diff --git a/content/.obsidian/community-plugins.json b/content/.obsidian/community-plugins.json index 8d1ec81..337d071 100644 --- a/content/.obsidian/community-plugins.json +++ b/content/.obsidian/community-plugins.json @@ -7,5 +7,6 @@ "obsidian-icon-folder", "obsidian-table-to-csv-exporter", "obsidian42-brat", - "agent-client" + "agent-client", + "manual-sorting" ] \ No newline at end of file diff --git a/content/.obsidian/plugins/manual-sorting/data.json b/content/.obsidian/plugins/manual-sorting/data.json index 80b7d72..df089d2 100644 --- a/content/.obsidian/plugins/manual-sorting/data.json +++ b/content/.obsidian/plugins/manual-sorting/data.json @@ -1,2311 +1,2819 @@ { "customOrder": { - "/": [ - "Untitled.canvas", - "TYK", - "TaskNotes", - "has.txt", - "all.txt", - "Biokemi", - "Anatomi & Histologi", - "attachments", - "Templates", - "Clippings", - "PU", - "Studieteknik", - "z-Tech", - "index.md" - ], - "Anatomi & Histologi": [ - "Anatomi & Histologi/Anatomi", - "Anatomi & Histologi/Föreläsningar", - "Anatomi & Histologi/Histologi", - "Anatomi & Histologi/Instuderingsfrågor", - "Anatomi & Histologi/Målbeskrivning", - "Anatomi & Histologi/Målbeskrivning 1", - "Anatomi & Histologi/Tentor" - ], - "Anatomi & Histologi/Anatomi": [ - "Anatomi & Histologi/Anatomi/Ben", - "Anatomi & Histologi/Anatomi/Kärl", - "Anatomi & Histologi/Anatomi/Leder", - "Anatomi & Histologi/Anatomi/Muskler", - "Anatomi & Histologi/Anatomi/Nerver", - "Anatomi & Histologi/Anatomi/Nervsystem", - "Anatomi & Histologi/Anatomi/Organ", - "Anatomi & Histologi/Anatomi/Terminologi", - "Anatomi & Histologi/Anatomi/index.md", - "Anatomi & Histologi/Anatomi/Muskler.md" - ], - "Anatomi & Histologi/Anatomi/Ben": [ - "Anatomi & Histologi/Anatomi/Ben/Calcaneus.md", - "Anatomi & Histologi/Anatomi/Ben/Carpus.md", - "Anatomi & Histologi/Anatomi/Ben/Clavicula.md", - "Anatomi & Histologi/Anatomi/Ben/Costae.md", - "Anatomi & Histologi/Anatomi/Ben/Digiti Mani.md", - "Anatomi & Histologi/Anatomi/Ben/Digiti Pedi.md", - "Anatomi & Histologi/Anatomi/Ben/Femur.md", - "Anatomi & Histologi/Anatomi/Ben/Fibula.md", - "Anatomi & Histologi/Anatomi/Ben/Humerus.md", - "Anatomi & Histologi/Anatomi/Ben/index.md", - "Anatomi & Histologi/Anatomi/Ben/Mandibula.md", - "Anatomi & Histologi/Anatomi/Ben/Maxilla.md", - "Anatomi & Histologi/Anatomi/Ben/Metacarpus.md", - "Anatomi & Histologi/Anatomi/Ben/Metatarsus.md", - "Anatomi & Histologi/Anatomi/Ben/Os Capitatum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Coccygis.md", - "Anatomi & Histologi/Anatomi/Ben/Os Coxae.md", - "Anatomi & Histologi/Anatomi/Ben/Os Cuboideum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Cuneiforme Intermedium.md", - "Anatomi & Histologi/Anatomi/Ben/Os Cuneiforme Laterale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Cuneiforme Mediale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Ethmoidale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Frontale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Hamatum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Ilium.md", - "Anatomi & Histologi/Anatomi/Ben/Os Ischii.md", - "Anatomi & Histologi/Anatomi/Ben/Os Lacrimale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Lunatum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Nasale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Naviculare.md", - "Anatomi & Histologi/Anatomi/Ben/Os Occipitale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Parietale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Pisiforme.md", - "Anatomi & Histologi/Anatomi/Ben/Os Pubis.md", - "Anatomi & Histologi/Anatomi/Ben/Os Scaphoideum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Sphenoidale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Temporale.md", - "Anatomi & Histologi/Anatomi/Ben/Os Trapezium.md", - "Anatomi & Histologi/Anatomi/Ben/Os Trapezoideum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Triquetrum.md", - "Anatomi & Histologi/Anatomi/Ben/Os Zygomaticum.md", - "Anatomi & Histologi/Anatomi/Ben/Pelvis.md", - "Anatomi & Histologi/Anatomi/Ben/Radius.md", - "Anatomi & Histologi/Anatomi/Ben/Sacrum.md", - "Anatomi & Histologi/Anatomi/Ben/Scapula.md", - "Anatomi & Histologi/Anatomi/Ben/Sternum.md", - "Anatomi & Histologi/Anatomi/Ben/Talus.md", - "Anatomi & Histologi/Anatomi/Ben/Tarsus.md", - "Anatomi & Histologi/Anatomi/Ben/Tibia.md", - "Anatomi & Histologi/Anatomi/Ben/Ulna.md", - "Anatomi & Histologi/Anatomi/Ben/Vertebra Cervicalis.md", - "Anatomi & Histologi/Anatomi/Ben/Vertebra Lumbalis.md", - "Anatomi & Histologi/Anatomi/Ben/Vertebra Thoracalis.md" - ], - "Anatomi & Histologi/Anatomi/Kärl": [ - "Anatomi & Histologi/Anatomi/Kärl/A Ovarica.md", - "Anatomi & Histologi/Anatomi/Kärl/A Testicularis.md", - "Anatomi & Histologi/Anatomi/Kärl/Aorta Ascendens.md", - "Anatomi & Histologi/Anatomi/Kärl/Arcus Aortae.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Brachialis.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Carotis Communis.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Carotis Externa.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Carotis Interna.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Coronaria Dextra.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Coronaria Sinistra.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Dorsalis Pedis.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Femoralis.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Poplitea.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Radialis.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Subclavia.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Tibialis Anterior.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Tibialis Posterior.md", - "Anatomi & Histologi/Anatomi/Kärl/Arteria Ulnaris.md", - "Anatomi & Histologi/Anatomi/Kärl/index.md", - "Anatomi & Histologi/Anatomi/Kärl/Ramus Circumflexus.md", - "Anatomi & Histologi/Anatomi/Kärl/Ramus Interventricularis Anterior.md", - "Anatomi & Histologi/Anatomi/Kärl/Sinus Coronarius.md", - "Anatomi & Histologi/Anatomi/Kärl/Truncus Pulmonalis.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Basilica.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Brachialis.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Cava Inferior.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Cava Superior.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Cephalica.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Femoralis.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Jugularis Interna.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Poplitea.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Portae.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Saphena Magna.md", - "Anatomi & Histologi/Anatomi/Kärl/Vena Subclavia.md", - "Anatomi & Histologi/Anatomi/Kärl/Venae Brachiocephalicae.md", - "Anatomi & Histologi/Anatomi/Kärl/Venae Pulmonales.md" - ], - "Anatomi & Histologi/Anatomi/Leder": [ - "Anatomi & Histologi/Anatomi/Leder/Armbågsled.md", - "Anatomi & Histologi/Anatomi/Leder/Axelled.md", - "Anatomi & Histologi/Anatomi/Leder/Fotled.md", - "Anatomi & Histologi/Anatomi/Leder/Handled.md", - "Anatomi & Histologi/Anatomi/Leder/Höftled.md", - "Anatomi & Histologi/Anatomi/Leder/index.md", - "Anatomi & Histologi/Anatomi/Leder/Interphalangealleder.md", - "Anatomi & Histologi/Anatomi/Leder/Käkled.md", - "Anatomi & Histologi/Anatomi/Leder/Knäled.md", - "Anatomi & Histologi/Anatomi/Leder/Ryggrad Mellankotsleder.md" - ], - "Anatomi & Histologi/Anatomi/Muskler": [ - "Anatomi & Histologi/Anatomi/Muskler/Adductor Magnus.md", - "Anatomi & Histologi/Anatomi/Muskler/Biceps Brachii.md", - "Anatomi & Histologi/Anatomi/Muskler/Biceps Femoris.md", - "Anatomi & Histologi/Anatomi/Muskler/Brachioradialis.md", - "Anatomi & Histologi/Anatomi/Muskler/Deltoideus.md", - "Anatomi & Histologi/Anatomi/Muskler/Diafragma.md", - "Anatomi & Histologi/Anatomi/Muskler/Erector Spinae.md", - "Anatomi & Histologi/Anatomi/Muskler/Extensor Digitorum.md", - "Anatomi & Histologi/Anatomi/Muskler/Flexor Digitorum Superficialis.md", - "Anatomi & Histologi/Anatomi/Muskler/Gluteus Maximus.md", - "Anatomi & Histologi/Anatomi/Muskler/Gluteus Medius.md", - "Anatomi & Histologi/Anatomi/Muskler/Iliopsoas.md", - "Anatomi & Histologi/Anatomi/Muskler/index.md", - "Anatomi & Histologi/Anatomi/Muskler/Intercostales Externi.md", - "Anatomi & Histologi/Anatomi/Muskler/Intercostales Interni.md", - "Anatomi & Histologi/Anatomi/Muskler/Latissimus Dorsi.md", - "Anatomi & Histologi/Anatomi/Muskler/Masseter.md", - "Anatomi & Histologi/Anatomi/Muskler/Pectoralis Major.md", - "Anatomi & Histologi/Anatomi/Muskler/Quadriceps Femoris.md", - "Anatomi & Histologi/Anatomi/Muskler/Rectus Abdominis.md", - "Anatomi & Histologi/Anatomi/Muskler/Semimembranosus.md", - "Anatomi & Histologi/Anatomi/Muskler/Semitendinosus.md", - "Anatomi & Histologi/Anatomi/Muskler/Sternocleidomastoideus.md", - "Anatomi & Histologi/Anatomi/Muskler/Temporalis.md", - "Anatomi & Histologi/Anatomi/Muskler/Tibialis Anterior.md", - "Anatomi & Histologi/Anatomi/Muskler/Trapezius.md", - "Anatomi & Histologi/Anatomi/Muskler/Triceps Brachii.md", - "Anatomi & Histologi/Anatomi/Muskler/Triceps Surae.md" - ], - "Anatomi & Histologi/Anatomi/Nerver": [ - "Anatomi & Histologi/Anatomi/Nerver/index.md", - "Anatomi & Histologi/Anatomi/Nerver/N Accessorius.md", - "Anatomi & Histologi/Anatomi/Nerver/N Axillaris.md", - "Anatomi & Histologi/Anatomi/Nerver/N Femoralis.md", - "Anatomi & Histologi/Anatomi/Nerver/N Gluteus Inferior.md", - "Anatomi & Histologi/Anatomi/Nerver/N Gluteus Superior.md", - "Anatomi & Histologi/Anatomi/Nerver/N Ischiadicus.md", - "Anatomi & Histologi/Anatomi/Nerver/N Mandibularis V3.md", - "Anatomi & Histologi/Anatomi/Nerver/N Medianus.md", - "Anatomi & Histologi/Anatomi/Nerver/N Musculocutaneus.md", - "Anatomi & Histologi/Anatomi/Nerver/N Obturatorius.md", - "Anatomi & Histologi/Anatomi/Nerver/N Peroneus Profundus.md", - "Anatomi & Histologi/Anatomi/Nerver/N Radialis.md", - "Anatomi & Histologi/Anatomi/Nerver/N Thoracodorsalis.md", - "Anatomi & Histologi/Anatomi/Nerver/N Tibialis.md", - "Anatomi & Histologi/Anatomi/Nerver/N Ulnaris.md", - "Anatomi & Histologi/Anatomi/Nerver/N Vagus.md", - "Anatomi & Histologi/Anatomi/Nerver/Nn Pectorales.md", - "Anatomi & Histologi/Anatomi/Nerver/Plexus Cervicalis.md" - ], - "Anatomi & Histologi/Anatomi/Nervsystem": [ - "Anatomi & Histologi/Anatomi/Nervsystem/Afferens efferens integration.