ligand-gated in the synapses

Intrinsic
Excitation

Intrinsic
inhibition

sceseveves B

E.c. Calcium

From Hille ”“lon channels in excitable membranes”



Families of voltage-gated Na*, Ca%* and K*
channels

Voltage-gated

+

Na Nav1.9 +
T ey Nex Resting Na
conductance

nca-1
J nca-2

Voltage-gated Q H.sapiens

g 920 RI Nl P/Q ) D.melanogaster
Ca W C.elegans

Voltage-gated K-channels

K2P17 1
K2PSK%P16.1
K2POA \ K2rd. 4
K2P3.1 K2P2.1
K2P12.1 K2P10.1
K2P13.1 K2P7.1
K2P1.1
K2P6.1
Kir7.1
KCa5.1 Kir1.1-1.3
KCa1l.1 Ay
KCad4 . 1-4.2 \ Kir5.1
KCa2.1-2.3 : ‘ Kir2.1-2.3
KCa3 1
Kird.1-3.4
Kv10.1-10.2 / Kir6.1-6.2
Kv11.1-11.3 K117 ——
b
Kv12.1-123 R '
Kv3.1-3.4 Axons/lerminals
Kv7.1-7.5 Somatodendritic
Kv5.1 Kvo 1l§vg.1 Kv2.1-22 Intracellular
Kv6.1-6.2 Kvd. 143 Unknown

Neuron, Volume 85, Issue 2, 2015, 238 - 256



Regulation of action potential frequency —
AfterHyperPolarisation (AHP) and gKca?*
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Different firing patterns because of differences
in intrinsic excitability

Cortical pyramidal cell Cerebellar Purkinje cell

A B C

Regular firing Burst firing

200 ms

Striatum Cerebellum

Olfactory
bulb

Thalamic relay cell
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Modulation and Plasticity of Excitability
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Neuromodulation

_ Modulate:
- *Release probability
— *Intrinsic excitability
‘ B . *Plasticity

Co-transmitters Co-transmitters Retrograde Hormones
"Classical” Peptides transmitters Cortisol, Estrogen,
ACh, NA, 5-HT, Orexin, Galanin, endocannabinoids, Proge.rsteron,.
Histamin, DA Endorphin, CCK, VIP, NO, neurotrophins Ghrelin, Insulin
Oxytocin... Vasopressin, AF...

Gliotransmitters Neurotransmitters Cytokines, Chemokines
Glu Glu via mGluRs TNFa
ATP - Adenosine GABA via GABAgRs IL-1B....

D-serine, Taurine
Lactate



Modulation and Plasticity of Excitability

72\
C )

o g e
%
@- o) =




fEPSP slope (%) o

(2]

Long-term synaptic plasticity (min —years); LTP
and LTD

20 \Nna./.?:'
150 ’ 150

50

3
1

8
A

0 10 20 30 40 50 0 10 20 30 40 50
Time (min) Time (min)

’ «Co Synaptic vesicles === PSD ] AMPAR 1 NMDAR |




	Slide 1: Nervcellsfysiologi
	Slide 2: Action potentials ”in action”
	Slide 3: Excitability  – the likelihood of evoking action potentials
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Membrane potential
	Slide 8: Pumps, concentration differences and equilibrium potential 
	Slide 9: Ion channels
	Slide 10: Leak channels
	Slide 11: Membrane potential
	Slide 12: Action potential – ”all-or-none”
	Slide 13: Propagation of the action potential
	Slide 14: Extracellular recording of action potentials
	Slide 15: Refractory period following the action potential
	Slide 16: Optical recording of the action potential 
	Slide 17
	Slide 18: Glu and GABA synapses
	Slide 19: Presynaptic release of transmitter vesicle
	Slide 20: Glutamate uptake in astrocytes
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Different firing patterns because of differences in intrinsic excitability
	Slide 29
	Slide 30: Neuromodulation
	Slide 31
	Slide 32: Long-term synaptic plasticity (min – years); LTP and LTD