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Allmän organisation.md", - "Anatomi & Histologi/Anatomi/Nervsystem/ANS.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Autonoma ganglier.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Banor.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Blod-nerv-barriär.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Cerebellum.md", - "Anatomi & Histologi/Anatomi/Nervsystem/CNS.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Diencephalon.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Hjärnhinnor och ventriklar.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Koppling PNS.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Medulla spinalis.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Nervi craniales.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Nervi spinales.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Organisation.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Perifera nerver.md", - "Anatomi & Histologi/Anatomi/Nervsystem/PNS.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Sensoriska ganglier.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Telencephalon.md", - "Anatomi & Histologi/Anatomi/Nervsystem/Truncus encephali.md" - ], - "Anatomi & Histologi/Anatomi/Organ": [ - "Anatomi & Histologi/Anatomi/Organ/GI", - "Anatomi & Histologi/Anatomi/Organ/Hjärta", - "Anatomi & Histologi/Anatomi/Organ/KUG", - "Anatomi & Histologi/Anatomi/Organ/MUG", - "Anatomi & Histologi/Anatomi/Organ/Njure", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar", - "Anatomi & Histologi/Anatomi/Organ/Epiglottis.md", - "Anatomi & Histologi/Anatomi/Organ/Gallblåsa (Vesica biliaris).md", - "Anatomi & Histologi/Anatomi/Organ/index.md", - "Anatomi & Histologi/Anatomi/Organ/Lever.md", - "Anatomi & Histologi/Anatomi/Organ/Lymfnod.md", - "Anatomi & Histologi/Anatomi/Organ/Pancreas.md", - "Anatomi & Histologi/Anatomi/Organ/Thymus.md", - "Anatomi & Histologi/Anatomi/Organ/Trachea.md" - ], - "Anatomi & Histologi/Anatomi/Organ/GI": [ - "Anatomi & Histologi/Anatomi/Organ/GI/Antrum (Ventriculus).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Anus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Appendix Vermiformis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Caecum.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Canalis Analis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Caniner.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Cardia (Ventriculus).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Cavum Oris.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Colon.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Corpus (Ventriculus).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Dentes (Tänder).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Choledochus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Cysticus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Hepaticus Communis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Pancreaticus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Duodenum.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Esophagus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Fundus (Ventriculus).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Glandula Parotis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Glandula Sublingualis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Glandula Submandibularis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Haustra Coli.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Hiatus Oesophageus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Ileum.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Incisiver.md", - "Anatomi & Histologi/Anatomi/Organ/GI/index.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Jejunum.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Lingua.md", - "Anatomi & Histologi/Anatomi/Organ/GI/M Sphincter Ani Externus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/M Sphincter Ani Internus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/M Sphincter Pylori.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Mikrovilli.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Molarer.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Os (Mun).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Palatum Durum.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Palatum Molle.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Papilla Vateri.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Peristaltik.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Pharynx.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Premolarer.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Pylorus (Ventriculus).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Rectum.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Rugae (Ventriculus).md", - "Anatomi & Histologi/Anatomi/Organ/GI/Taeniae Coli.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Valva Ileocaecalis.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Ventriculus.md", - "Anatomi & Histologi/Anatomi/Organ/GI/Villus (Villi).md" - ], - "Anatomi & Histologi/Anatomi/Organ/Hjärta": [ - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Atrium Dexter.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Atrium Sinister.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/His Bunt.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/index.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Nodus Atrioventricularis.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Nodus Sinuatrialis.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Pericardium Fibrosum.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Pericardium Serosum.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Plexus Cardiacus.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Purkinjefibrer.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Septum Interatriale.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Septum Interventriculare.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Aortae.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Mitralis.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Tricuspidalis.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Trunci Pulmonalis.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Ventriculus Dexter.md", - "Anatomi & Histologi/Anatomi/Organ/Hjärta/Ventriculus Sinister.md" - ], - "Anatomi & Histologi/Anatomi/Organ/KUG": [ - "Anatomi & Histologi/Anatomi/Organ/KUG/Ampulla.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Cervix Uteri.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Clitoris.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Corpus Uteri.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Endometrium.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Fundus Uteri.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Hymen.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Infundibulum.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Isthmus.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Isthmus Uteri.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Labia Majora.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Labia Minora.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Lig Ovarii Proprium.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Mons Pubis.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Myometrium.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Ostium Urethrae Femina.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Ovarium.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Perimetrium.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Portio Vaginalis.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Tuba Uterina.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Uterus.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Vagina.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Vestibulum Vaginae.md", - "Anatomi & Histologi/Anatomi/Organ/KUG/Vulva.md" - ], - "Anatomi & Histologi/Anatomi/Organ/MUG": [ - "Anatomi & Histologi/Anatomi/Organ/MUG/Bulbus Penis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Canalis Inguinalis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Corpora Cavernosa.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Corpus Spongiosum.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Ductus Deferens.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Epididymis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Funiculus Spermaticus.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Glandulae Bulbourethrales.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Glans Penis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/M Cremaster.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Penis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Penis Corpus.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Penis Radix.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Plexus Pampiniformis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Preputium.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Prostata.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Raphe Scroti.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Rete Testis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Scrotum.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Septum Scroti.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Testis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Tubuli Seminiferi.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Tunica Dartos.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Tunica Vaginalis.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Urethra Masculina.md", - "Anatomi & Histologi/Anatomi/Organ/MUG/Vesicula Seminalis.md" - ], - "Anatomi & Histologi/Anatomi/Organ/Njure": [ - "Anatomi & Histologi/Anatomi/Organ/Njure/Calyx Renalis.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Gerotas Fascia.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Hilum Renale.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Index.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Njurbäcken.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Njurbark.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Njurmärg.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Papilla Renalis.md", - "Anatomi & Histologi/Anatomi/Organ/Njure/Vasa Renalia.md" - ], - "Anatomi & Histologi/Anatomi/Organ/Urinvägar": [ - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Detrusor.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/M Sphincter Urethrae.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Miktion.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ostium Ureteris.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ostium Urethrae Externum.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ostium Urethrae Internum.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Pars Membranacea.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Pars Prostatica.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Pars Spongiosa.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Trigonum Vesicae.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ureter.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Urethra.md", - "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Vesica Urinaria.md" - ], - "Anatomi & Histologi/Anatomi/Terminologi": [ - "Anatomi & Histologi/Anatomi/Terminologi/Abduktion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Adduktion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Anatomisk Grundställning.md", - "Anatomi & Histologi/Anatomi/Terminologi/Anterior.md", - "Anatomi & Histologi/Anatomi/Terminologi/Caudal.md", - "Anatomi & Histologi/Anatomi/Terminologi/Cranial.md", - "Anatomi & Histologi/Anatomi/Terminologi/Dexter.md", - "Anatomi & Histologi/Anatomi/Terminologi/Distal.md", - "Anatomi & Histologi/Anatomi/Terminologi/Dorsal.md", - "Anatomi & Histologi/Anatomi/Terminologi/Dorsalflexion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Eversion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Extension.md", - "Anatomi & Histologi/Anatomi/Terminologi/Flexion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Inåtrotation.md", - "Anatomi & Histologi/Anatomi/Terminologi/index.md", - "Anatomi & Histologi/Anatomi/Terminologi/Inferior.md", - "Anatomi & Histologi/Anatomi/Terminologi/Inversion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Kinematisk Terminologi.md", - "Anatomi & Histologi/Anatomi/Terminologi/Lage Och Riktningsbegrepp.md", - "Anatomi & Histologi/Anatomi/Terminologi/Lateral.md", - "Anatomi & Histologi/Anatomi/Terminologi/Lateralflexion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Magnus.md", - "Anatomi & Histologi/Anatomi/Terminologi/Major.md", - "Anatomi & Histologi/Anatomi/Terminologi/Maximus.md", - "Anatomi & Histologi/Anatomi/Terminologi/Medial.md", - "Anatomi & Histologi/Anatomi/Terminologi/Minimus.md", - "Anatomi & Histologi/Anatomi/Terminologi/Minor.md", - "Anatomi & Histologi/Anatomi/Terminologi/Muskelfunktioner.md", - "Anatomi & Histologi/Anatomi/Terminologi/Palmarflexion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Parvus.md", - "Anatomi & Histologi/Anatomi/Terminologi/Plantarflexion.md", - "Anatomi & Histologi/Anatomi/Terminologi/Posterior.md", - "Anatomi & Histologi/Anatomi/Terminologi/Profundus.md", - "Anatomi & Histologi/Anatomi/Terminologi/Proximal.md", - "Anatomi & Histologi/Anatomi/Terminologi/Rorelseplan Och Axlar.md", - "Anatomi & Histologi/Anatomi/Terminologi/Sinister.md", - "Anatomi & Histologi/Anatomi/Terminologi/Strukturella Prefix.md", - "Anatomi & Histologi/Anatomi/Terminologi/Superficialis.md", - "Anatomi & Histologi/Anatomi/Terminologi/Superior.md", - "Anatomi & Histologi/Anatomi/Terminologi/Termers Uppbyggnad.md", - "Anatomi & Histologi/Anatomi/Terminologi/Utåtrotation.md", - "Anatomi & Histologi/Anatomi/Terminologi/Ventral.md" - ], - "Anatomi & Histologi/Föreläsningar": [ - "Anatomi & Histologi/Föreläsningar/00 Index.md", - "Anatomi & Histologi/Föreläsningar/0926 GI Anatomi repetition.md", - "Anatomi & Histologi/Föreläsningar/0930 Endokrina organ.md", - "Anatomi & Histologi/Föreläsningar/0930 Endokrina organ repetion.md", - "Anatomi & Histologi/Föreläsningar/0930 GI Histologi 1.md", - "Anatomi & Histologi/Föreläsningar/1001 Respirationsystemet.md", - "Anatomi & Histologi/Föreläsningar/1009 Histologi KUG del 1.md", - "Anatomi & Histologi/Föreläsningar/1010 Histologi Njure och Urin.md", - "Anatomi & Histologi/Föreläsningar/1013 Histologi KUG.md", - "Anatomi & Histologi/Föreläsningar/1014 Histologi MUG.md", - "Anatomi & Histologi/Föreläsningar/1023 Inför preptanta.md" - ], - "Anatomi & Histologi/Histologi": [ - "Anatomi & Histologi/Histologi/Ben", - "Anatomi & Histologi/Histologi/Bindväv", - "Anatomi & Histologi/Histologi/Blod", - "Anatomi & Histologi/Histologi/Blodkärl", - "Anatomi & Histologi/Histologi/Brosk", - "Anatomi & Histologi/Histologi/Bröstkörtel", - "Anatomi & Histologi/Histologi/Demokompendium", - "Anatomi & Histologi/Histologi/Endokrina", - "Anatomi & Histologi/Histologi/Epitel", - "Anatomi & Histologi/Histologi/GI", - "Anatomi & Histologi/Histologi/Hjärta", - "Anatomi & Histologi/Histologi/Hud", - "Anatomi & Histologi/Histologi/Körtlar", - "Anatomi & Histologi/Histologi/KUG", - "Anatomi & Histologi/Histologi/MUG", - "Anatomi & Histologi/Histologi/Muskelvävnad", - "Anatomi & Histologi/Histologi/Nervsystem", - "Anatomi & Histologi/Histologi/Njure", - "Anatomi & Histologi/Histologi/Respiration", - "Anatomi & Histologi/Histologi/Urinvägar", - "Anatomi & Histologi/Histologi/Basalmembran.md", - "Anatomi & Histologi/Histologi/Celltyper.md", - "Anatomi & Histologi/Histologi/Hjärta.md", - "Anatomi & Histologi/Histologi/index.md", - "Anatomi & Histologi/Histologi/Lager & Höljen i vävnader.md" - ], - "Anatomi & Histologi/Histologi/Ben": [ - "Anatomi & Histologi/Histologi/Ben/Benremodellering.md", - "Anatomi & Histologi/Histologi/Ben/Canaliculi.md", - "Anatomi & Histologi/Histologi/Ben/Endokondral Ossifikation.md", - "Anatomi & Histologi/Histologi/Ben/Endosteum.md", - "Anatomi & Histologi/Histologi/Ben/Frakturläkning.md", - "Anatomi & Histologi/Histologi/Ben/Haversk Kanal.md", - "Anatomi & Histologi/Histologi/Ben/Howships Lakuner.md", - "Anatomi & Histologi/Histologi/Ben/index.md", - "Anatomi & Histologi/Histologi/Ben/Intramembranös Ossifikation.md", - "Anatomi & Histologi/Histologi/Ben/Kompakt Ben.md", - "Anatomi & Histologi/Histologi/Ben/Kompakt vs Spongiöst Ben.md", - "Anatomi & Histologi/Histologi/Ben/Lakuner.md", - "Anatomi & Histologi/Histologi/Ben/Mineralisering och Osteoid.md", - "Anatomi & Histologi/Histologi/Ben/Osteoblast.md", - "Anatomi & Histologi/Histologi/Ben/Osteocyt.md", - "Anatomi & Histologi/Histologi/Ben/Osteoid.md", - "Anatomi & Histologi/Histologi/Ben/Osteoklast.md", - "Anatomi & Histologi/Histologi/Ben/Osteon Haverska System.md", - "Anatomi & Histologi/Histologi/Ben/Periost och Endost.md", - "Anatomi & Histologi/Histologi/Ben/Periosteum.md", - "Anatomi & Histologi/Histologi/Ben/Primärt och Sekundärt Ossifikationscenter.md", - "Anatomi & Histologi/Histologi/Ben/Sharpeys fibrer.md", - "Anatomi & Histologi/Histologi/Ben/Spongiöst Ben.md", - "Anatomi & Histologi/Histologi/Ben/Tillväxtplatta Zonindelning.md", - "Anatomi & Histologi/Histologi/Ben/Vävnadsben vs Lamellärt Ben.md", - "Anatomi & Histologi/Histologi/Ben/Volkmanns Kanal.md" - ], - "Anatomi & Histologi/Histologi/Bindväv": [ - "Anatomi & Histologi/Histologi/Bindväv/Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Brun Fettväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Elastisk Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Fibrer i Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Fibroblast.md", - "Anatomi & Histologi/Histologi/Bindväv/Gelatinös Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Grundsubstans.md", - "Anatomi & Histologi/Histologi/Bindväv/index.md", - "Anatomi & Histologi/Histologi/Bindväv/Kollagen.md", - "Anatomi & Histologi/Histologi/Bindväv/Kollagensyntes.md", - "Anatomi & Histologi/Histologi/Bindväv/Lamina propria.md", - "Anatomi & Histologi/Histologi/Bindväv/Lucker Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Makrofag.md", - "Anatomi & Histologi/Histologi/Bindväv/Mastcell.md", - "Anatomi & Histologi/Histologi/Bindväv/Mesenkym.md", - "Anatomi & Histologi/Histologi/Bindväv/Myofibroblast.md", - "Anatomi & Histologi/Histologi/Bindväv/Pericyt.md", - "Anatomi & Histologi/Histologi/Bindväv/Plasmacell.md", - "Anatomi & Histologi/Histologi/Bindväv/Retikulär Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Stram Oregelbunden Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Stram Regelbunden Bindväv.md", - "Anatomi & Histologi/Histologi/Bindväv/Vit Fettväv.md" - ], - "Anatomi & Histologi/Histologi/Blod": [ - "Anatomi & Histologi/Histologi/Blod/B-Lymfocyt.md", - "Anatomi & Histologi/Histologi/Blod/Bandcell.md", - "Anatomi & Histologi/Histologi/Blod/Basofil.md", - "Anatomi & Histologi/Histologi/Blod/Basofil Erytroblast.md", - "Anatomi & Histologi/Histologi/Blod/Benmärg.md", - "Anatomi & Histologi/Histologi/Blod/Blodets Sammansättning.md", - "Anatomi & Histologi/Histologi/Blod/Blodutstryk och Färgning.md", - "Anatomi & Histologi/Histologi/Blod/Buffy Coat.md", - "Anatomi & Histologi/Histologi/Blod/Dendritisk cell.md", - "Anatomi & Histologi/Histologi/Blod/Diapedes.md", - "Anatomi & Histologi/Histologi/Blod/Eosinofil.md", - "Anatomi & Histologi/Histologi/Blod/Erytopoes.md", - "Anatomi & Histologi/Histologi/Blod/Erytrocyt.md", - "Anatomi & Histologi/Histologi/Blod/Fibrinolys.md", - "Anatomi & Histologi/Histologi/Blod/Granulocytgranula.md", - "Anatomi & Histologi/Histologi/Blod/Granulopoes.md", - "Anatomi & Histologi/Histologi/Blod/Hematopoes Översikt.md", - "Anatomi & Histologi/Histologi/Blod/Hematopoetisk Stamcell.md", - "Anatomi & Histologi/Histologi/Blod/Hemostas Primär.md", - "Anatomi & Histologi/Histologi/Blod/Heparin.md", - "Anatomi & Histologi/Histologi/Blod/Histamin.md", - "Anatomi & Histologi/Histologi/Blod/index.md", - "Anatomi & Histologi/Histologi/Blod/Koagulation Sekundär.md", - "Anatomi & Histologi/Histologi/Blod/Leukocyter Översikt.md", - "Anatomi & Histologi/Histologi/Blod/Lymfocyt.md", - "Anatomi & Histologi/Histologi/Blod/Lymfopoes.md", - "Anatomi & Histologi/Histologi/Blod/Lysozym.md", - "Anatomi & Histologi/Histologi/Blod/Megakaryocyt.md", - "Anatomi & Histologi/Histologi/Blod/Metamyelocyt.md", - "Anatomi & Histologi/Histologi/Blod/Monocyt.md", - "Anatomi & Histologi/Histologi/Blod/Monocytopoes.md", - "Anatomi & Histologi/Histologi/Blod/Myeloblast.md", - "Anatomi & Histologi/Histologi/Blod/Myelocyt.md", - "Anatomi & Histologi/Histologi/Blod/Neutrofil.md", - "Anatomi & Histologi/Histologi/Blod/Ortokromatisk Erytroblast.md", - "Anatomi & Histologi/Histologi/Blod/Plasma.md", - "Anatomi & Histologi/Histologi/Blod/Polykromatisk Erytroblast.md", - "Anatomi & Histologi/Histologi/Blod/Promyelocyt.md", - "Anatomi & Histologi/Histologi/Blod/Retikulocyt.md", - "Anatomi & Histologi/Histologi/Blod/Serum.md", - "Anatomi & Histologi/Histologi/Blod/Stomacell Benmärg.md", - "Anatomi & Histologi/Histologi/Blod/T-Lymfocyt.md", - "Anatomi & Histologi/Histologi/Blod/Trombocyt.md", - "Anatomi & Histologi/Histologi/Blod/Trombopoes.md", - "Anatomi & Histologi/Histologi/Blod/WilEtc.md" - ], - "Anatomi & Histologi/Histologi/Blodkärl": [ - "Anatomi & Histologi/Histologi/Blodkärl/Anastomos.md", - "Anatomi & Histologi/Histologi/Blodkärl/Arteriol.md", - "Anatomi & Histologi/Histologi/Blodkärl/Elastisk Artär.md", - "Anatomi & Histologi/Histologi/Blodkärl/Endotelcell.md", - "Anatomi & Histologi/Histologi/Blodkärl/Fenestrerad kapillär.md", - "Anatomi & Histologi/Histologi/Blodkärl/index.md", - "Anatomi & Histologi/Histologi/Blodkärl/Kapillär Kontinuerlig.md", - "Anatomi & Histologi/Histologi/Blodkärl/Lymfkärl.md", - "Anatomi & Histologi/Histologi/Blodkärl/Membrana Elastica Externa.md", - "Anatomi & Histologi/Histologi/Blodkärl/Membrana Elastica Interna.md", - "Anatomi & Histologi/Histologi/Blodkärl/Muskelartär.md", - "Anatomi & Histologi/Histologi/Blodkärl/Pericyt.md", - "Anatomi & Histologi/Histologi/Blodkärl/Sinusoid.md", - "Anatomi & Histologi/Histologi/Blodkärl/Tunica Adventitia.md", - "Anatomi & Histologi/Histologi/Blodkärl/Tunica Intima.md", - "Anatomi & Histologi/Histologi/Blodkärl/Tunica Media.md", - "Anatomi & Histologi/Histologi/Blodkärl/Vasa Vasorum.md", - "Anatomi & Histologi/Histologi/Blodkärl/Ven.md", - "Anatomi & Histologi/Histologi/Blodkärl/Ven 1.md", - "Anatomi & Histologi/Histologi/Blodkärl/Venklaff.md", - "Anatomi & Histologi/Histologi/Blodkärl/Venol.md" - ], - "Anatomi & Histologi/Histologi/Brosk": [ - "Anatomi & Histologi/Histologi/Brosk/Elastiskt Brosk.md", - "Anatomi & Histologi/Histologi/Brosk/Hyalint Brosk.md", - "Anatomi & Histologi/Histologi/Brosk/index.md", - "Anatomi & Histologi/Histologi/Brosk/Kondroblast.md", - "Anatomi & Histologi/Histologi/Brosk/Kondrocyt.md", - "Anatomi & Histologi/Histologi/Brosk/Kondroprogenitor.md", - "Anatomi & Histologi/Histologi/Brosk/Lakuner.md", - "Anatomi & Histologi/Histologi/Brosk/Perikondrium.md", - "Anatomi & Histologi/Histologi/Brosk/Trådbrosk.md" - ], - "Anatomi & Histologi/Histologi/Bröstkörtel": [ - "Anatomi & Histologi/Histologi/Bröstkörtel/Ductus Lactiferus.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Körtelgångar.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Lakterande och Icke-lakterande Mamma.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Lob.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Lobulus.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Mamill.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Mamma – översikt.md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Sekretorisk Del (Mamma).md", - "Anatomi & Histologi/Histologi/Bröstkörtel/Sinus Lactiferus.md" - ], - "Anatomi & Histologi/Histologi/Demokompendium": [ - "Anatomi & Histologi/Histologi/Demokompendium/benvävnad.md", - "Anatomi & Histologi/Histologi/Demokompendium/bindväv.md", - "Anatomi & Histologi/Histologi/Demokompendium/blod-och-blodbildning.md", - "Anatomi & Histologi/Histologi/Demokompendium/blodkärl-klaffar.md", - "Anatomi & Histologi/Histologi/Demokompendium/broskvävnad.md", - "Anatomi & Histologi/Histologi/Demokompendium/centrala-nervsystemet.md", - "Anatomi & Histologi/Histologi/Demokompendium/endokrina-organ.md", - "Anatomi & Histologi/Histologi/Demokompendium/Epitel.md", - "Anatomi & Histologi/Histologi/Demokompendium/gastrointestinalkanalen.md", - "Anatomi & Histologi/Histologi/Demokompendium/hud-med-adnexa.md", - "Anatomi & Histologi/Histologi/Demokompendium/index.md", - "Anatomi & Histologi/Histologi/Demokompendium/introduktion.md", - "Anatomi & Histologi/Histologi/Demokompendium/kvinnliga-genitalia.md", - "Anatomi & Histologi/Histologi/Demokompendium/Lymfoida organ.md", - "Anatomi & Histologi/Histologi/Demokompendium/Manliga Genitalia.md", - "Anatomi & Histologi/Histologi/Demokompendium/Mun och Tänder.md", - "Anatomi & Histologi/Histologi/Demokompendium/muskelvävnad.md", - "Anatomi & Histologi/Histologi/Demokompendium/Nervävnad.md", - "Anatomi & Histologi/Histologi/Demokompendium/Njuren och Urinvägar.md", - "Anatomi & Histologi/Histologi/Demokompendium/Preparattabell.md", - "Anatomi & Histologi/Histologi/Demokompendium/respirationssystemet.md", - "Anatomi & Histologi/Histologi/Demokompendium/sinnesorgan.md" - ], - "Anatomi & Histologi/Histologi/Endokrina": [ - "Anatomi & Histologi/Histologi/Endokrina/Adenohypofysen – celler och hormoner.md", - "Anatomi & Histologi/Histologi/Endokrina/Binjurebark – zoner och hormoner.md", - "Anatomi & Histologi/Histologi/Endokrina/Binjuremärg – kromaffina celler.md", - "Anatomi & Histologi/Histologi/Endokrina/Bisköldkörtlar – struktur och hormoner.md", - "Anatomi & Histologi/Histologi/Endokrina/Endokrin signalering – principer.md", - "Anatomi & Histologi/Histologi/Endokrina/Endokrina hormoner – produktionsorgan och funktion.md", - "Anatomi & Histologi/Histologi/Endokrina/Hypofysen – anatomi och kärl.md", - "Anatomi & Histologi/Histologi/Endokrina/Hypofysen – översikt.md", - "Anatomi & Histologi/Histologi/Endokrina/Hypofysen – portasystem.md", - "Anatomi & Histologi/Histologi/Endokrina/Hypothalamus – läge och funktion.md", - "Anatomi & Histologi/Histologi/Endokrina/index.md", - "Anatomi & Histologi/Histologi/Endokrina/Negativ feedback – principer och exempel.md", - "Anatomi & Histologi/Histologi/Endokrina/Neurohypofysen – delar och hormoner.md", - "Anatomi & Histologi/Histologi/Endokrina/Pankreas – endokrin del.md", - "Anatomi & Histologi/Histologi/Endokrina/Sköldkörteln – struktur och hormoner.md", - "Anatomi & Histologi/Histologi/Endokrina/Tallkottkörteln – struktur och funktion.md" - ], - "Anatomi & Histologi/Histologi/Epitel": [ - "Anatomi & Histologi/Histologi/Epitel/Basalmembran.md", - "Anatomi & Histologi/Histologi/Epitel/Cellkontakter.md", - "Anatomi & Histologi/Histologi/Epitel/Cylindriskt Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Desmosom.md", - "Anatomi & Histologi/Histologi/Epitel/Endotel.md", - "Anatomi & Histologi/Histologi/Epitel/Enkelt Cylinderepitel Cilierat.md", - "Anatomi & Histologi/Histologi/Epitel/Enkelt Cylinderepitel Icke Cilierat.md", - "Anatomi & Histologi/Histologi/Epitel/Enkelt Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Enkelt Kubiskt Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Enkelt Skivepitel.md", - "Anatomi & Histologi/Histologi/Epitel/Ependym.md", - "Anatomi & Histologi/Histologi/Epitel/Epitelens Huvudfunktioner.md", - "Anatomi & Histologi/Histologi/Epitel/Epiteltabell.md", - "Anatomi & Histologi/Histologi/Epitel/Flerradigt Cylinderepitel Cilierat.md", - "Anatomi & Histologi/Histologi/Epitel/Flerradigt Cylinderepitel Icke Cilierat.md", - "Anatomi & Histologi/Histologi/Epitel/Flerradigt Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Cylinderepitel.md", - "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Kubiskt Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Skivepitel Förhornat.md", - "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Skivepitel Oförhornat.md", - "Anatomi & Histologi/Histologi/Epitel/index.md", - "Anatomi & Histologi/Histologi/Epitel/Kubiskt Epitel.md", - "Anatomi & Histologi/Histologi/Epitel/Mesotel.md", - "Anatomi & Histologi/Histologi/Epitel/Övergångsepitel.md", - "Anatomi & Histologi/Histologi/Epitel/Övergångsepitel Urotel.md", - "Anatomi & Histologi/Histologi/Epitel/Respirationsvägsepitel.md", - "Anatomi & Histologi/Histologi/Epitel/Skivepitel.md" - ], - "Anatomi & Histologi/Histologi/GI": [ - "Anatomi & Histologi/Histologi/GI/Colon vs rektum.md", - "Anatomi & Histologi/Histologi/GI/Diabetes typ I och II.md", - "Anatomi & Histologi/Histologi/GI/Esofagus – struktur och funktion.md", - "Anatomi & Histologi/Histologi/GI/Esofagus–magsäck – övergång.md", - "Anatomi & Histologi/Histologi/GI/Gallblåsa – struktur och funktion.md", - "Anatomi & Histologi/Histologi/GI/GI-kanal – histologisk översikt.md", - "Anatomi & Histologi/Histologi/GI/Hormoner – glukagon och insulin.md", - "Anatomi & Histologi/Histologi/GI/index.md", - "Anatomi & Histologi/Histologi/GI/Lever – cellorganisation och funktion.md", - "Anatomi & Histologi/Histologi/GI/Lever – flöde av blod galla och lymfa.md", - "Anatomi & Histologi/Histologi/GI/Leverlobulus – histologisk uppbyggnad.md", - "Anatomi & Histologi/Histologi/GI/Magsäck – histologi och regionala skillnader.md", - "Anatomi & Histologi/Histologi/GI/Magsäck – slemhinnans celltyper.md", - "Anatomi & Histologi/Histologi/GI/Pankreas – struktur och funktion.md", - "Anatomi & Histologi/Histologi/GI/Rektum–analkanal – övergång.md", - "Anatomi & Histologi/Histologi/GI/Slemhinna – struktur och funktion.md", - "Anatomi & Histologi/Histologi/GI/Stora spottkörtlar – skillnader.md", - "Anatomi & Histologi/Histologi/GI/Stora spottkörtlar – struktur och funktion.md", - "Anatomi & Histologi/Histologi/GI/Tandens uppbyggnad och utveckling.md", - "Anatomi & Histologi/Histologi/GI/Tjocktarm – funktion.md", - "Anatomi & Histologi/Histologi/GI/Tjocktarm – väggens uppbyggnad.md", - "Anatomi & Histologi/Histologi/GI/Tonsiller – struktur.md" - ], - "Anatomi & Histologi/Histologi/Hjärta": [ - "Anatomi & Histologi/Histologi/Hjärta/AV-nod (Atrioventrikulär Nod).md", - "Anatomi & Histologi/Histologi/Hjärta/Endocardium.md", - "Anatomi & Histologi/Histologi/Hjärta/Epicardium.md", - "Anatomi & Histologi/Histologi/Hjärta/Glansstrimmor.md", - "Anatomi & Histologi/Histologi/Hjärta/His Bunt.md", - "Anatomi & Histologi/Histologi/Hjärta/index.md", - "Anatomi & Histologi/Histologi/Hjärta/Klafflager Atrialis.md", - "Anatomi & Histologi/Histologi/Hjärta/Klafflager Fibrosa.md", - "Anatomi & Histologi/Histologi/Hjärta/Klafflager Spongiosa.md", - "Anatomi & Histologi/Histologi/Hjärta/Klafflager Ventricularis.md", - "Anatomi & Histologi/Histologi/Hjärta/Myocardium.md", - "Anatomi & Histologi/Histologi/Hjärta/Myoendokrina Celler (Hjärta).md", - "Anatomi & Histologi/Histologi/Hjärta/Nekros (Myokard).md", - "Anatomi & Histologi/Histologi/Hjärta/Pericardium fibrosum.md", - "Anatomi & Histologi/Histologi/Hjärta/Pericardium Serosum.md", - "Anatomi & Histologi/Histologi/Hjärta/Purkinjefibrer.md", - "Anatomi & Histologi/Histologi/Hjärta/Retledningssystem.md", - "Anatomi & Histologi/Histologi/Hjärta/SA-nod (Sinusknuta).md" - ], - "Anatomi & Histologi/Histologi/Hud": [ - "Anatomi & Histologi/Histologi/Hud/Apokrin Svettkörtel.md", - "Anatomi & Histologi/Histologi/Hud/Arrector Pili (Hårresarmuskel).md", - "Anatomi & Histologi/Histologi/Hud/Bindvävsskida (Hår).md", - "Anatomi & Histologi/Histologi/Hud/Cytokeratin.md", - "Anatomi & Histologi/Histologi/Hud/Dermis.md", - "Anatomi & Histologi/Histologi/Hud/Epidermis.md", - "Anatomi & Histologi/Histologi/Hud/Feromon.md", - "Anatomi & Histologi/Histologi/Hud/Fria Nervändslut.md", - "Anatomi & Histologi/Histologi/Hud/Hår Bark.md", - "Anatomi & Histologi/Histologi/Hud/Hår Cuticula.md", - "Anatomi & Histologi/Histologi/Hud/Hår Märg.md", - "Anatomi & Histologi/Histologi/Hud/Hårfollikel.md", - "Anatomi & Histologi/Histologi/Hud/Hårfollikelns Stamceller.md", - "Anatomi & Histologi/Histologi/Hud/Hårrot.md", - "Anatomi & Histologi/Histologi/Hud/Inre Epiteliala Skidan.md", - "Anatomi & Histologi/Histologi/Hud/Keratinocyt.md", - "Anatomi & Histologi/Histologi/Hud/Keratohyalingranula.md", - "Anatomi & Histologi/Histologi/Hud/Lamellära Kroppar.md", - "Anatomi & Histologi/Histologi/Hud/Langerhanscell.md", - "Anatomi & Histologi/Histologi/Hud/Meissners Korpuskel.md", - "Anatomi & Histologi/Histologi/Hud/Melanocyt.md", - "Anatomi & Histologi/Histologi/Hud/Melanosom.md", - "Anatomi & Histologi/Histologi/Hud/Merkelcell (Merkelkorpuskel).md", - "Anatomi & Histologi/Histologi/Hud/Merokrin Svettkörtel.md", - "Anatomi & Histologi/Histologi/Hud/Nervändslut – översikt.md", - "Anatomi & Histologi/Histologi/Hud/Pacinikropp (Vater-Pacini).md", - "Anatomi & Histologi/Histologi/Hud/Sebocyt.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Basale.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Corneum.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Granulosum.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Lucidum.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Papillare.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Retikulare.md", - "Anatomi & Histologi/Histologi/Hud/Stratum Spinosum.md", - "Anatomi & Histologi/Histologi/Hud/Subcutis.md", - "Anatomi & Histologi/Histologi/Hud/Svettkörtel Dark Cells.md", - "Anatomi & Histologi/Histologi/Hud/Svettkörtel Light Cells.md", - "Anatomi & Histologi/Histologi/Hud/Svettkörtel Sekretorisk Del.md", - "Anatomi & Histologi/Histologi/Hud/Svettkörtel Utförsgång.md", - "Anatomi & Histologi/Histologi/Hud/Talgkörtel.md", - "Anatomi & Histologi/Histologi/Hud/Yttre Epiteliala Skidan.md" - ], - "Anatomi & Histologi/Histologi/Körtlar": [ - "Anatomi & Histologi/Histologi/Körtlar/Apokrin sekretion.md", - "Anatomi & Histologi/Histologi/Körtlar/Bägarcell.md", - "Anatomi & Histologi/Histologi/Körtlar/Endokrin Follikulär Typ.md", - "Anatomi & Histologi/Histologi/Körtlar/Endokrin strängtyp.md", - "Anatomi & Histologi/Histologi/Körtlar/Enkel Acinus.md", - "Anatomi & Histologi/Histologi/Körtlar/Enkel Tubularkörtel.md", - "Anatomi & Histologi/Histologi/Körtlar/Förgrenad Acinus.md", - "Anatomi & Histologi/Histologi/Körtlar/Förgrenad Tubular Körtel.md", - "Anatomi & Histologi/Histologi/Körtlar/Holokrin sekretion.md", - "Anatomi & Histologi/Histologi/Körtlar/index.md", - "Anatomi & Histologi/Histologi/Körtlar/Merokrin sekretion.md", - "Anatomi & Histologi/Histologi/Körtlar/Mukös Kortel.md", - "Anatomi & Histologi/Histologi/Körtlar/Myoepitelial Cell.md", - "Anatomi & Histologi/Histologi/Körtlar/Sammansatt Tubularkörtel.md", - "Anatomi & Histologi/Histologi/Körtlar/Sammansatt Tubuloacinarkörtel.md", - "Anatomi & Histologi/Histologi/Körtlar/Sekretorisk Cell.md", - "Anatomi & Histologi/Histologi/Körtlar/Seromuköskörtel.md", - "Anatomi & Histologi/Histologi/Körtlar/Seröskörtel.md", - "Anatomi & Histologi/Histologi/Körtlar/Slingrad Tubularkörtel.md" - ], - "Anatomi & Histologi/Histologi/KUG": [ - "Anatomi & Histologi/Histologi/KUG/Äggstocksfolliklar.md", - "Anatomi & Histologi/Histologi/KUG/Clitoris.md", - "Anatomi & Histologi/Histologi/KUG/Corpora Cavernosa.md", - "Anatomi & Histologi/Histologi/KUG/Labia major.md", - "Anatomi & Histologi/Histologi/KUG/Labia minor.md", - "Anatomi & Histologi/Histologi/KUG/oocyt.md", - "Anatomi & Histologi/Histologi/KUG/Ovariet.md", - "Anatomi & Histologi/Histologi/KUG/Primordialfollikel.md", - "Anatomi & Histologi/Histologi/KUG/Sekundärfollikel.md", - "Anatomi & Histologi/Histologi/KUG/Sen primärfollikel.md", - "Anatomi & Histologi/Histologi/KUG/Tidigt primärfollikel.md", - "Anatomi & Histologi/Histologi/KUG/Vagina.md", - "Anatomi & Histologi/Histologi/KUG/Vulva.md" - ], - "Anatomi & Histologi/Histologi/MUG": [ - "Anatomi & Histologi/Histologi/MUG/Accessoriska Körtlar.md", - "Anatomi & Histologi/Histologi/MUG/Ductuli Efferentes.md", - "Anatomi & Histologi/Histologi/MUG/Ductus Deferens.md", - "Anatomi & Histologi/Histologi/MUG/Ductus Epididymis.md", - "Anatomi & Histologi/Histologi/MUG/Funiculus Spermaticus.md", - "Anatomi & Histologi/Histologi/MUG/Gångsystem.md", - "Anatomi & Histologi/Histologi/MUG/Glandulae Bulbourethrales.md", - "Anatomi & Histologi/Histologi/MUG/index.md", - "Anatomi & Histologi/Histologi/MUG/Leydigceller.md", - "Anatomi & Histologi/Histologi/MUG/Penis.md", - "Anatomi & Histologi/Histologi/MUG/Prostata.md", - "Anatomi & Histologi/Histologi/MUG/Spermatogenes.md", - "Anatomi & Histologi/Histologi/MUG/Testis.md", - "Anatomi & Histologi/Histologi/MUG/Tubuli Seminiferi.md", - "Anatomi & Histologi/Histologi/MUG/Tunica Albuginea.md", - "Anatomi & Histologi/Histologi/MUG/Vesica Seminalis.md" - ], - "Anatomi & Histologi/Histologi/Muskelvävnad": [ - "Anatomi & Histologi/Histologi/Muskelvävnad/Aktin.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Anatomisk Muskel.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Atrofi (Muskel).md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Endomysium.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Epimysium.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Fascikel.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Glatt Muskelcell.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Glattmuskel.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Hjärtmuskel.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Hyperplasi (Muskel).md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Hypertrofi (Muskel).md", - "Anatomi & Histologi/Histologi/Muskelvävnad/index.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Motorändplatta.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Motorisk Enhet.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber Typ I.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber Typ IIa.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber Typ IIb.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelspole.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Myofibrill.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Myofilament.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Myosin.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Perimysium.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Plastisk Anpassning (Glatt muskel).md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Sarcolemma.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Sarkoplasma.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Sarkoplasmatiskt Retikel.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Satellitcell (Skelettmuskel).md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Skelettmuskel.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Syncytium.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/T-tubuli.md", - "Anatomi & Histologi/Histologi/Muskelvävnad/Triad.md" - ], - "Anatomi & Histologi/Histologi/Nervsystem": [ - "Anatomi & Histologi/Histologi/Nervsystem/Astrocyt.md", - "Anatomi & Histologi/Histologi/Nervsystem/Autonom Innervation.md", - "Anatomi & Histologi/Histologi/Nervsystem/Axon.md", - "Anatomi & Histologi/Histologi/Nervsystem/Blod-hjärnbarriaren.md", - "Anatomi & Histologi/Histologi/Nervsystem/Bouton En Passage.md", - "Anatomi & Histologi/Histologi/Nervsystem/Dendrit.md", - "Anatomi & Histologi/Histologi/Nervsystem/Dorsalrotsganglion.md", - "Anatomi & Histologi/Histologi/Nervsystem/Endoneurium.md", - "Anatomi & Histologi/Histologi/Nervsystem/Ependymcell.md", - "Anatomi & Histologi/Histologi/Nervsystem/Epineurium.md", - "Anatomi & Histologi/Histologi/Nervsystem/Mikroglia.md", - "Anatomi & Histologi/Histologi/Nervsystem/Myelin och axonal transport.md", - "Anatomi & Histologi/Histologi/Nervsystem/Nervsystemet Oversikt och celler.md", - "Anatomi & Histologi/Histologi/Nervsystem/Neurontyper.md", - "Anatomi & Histologi/Histologi/Nervsystem/Nissl-substans.md", - "Anatomi & Histologi/Histologi/Nervsystem/Oligodendrocyt.md", - "Anatomi & Histologi/Histologi/Nervsystem/Perineurium.md", - "Anatomi & Histologi/Histologi/Nervsystem/Postsynaps.md", - "Anatomi & Histologi/Histologi/Nervsystem/Presynaps.md", - "Anatomi & Histologi/Histologi/Nervsystem/Ranviers nod.md", - "Anatomi & Histologi/Histologi/Nervsystem/Satellitcell.md", - "Anatomi & Histologi/Histologi/Nervsystem/Schwanncell.md", - "Anatomi & Histologi/Histologi/Nervsystem/Soma.md", - "Anatomi & Histologi/Histologi/Nervsystem/Synaps.md", - "Anatomi & Histologi/Histologi/Nervsystem/Synaptisk klyfta.md", - "Anatomi & Histologi/Histologi/Nervsystem/Synaptiska receptorer.md", - "Anatomi & Histologi/Histologi/Nervsystem/Synaptiska vesiklar.md", - "Anatomi & Histologi/Histologi/Nervsystem/Transmittorer.md" - ], - "Anatomi & Histologi/Histologi/Njure": [ - "Anatomi & Histologi/Histologi/Njure/Afferent arteriol.md", - "Anatomi & Histologi/Histologi/Njure/Blodfiltrationsbarriär.md", - "Anatomi & Histologi/Histologi/Njure/Bowmans kapsel.md", - "Anatomi & Histologi/Histologi/Njure/Distala tubulus.md", - "Anatomi & Histologi/Histologi/Njure/Efferent arteriol.md", - "Anatomi & Histologi/Histologi/Njure/Glomerulus.md", - "Anatomi & Histologi/Histologi/Njure/Henles slynga.md", - "Anatomi & Histologi/Histologi/Njure/index.md", - "Anatomi & Histologi/Histologi/Njure/Juxtaglomerulär apparat.md", - "Anatomi & Histologi/Histologi/Njure/Makula densa.md", - "Anatomi & Histologi/Histologi/Njure/Märgstråle.md", - "Anatomi & Histologi/Histologi/Njure/Mesangiell cell.md", - "Anatomi & Histologi/Histologi/Njure/Nefron.md", - "Anatomi & Histologi/Histologi/Njure/Njurbäcken.md", - "Anatomi & Histologi/Histologi/Njure/Njurbark.md", - "Anatomi & Histologi/Histologi/Njure/Njure.md", - "Anatomi & Histologi/Histologi/Njure/Njurmärg.md", - "Anatomi & Histologi/Histologi/Njure/Njurpapill.md", - "Anatomi & Histologi/Histologi/Njure/Podocyt.md", - "Anatomi & Histologi/Histologi/Njure/Proximala tubulus.md", - "Anatomi & Histologi/Histologi/Njure/Renin.md", - "Anatomi & Histologi/Histologi/Njure/Samlingsrör.md", - "Anatomi & Histologi/Histologi/Njure/Vasa recta.md" - ], - "Anatomi & Histologi/Histologi/Respiration": [ - "Anatomi & Histologi/Histologi/Respiration/Alveol.md", - "Anatomi & Histologi/Histologi/Respiration/Alveolargång.md", - "Anatomi & Histologi/Histologi/Respiration/Alveolarsäck.md", - "Anatomi & Histologi/Histologi/Respiration/Bronkiol.md", - "Anatomi & Histologi/Histologi/Respiration/Epiglottis.md", - "Anatomi & Histologi/Histologi/Respiration/Extrapulmonär Bronk.md", - "Anatomi & Histologi/Histologi/Respiration/index.md", - "Anatomi & Histologi/Histologi/Respiration/Intrapulmonär Bronk.md", - "Anatomi & Histologi/Histologi/Respiration/Näshåla.md", - "Anatomi & Histologi/Histologi/Respiration/Olfaktoriskt Epitel.md", - "Anatomi & Histologi/Histologi/Respiration/Pleura.md", - "Anatomi & Histologi/Histologi/Respiration/Respiratorisk Bronkiol.md", - "Anatomi & Histologi/Histologi/Respiration/Stämband.md", - "Anatomi & Histologi/Histologi/Respiration/Terminal Bronkiol.md", - "Anatomi & Histologi/Histologi/Respiration/Trachea.md" - ], - "Anatomi & Histologi/Histologi/Urinvägar": [ - "Anatomi & Histologi/Histologi/Urinvägar/Paraplycell.md", - "Anatomi & Histologi/Histologi/Urinvägar/Ureter.md", - "Anatomi & Histologi/Histologi/Urinvägar/Urinblåsa.md" - ], - "Anatomi & Histologi/Instuderingsfrågor": [ - "Anatomi & Histologi/Instuderingsfrågor/1.1 Rörelseapparaten.md", - "Anatomi & Histologi/Instuderingsfrågor/1.2 Hjärta och cirkulation.md", - "Anatomi & Histologi/Instuderingsfrågor/index.md", - "Anatomi & Histologi/Instuderingsfrågor/Zoom meeting.md" - ], - "Anatomi & Histologi/Målbeskrivning": [ - "Anatomi & Histologi/Målbeskrivning/1.1 Anatomi Rörelseapparaten.md", - "Anatomi & Histologi/Målbeskrivning/1.2 Anatomi Hjärta och cirkulation.md", - "Anatomi & Histologi/Målbeskrivning/2.1 Histologi Epitel.md", - "Anatomi & Histologi/Målbeskrivning/2.2 Histologi Bindväv.md", - "Anatomi & Histologi/Målbeskrivning/2.3 Histologi Ben och Benbildning.md", - "Anatomi & Histologi/Målbeskrivning/2.4 Nervsystem.md", - "Anatomi & Histologi/Målbeskrivning/2.6 Histologi Muskelvävnad och Hjärta.md", - "Anatomi & Histologi/Målbeskrivning/2.7 Histologi Blodkärl, blod och blodbildning.md", - "Anatomi & Histologi/Målbeskrivning/3.1 Histologi Lymfatiska organ.md", - "Anatomi & Histologi/Målbeskrivning/3.2 Histologi Hud och Adnexa.md", - "Anatomi & Histologi/Målbeskrivning/3.3 Anatomi GI.md", - "Anatomi & Histologi/Målbeskrivning/3.4 Histologi Endokrina organ.md", - "Anatomi & Histologi/Målbeskrivning/3.5 Histologi GI.md", - "Anatomi & Histologi/Målbeskrivning/3.6 Respiration.md", - "Anatomi & Histologi/Målbeskrivning/4.1 Anatomi MUG, KUG, Njurar, urinvägar.md", - "Anatomi & Histologi/Målbeskrivning/4.2 Histologi KUG 1.md", - "Anatomi & Histologi/Målbeskrivning/4.3 Histologi Njurar och Urinvägar.md", - "Anatomi & Histologi/Målbeskrivning/4.4 Histologi KUG 2.md", - "Anatomi & Histologi/Målbeskrivning/4.5 Histologi MUG.md", - "Anatomi & Histologi/Målbeskrivning/index.md", - "Anatomi & Histologi/Målbeskrivning/Mål.md" - ], - "Anatomi & Histologi/Målbeskrivning 1": [ - "Anatomi & Histologi/Målbeskrivning 1/Alla mål.md", - "Anatomi & Histologi/Målbeskrivning 1/Plan.md" - ], - "Anatomi & Histologi/Tentor": [ - "Anatomi & Histologi/Tentor/ht21.json", - "Anatomi & Histologi/Tentor/ht21.md", - "Anatomi & Histologi/Tentor/ht22.json", - "Anatomi & Histologi/Tentor/ht22.md", - "Anatomi & Histologi/Tentor/ht22om.json", - "Anatomi & Histologi/Tentor/ht22om.md", - "Anatomi & Histologi/Tentor/ht23.json", - "Anatomi & Histologi/Tentor/ht23.md", - "Anatomi & Histologi/Tentor/ht24.json", - "Anatomi & Histologi/Tentor/ht24.md", - "Anatomi & Histologi/Tentor/index.md", - "Anatomi & Histologi/Tentor/vt22.json", - "Anatomi & Histologi/Tentor/vt22.md", - "Anatomi & Histologi/Tentor/vt22sommar.md", - "Anatomi & Histologi/Tentor/vt23.json", - "Anatomi & Histologi/Tentor/vt23.md", - "Anatomi & Histologi/Tentor/vt23sommar.md", - "Anatomi & Histologi/Tentor/vt24.json", - "Anatomi & Histologi/Tentor/vt24.md", - "Anatomi & Histologi/Tentor/vt24sommar.md", - "Anatomi & Histologi/Tentor/vt25.md", - "Anatomi & Histologi/Tentor/vt25.json", - "Anatomi & Histologi/Tentor/vt25-omtenta.json", - "Anatomi & Histologi/Tentor/vt25-omtenta.md", - "Anatomi & Histologi/Tentor/vt25sommar.md" - ], - "attachments": [ - "attachments/Pasted image 20251209111439.png", - "attachments/Pasted image 20251209104203.png", - "attachments/Pasted image 20251009083311.png", - "attachments/Pasted image 20251009083336.png", - "attachments/Pasted image 20251009083506.png", - "attachments/Pasted image 20251009094822.png", - "attachments/Pasted image 20251009185652.png", - "attachments/Pasted image 20251009185731.png", - "attachments/Pasted image 20251009185740.png", - "attachments/Pasted image 20251009191239.png", - "attachments/Pasted image 20251009191323.png", - "attachments/Pasted image 20251009191345.png", - "attachments/Pasted image 20251009191512.png", - "attachments/Pasted image 20251009191835.png", - "attachments/Pasted image 20251009194855.png", - "attachments/Pasted image 20251009194913.png", - "attachments/Pasted image 20251009194927.png", - "attachments/Pasted image 20251009194941.png", - "attachments/Pasted image 20251009194956.png", - "attachments/Pasted image 20251009195012.png", - "attachments/Pasted image 20251009195041.png", - "attachments/Pasted image 20251009195052.png", - "attachments/Pasted image 20251009195116.png", - "attachments/Pasted image 20251009195129.png", - "attachments/Pasted image 20251009195312.png", - "attachments/Pasted image 20251009195325.png", - "attachments/Pasted image 20251009195340.png", - "attachments/Pasted image 20251009195402.png", - "attachments/Pasted image 20251009195413.png", - "attachments/Pasted image 20251009195426.png", - "attachments/Pasted image 20251009195440.png", - "attachments/Pasted image 20251009195452.png", - "attachments/Pasted image 20251009195504.png", - "attachments/Pasted image 20251009195518.png", - "attachments/Pasted image 20251009195531.png", - "attachments/Pasted image 20251009195544.png", - "attachments/Pasted image 20251009195555.png", - "attachments/Pasted image 20251009195605.png", - "attachments/Pasted image 20251009195618.png", - "attachments/Pasted image 20251009195630.png", - "attachments/Pasted image 20251009195642.png", - "attachments/Pasted image 20251009195653.png", - "attachments/Pasted image 20251009201853.png", - "attachments/Pasted image 20251009201902.png", - "attachments/Pasted image 20251009201915.png", - "attachments/Pasted image 20251009201929.png", - "attachments/Pasted image 20251009201954.png", - "attachments/Pasted image 20251009202003.png", - "attachments/Pasted image 20251009202148.png", - "attachments/Pasted image 20251009202216.png", - "attachments/Pasted image 20251009202337.png", - "attachments/Pasted image 20251009202350.png", - "attachments/Pasted image 20251009202442.png", - "attachments/Pasted image 20251009203716.png", - "attachments/Pasted image 20251009203738.png", - "attachments/Pasted image 20251009203756.png", - "attachments/Pasted image 20251010111337.png", - "attachments/Pasted image 20251010111727.png", - "attachments/Pasted image 20251010111818.png", - "attachments/Pasted image 20251010113521.png", - "attachments/Pasted image 20251010134449.png", - "attachments/Pasted image 20251010135008.png", - "attachments/Pasted image 20251010141529.png", - "attachments/Pasted image 20251010142904.png", - "attachments/Pasted image 20251010142940.png", - "attachments/Pasted image 20251010194143.png", - "attachments/Pasted image 20251010194225.png", - "attachments/Pasted image 20251010194249.png", - "attachments/Pasted image 20251010194412.png", - "attachments/Pasted image 20251013082115.png", - "attachments/Pasted image 20251013082506.png", - "attachments/Pasted image 20251013082702.png", - "attachments/Pasted image 20251013082822.png", - "attachments/Pasted image 20251013083139.png", - "attachments/Pasted image 20251013083517.png", - "attachments/Pasted image 20251013083733.png", - "attachments/Pasted image 20251013083841.png", - "attachments/Pasted image 20251013083956.png", - "attachments/Pasted image 20251013084103.png", - "attachments/Pasted image 20251013084121.png", - "attachments/Pasted image 20251013091255.png", - "attachments/Pasted image 20251013091428.png", - "attachments/Pasted image 20251013092357.png", - "attachments/Pasted image 20251013093144.png", - "attachments/Pasted image 20251013093246.png", - "attachments/Pasted image 20251013093316.png", - "attachments/Pasted image 20251013093713.png", - "attachments/Pasted image 20251013102442.png", - "attachments/Pasted image 20251013125816.png", - "attachments/Pasted image 20251013130752.png", - "attachments/Pasted image 20251013131124.png", - "attachments/Pasted image 20251013131138.png", - "attachments/Pasted image 20251013142434.png", - "attachments/Pasted image 20251013144037.png", - "attachments/Pasted image 20251013234100.png", - "attachments/Pasted image 20251013234128.png", - "attachments/Pasted image 20251013234200.png", - "attachments/Pasted image 20251013234226.png", - "attachments/Pasted image 20251013234249.png", - "attachments/Pasted image 20251013234307.png", - "attachments/Pasted image 20251013234337.png", - "attachments/Pasted image 20251013234405.png", - "attachments/Pasted image 20251014084300.png", - "attachments/Pasted image 20251014084908.png", - "attachments/Pasted image 20251014085324.png", - "attachments/Pasted image 20251014093027.png", - "attachments/Pasted image 20251014093206.png", - "attachments/Pasted image 20251014093531.png", - "attachments/Pasted image 20251014093758.png", - "attachments/Pasted image 20251014094004.png", - "attachments/Pasted image 20251014095436.png", - "attachments/Pasted image 20251014095600.png", - "attachments/Pasted image 20251014095634.png", - "attachments/Pasted image 20251014095958.png", - "attachments/Pasted image 20251014103332.png", - "attachments/Pasted image 20251015081047.png", - "attachments/Pasted image 20251015081118.png", - "attachments/Pasted image 20251015081141.png", - "attachments/Pasted image 20251015081142.png", - "attachments/Pasted image 20251015081202.png", - "attachments/Pasted image 20251015081205.png", - "attachments/Pasted image 20251015081216.png", - "attachments/Pasted image 20251015081256.png", - "attachments/Pasted image 20251015081457.png", - "attachments/Pasted image 20251016101908.png", - "attachments/Pasted image 20251027185923.png", - "attachments/Pasted image 20251027205207.png", - "attachments/Pasted image 20251105120149.png", - "attachments/Pasted image 20251105144005.png", - "attachments/Pasted image 20251105150519.png", - "attachments/Pasted image 20251105153332.png", - "attachments/Pasted image 20251106083847.png", - "attachments/Pasted image 20251106084028.png", - "attachments/Pasted image 20251106092004.png", - "attachments/Pasted image 20251106143824.png", - "attachments/Pasted image 20251106144030.png", - "attachments/Pasted image 20251106145417.png", - "attachments/Pasted image 20251107092012.png", - "attachments/Pasted image 20251107092234.png", - "attachments/Pasted image 20251107092720.png", - "attachments/Pasted image 20251107092855.png", - "attachments/Pasted image 20251107094222.png", - "attachments/Pasted image 20251107094532.png", - "attachments/Pasted image 20251107100016.png", - "attachments/Pasted image 20251107100241.png", - "attachments/Pasted image 20251107102710.png", - "attachments/Pasted image 20251107102828.png", - "attachments/Pasted image 20251107103007.png", - "attachments/Pasted image 20251107103403.png", - "attachments/Pasted image 20251107103427.png", - "attachments/Pasted image 20251107122326.png", - "attachments/Pasted image 20251107122832.png", - "attachments/Pasted image 20251107125523.png", - "attachments/Pasted image 20251107141657.png", - "attachments/Pasted image 20251107143236.png", - "attachments/Pasted image 20251108121121.png", - "attachments/Pasted image 20251111103839.png", - "attachments/Pasted image 20251111105409.png", - "attachments/Pasted image 20251111110058.png", - "attachments/Pasted image 20251111110139.png", - "attachments/Pasted image 20251112081325.png", - "attachments/Pasted image 20251112085054.png", - "attachments/Pasted image 20251112085710.png", - "attachments/Pasted image 20251112093538.png", - "attachments/Pasted image 20251112093609.png", - "attachments/Pasted image 20251112094043.png", - "attachments/Pasted image 20251112095158.png", - "attachments/Pasted image 20251112095205.png", - "attachments/Pasted image 20251114102119.png", - "attachments/Pasted image 20251114102625.png", - "attachments/Pasted image 20251114102644.png", - "attachments/Pasted image 20251114103044.png", - "attachments/Pasted image 20251114103113.png", - "attachments/Pasted image 20251114103312.png", - "attachments/Pasted image 20251114104912.png", - "attachments/Pasted image 20251114104918.png", - "attachments/Pasted image 20251114104938.png", - "attachments/Pasted image 20251114105141.png", - "attachments/Pasted image 20251114105502.png", - "attachments/Pasted image 20251114113432.png", - "attachments/Pasted image 20251114113453.png", - "attachments/Pasted image 20251114114501.png", - "attachments/Pasted image 20251117092226.png", - "attachments/Pasted image 20251117102815.png", - "attachments/Pasted image 20251117102926.png", - "attachments/Pasted image 20251117103100.png", - "attachments/Pasted image 20251117103159.png", - "attachments/Pasted image 20251117103518.png", - "attachments/Pasted image 20251117110537.png", - "attachments/Pasted image 20251117110947.png", - "attachments/Pasted image 20251117111753.png", - "attachments/Pasted image 20251117111922.png", - "attachments/Pasted image 20251117113528.png", - "attachments/Pasted image 20251117113814.png", - "attachments/Pasted image 20251117134344.png", - "attachments/Pasted image 20251117134540.png", - "attachments/Pasted image 20251117134953.png", - "attachments/Pasted image 20251117135916.png", - "attachments/Pasted image 20251117142658.png", - "attachments/Pasted image 20251117143608.png", - "attachments/Pasted image 20251117143805.png", - "attachments/Pasted image 20251117145754.png", - "attachments/Pasted image 20251118084220.png", - "attachments/Pasted image 20251118084654.png", - "attachments/Pasted image 20251118084729.png", - "attachments/Pasted image 20251118085246.png", - "attachments/Pasted image 20251118085412.png", - "attachments/Pasted image 20251118091516.png", - "attachments/Pasted image 20251118092253.png", - "attachments/Pasted image 20251120092257.png", - "attachments/Pasted image 20251120092944.png", - "attachments/Pasted image 20251120093249.png", - "attachments/Pasted image 20251120093433.png", - "attachments/Pasted image 20251120093609.png", - "attachments/Pasted image 20251120094230.png", - "attachments/Pasted image 20251120094424.png", - "attachments/Pasted image 20251120095449.png", - "attachments/Pasted image 20251120095744.png", - "attachments/Pasted image 20251120095916.png", - "attachments/Pasted image 20251120100019.png", - "attachments/Pasted image 20251120102405.png", - "attachments/Pasted image 20251120102841.png", - "attachments/Pasted image 20251120103237.png", - "attachments/Pasted image 20251120103622.png", - "attachments/Pasted image 20251120104003.png", - "attachments/Pasted image 20251120104141.png", - "attachments/Pasted image 20251120104236.png", - "attachments/Pasted image 20251120104417.png", - "attachments/Pasted image 20251120104737.png", - "attachments/Pasted image 20251120105000.png", - "attachments/Pasted image 20251120105345.png", - "attachments/Pasted image 20251120105404.png", - "attachments/Pasted image 20251120105531.png", - "attachments/Pasted image 20251120105722.png", - "attachments/Pasted image 20251120105759.png", - "attachments/Pasted image 20251120110037.png", - "attachments/Pasted image 20251120110123.png", - "attachments/Pasted image 20251120110135.png", - "attachments/Pasted image 20251120112102.png", - "attachments/Pasted image 20251120112333.png", - "attachments/Pasted image 20251120112426.png", - "attachments/Pasted image 20251120112639.png", - "attachments/Pasted image 20251120112819.png", - "attachments/Pasted image 20251120113102.png", - "attachments/Pasted image 20251120113310.png", - "attachments/Pasted image 20251120113550.png", - "attachments/Pasted image 20251120113832.png", - "attachments/Pasted image 20251120113850.png", - "attachments/Pasted image 20251120114017.png", - "attachments/Pasted image 20251120114149.png", - "attachments/Pasted image 20251120114332.png", - "attachments/Pasted image 20251120114415.png", - "attachments/Pasted image 20251120114519.png", - "attachments/Pasted image 20251120114710.png", - "attachments/Pasted image 20251120114840.png", - "attachments/Pasted image 20251120114922.png", - "attachments/Pasted image 20251121081923.png", - "attachments/Pasted image 20251121081958.png", - "attachments/Pasted image 20251121091934.png", - "attachments/Pasted image 20251121092321.png", - "attachments/Pasted image 20251121092516.png", - "attachments/Pasted image 20251121092705.png", - "attachments/Pasted image 20251121092822.png", - "attachments/Pasted image 20251121093320.png", - "attachments/Pasted image 20251121093608.png", - "attachments/Pasted image 20251121093757.png", - "attachments/Pasted image 20251121094040.png", - "attachments/Pasted image 20251121094218.png", - "attachments/Pasted image 20251121094606.png", - "attachments/Pasted image 20251121094625.png", - "attachments/Pasted image 20251121094943.png", - "attachments/Pasted image 20251121095304.png", - "attachments/Pasted image 20251121095710.png", - "attachments/Pasted image 20251121095938.png", - "attachments/Pasted image 20251121102046.png", - "attachments/Pasted image 20251121102319.png", - "attachments/Pasted image 20251121102545.png", - "attachments/Pasted image 20251121102658.png", - "attachments/Pasted image 20251121102747.png", - "attachments/Pasted image 20251121102941.png", - "attachments/Pasted image 20251121103232.png", - "attachments/Pasted image 20251121103336.png", - "attachments/Pasted image 20251121103747.png", - "attachments/Pasted image 20251121103912.png", - "attachments/Pasted image 20251121104100.png", - "attachments/Pasted image 20251121104106.png", - "attachments/Pasted image 20251121104555.png", - "attachments/Pasted image 20251121104707.png", - "attachments/Pasted image 20251121105233.png", - "attachments/Pasted image 20251121111405.png", - "attachments/Pasted image 20251121111829.png", - "attachments/Pasted image 20251121111945.png", - "attachments/Pasted image 20251121112158.png", - "attachments/Pasted image 20251121112518.png", - "attachments/Pasted image 20251121113014.png", - "attachments/Pasted image 20251121113046.png", - "attachments/Pasted image 20251121113406.png", - "attachments/Pasted image 20251121114215.png", - "attachments/Pasted image 20251121114507.png", - "attachments/Pasted image 20251121114559.png", - "attachments/Pasted image 20251123220725.png", - "attachments/Pasted image 20251125093128.png", - "attachments/Pasted image 20251125120137.png", - "attachments/Pasted image 20251125132516.png", - "attachments/Pasted image 20251125133543.png", - "attachments/Pasted image 20251125135429.png", - "attachments/Pasted image 20251127131807.png", - "attachments/Pasted image 20251128074813.png", - "attachments/Pasted image 20251128080404.png", - "attachments/Pasted image 20251128080420.png", - "attachments/Pasted image 20251128081622.png", - "attachments/Pasted image 20251128081722.png", - "attachments/Pasted image 20251128083857.png", - "attachments/Pasted image 20251128085457.png", - "attachments/Pasted image 20251128085533.png", - "attachments/Pasted image 20251128085555.png", - "attachments/Pasted image 20251128085603.png", - "attachments/Pasted image 20251128085625.png", - "attachments/Pasted image 20251128085752.png", - "attachments/Pasted image 20251128104012.png", - "attachments/Pasted image 20251128104645.png", - "attachments/Pasted image 20251128104854.png", - "attachments/Pasted image 20251128104949.png", - "attachments/Pasted image 20251128144158.png", - "attachments/Pasted image 20251128145049.png", - "attachments/Pasted image 20251128152451.png", - "attachments/Pasted image 20251128152516.png", - "attachments/Pasted image 20251128153544.png", - "attachments/Pasted image 20251128153720.png", - "attachments/Pasted image 20251128154328.png", - "attachments/Pasted image 20251128154656.png", - "attachments/Pasted image 20251129234842.png", - "attachments/Pasted image 20251129235001.png", - "attachments/Pasted image 20251129235023.png", - "attachments/Pasted image 20251129235131.png", - "attachments/Pasted image 20251129235154.png", - "attachments/Pasted image 20251129235214.png", - "attachments/Pasted image 20251129235251.png", - "attachments/Pasted image 20251129235332.png", - "attachments/Pasted image 20251129235408.png", - "attachments/Pasted image 20251129235411.png", - "attachments/Pasted image 20251129235437.png", - "attachments/Pasted image 20251129235458.png", - "attachments/Pasted image 20251129235536.png", - "attachments/Pasted image 20251129235602.png", - "attachments/Pasted image 20251129235633.png", - "attachments/Pasted image 20251129235730.png", - "attachments/Pasted image 20251129235808.png", - "attachments/Pasted image 20251129235900.png", - "attachments/Pasted image 20251129235913.png", - "attachments/Pasted image 20251130105827.png", - "attachments/Pasted image 20251201104247.png", - "attachments/Pasted image 20251201112326.png", - "attachments/Pasted image 20251201114708.png", - "attachments/Pasted image 20251202082256.png", - "attachments/Pasted image 20251202082551.png", - "attachments/Pasted image 20251202084148.png", - "attachments/Pasted image 20251202084530.png", - "attachments/Pasted image 20251203104011.png", - "attachments/Pasted image 20251203104338.png", - "attachments/Pasted image 20251203104752.png", - "attachments/Pasted image 20251203105326.png", - "attachments/Pasted image 20251203110550.png", - "attachments/Pasted image 20251203112517.png", - "attachments/Pasted image 20251203113615.png", - "attachments/Pasted image 20251203114330.png", - "attachments/Pasted image 20251203114930.png", - "attachments/Pasted image 20251203115628.png", - "attachments/Pasted image 20251203115653.png", - "attachments/Pasted image 20251203132330.png", - "attachments/Pasted image 20251203132940.png", - "attachments/Pasted image 20251203133759.png", - "attachments/Pasted image 20251203133837.png", - "attachments/Pasted image 20251203134701.png", - "attachments/Pasted image 20251203142123.png", - "attachments/Pasted image 20251203142252.png", - "attachments/Pasted image 20251205132645.png" - ], - "Biokemi": [ - "Biokemi/Cellulära processer", - "Biokemi/Gamla tentor", - "Biokemi/Introduktionslab", - "Biokemi/Makromolekyler", - "Biokemi/Metabolism", - "Biokemi/Plasmidlabb", - "Biokemi/Proteinseminarie", - "Biokemi/Metabolismseminarie", - "Biokemi/Behöver göra.md", - "Biokemi/Biokemi Base.base", - "Biokemi/Introduktion.md" - ], - "Biokemi/Cellulära processer": [ - "Biokemi/Cellulära processer/DNA replikation", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter", - "Biokemi/Cellulära processer/Kromatin", - "Biokemi/Cellulära processer/RNA syntes", - "Biokemi/Cellulära processer/Translation", - "Biokemi/Cellulära processer/Transport över cellmembran", - "Biokemi/Cellulära processer/Utforska proteiner" - ], - "Biokemi/Cellulära processer/DNA replikation": [ - "Biokemi/Cellulära processer/DNA replikation/Anteckningar.md", - "Biokemi/Cellulära processer/DNA replikation/Instuderingsfrågor.md", - "Biokemi/Cellulära processer/DNA replikation/Instuderingsfrågor_DNA replikation-5.pdf", - "Biokemi/Cellulära processer/DNA replikation/Lärandemål.md", - "Biokemi/Cellulära processer/DNA replikation/Provfrågor.md", - "Biokemi/Cellulära processer/DNA replikation/Slides.md", - "Biokemi/Cellulära processer/DNA replikation/Slides.pdf.pdf", - "Biokemi/Cellulära processer/DNA replikation/Stoff.md" - ], - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation": [ - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Anteckningar.md", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Instuderingsfrågor.md", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Instuderingsfrågor_Initiering och terminering av eukaryot replikation-5.pdf", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Lärandemål.md", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Provfrågor.md", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Slides.md", - "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Slides.pdf.pdf" - ], - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter": [ - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Anteckningar.md", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Instuderingsfrågor.md", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Instuderingsfrågor_genuttryck i prokaryoter-3.pdf", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Lärandemål.md", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Provfrågor.md", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Slides.md", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Slides.pdf.pdf", - "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Stoff.md" - ], - "Biokemi/Cellulära processer/Kromatin": [ - "Biokemi/Cellulära processer/Kromatin/Chapter 29 RNA Functions, Biosynthesis, and Processing.md", - "Biokemi/Cellulära processer/Kromatin/Chapter 29 RNA Functions, Biosynthesis, and Processing.pdf", - "Biokemi/Cellulära processer/Kromatin/Instuderingsfrågor_Kromatin-5.pdf", - "Biokemi/Cellulära processer/Kromatin/Kromatin Anteckningar.md", - "Biokemi/Cellulära processer/Kromatin/Kromatin Instuderingsfrågor.md", - "Biokemi/Cellulära processer/Kromatin/Kromatin Lärandemål.md", - "Biokemi/Cellulära processer/Kromatin/Kromatin Provfrågor.md", - "Biokemi/Cellulära processer/Kromatin/Kromatin Stoff.md", - "Biokemi/Cellulära processer/Kromatin/Slides.md", - "Biokemi/Cellulära processer/Kromatin/Slides.pdf.pdf" - ], - "Biokemi/Cellulära processer/RNA syntes": [ - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Anteckningar.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Instuderingsfrågor.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Instuderingsfrågor.pdf.pdf", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Kurslitteratur.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Kurslitteratur.pdf.pdf", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Lärandemål.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Provfrågor.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Slides.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Slides.pdf.pdf", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Stoff.md" - ], - "Biokemi/Cellulära processer/Translation": [ - "Biokemi/Cellulära processer/Translation/Anteckningar.md", - "Biokemi/Cellulära processer/Translation/Instuderingsfrågor.md", - "Biokemi/Cellulära processer/Translation/Instuderingsfrågor.pdf.pdf", - "Biokemi/Cellulära processer/Translation/Lärandemål.md", - "Biokemi/Cellulära processer/Translation/Slides.md", - "Biokemi/Cellulära processer/Translation/Slides.pdf.pdf", - "Biokemi/Cellulära processer/Translation/Stoff.md", - "Biokemi/Cellulära processer/Translation/Translation Undertexter.md" - ], - "Biokemi/Cellulära processer/Transport över cellmembran": [ - "Biokemi/Cellulära processer/Transport över cellmembran/Anteckningar.md", - "Biokemi/Cellulära processer/Transport över cellmembran/Instuderingsfrågor.md", - "Biokemi/Cellulära processer/Transport över cellmembran/Instuderingsfrågor.pdf.pdf", - "Biokemi/Cellulära processer/Transport över cellmembran/Lärandemål.md", - "Biokemi/Cellulära processer/Transport över cellmembran/Provfrågor.md", - "Biokemi/Cellulära processer/Transport över cellmembran/Slides.md", - "Biokemi/Cellulära processer/Transport över cellmembran/Slides.pdf.pdf", - "Biokemi/Cellulära processer/Transport över cellmembran/Stoff.md" - ], - "Biokemi/Cellulära processer/Utforska proteiner": [ - "Biokemi/Cellulära processer/Utforska proteiner/Instuderingsfrågor.md", - "Biokemi/Cellulära processer/Utforska proteiner/Lärandemål.md", - "Biokemi/Cellulära processer/Utforska proteiner/Provfrågor.md", - "Biokemi/Cellulära processer/Utforska proteiner/Slides.md", - "Biokemi/Cellulära processer/Utforska proteiner/Slides.pdf.pdf", - "Biokemi/Cellulära processer/Utforska proteiner/Utforska proteiner Anteckningar.md" - ], - "Biokemi/Gamla tentor": [ - "Biokemi/Gamla tentor/tools", - "Biokemi/Gamla tentor/md_only.zip", - "Biokemi/Gamla tentor/2021-12-16", - "Biokemi/Gamla tentor/2022-01-29", - "Biokemi/Gamla tentor/2022-05-16", - "Biokemi/Gamla tentor/2022-12-19", - "Biokemi/Gamla tentor/2023-05-15", - "Biokemi/Gamla tentor/2023-12-18", - "Biokemi/Gamla tentor/2024-01-27", - "Biokemi/Gamla tentor/2024-05-15", - "Biokemi/Gamla tentor/2024-08-01", - "Biokemi/Gamla tentor/2024-12-20", - "Biokemi/Gamla tentor/2025-02-01", - "Biokemi/Gamla tentor/Template", - "Biokemi/Gamla tentor/Provfrågor.base", - "Biokemi/Gamla tentor/Status.md" - ], - "Biokemi/Gamla tentor/2021-12-16": [ - "Biokemi/Gamla tentor/2021-12-16/1.md", - "Biokemi/Gamla tentor/2021-12-16/2.md", - "Biokemi/Gamla tentor/2021-12-16/3.md", - "Biokemi/Gamla tentor/2021-12-16/4.md", - "Biokemi/Gamla tentor/2021-12-16/5.md", - "Biokemi/Gamla tentor/2021-12-16/6.md", - "Biokemi/Gamla tentor/2021-12-16/7.md", - "Biokemi/Gamla tentor/2021-12-16/8.md", - "Biokemi/Gamla tentor/2021-12-16/9.md", - "Biokemi/Gamla tentor/2021-12-16/10.md", - "Biokemi/Gamla tentor/2021-12-16/11.md", - "Biokemi/Gamla tentor/2021-12-16/12.md", - "Biokemi/Gamla tentor/2021-12-16/13.md", - "Biokemi/Gamla tentor/2021-12-16/14.md", - "Biokemi/Gamla tentor/2021-12-16/15.md", - "Biokemi/Gamla tentor/2021-12-16/16.md", - "Biokemi/Gamla tentor/2021-12-16/17.md", - "Biokemi/Gamla tentor/2021-12-16/18.md", - "Biokemi/Gamla tentor/2021-12-16/19.md", - "Biokemi/Gamla tentor/2021-12-16/20.md", - "Biokemi/Gamla tentor/2021-12-16/21.md", - "Biokemi/Gamla tentor/2021-12-16/22.md", - "Biokemi/Gamla tentor/2021-12-16/23.md", - "Biokemi/Gamla tentor/2021-12-16/24.md", - "Biokemi/Gamla tentor/2021-12-16/25.md", - "Biokemi/Gamla tentor/2021-12-16/26.md", - "Biokemi/Gamla tentor/2021-12-16/27.md", - "Biokemi/Gamla tentor/2021-12-16/28.md", - "Biokemi/Gamla tentor/2021-12-16/29.md", - "Biokemi/Gamla tentor/2021-12-16/30.md", - "Biokemi/Gamla tentor/2021-12-16/31.md", - "Biokemi/Gamla tentor/2021-12-16/32.md", - "Biokemi/Gamla tentor/2021-12-16/33.md", - "Biokemi/Gamla tentor/2021-12-16/34.md", - "Biokemi/Gamla tentor/2021-12-16/35.md", - "Biokemi/Gamla tentor/2021-12-16/2021-12-16-0073-AXA.md", - "Biokemi/Gamla tentor/2021-12-16/2021-12-16-0073-AXA.pdf" - ], - "Biokemi/Gamla tentor/2022-01-29": [ - "Biokemi/Gamla tentor/2022-01-29/1.md", - "Biokemi/Gamla tentor/2022-01-29/2.md", - "Biokemi/Gamla tentor/2022-01-29/3.md", - "Biokemi/Gamla tentor/2022-01-29/4.md", - "Biokemi/Gamla tentor/2022-01-29/5.md", - "Biokemi/Gamla tentor/2022-01-29/6.md", - "Biokemi/Gamla tentor/2022-01-29/7.md", - "Biokemi/Gamla tentor/2022-01-29/8.md", - "Biokemi/Gamla tentor/2022-01-29/9.md", - "Biokemi/Gamla tentor/2022-01-29/10.md", - "Biokemi/Gamla tentor/2022-01-29/11.md", - "Biokemi/Gamla tentor/2022-01-29/12.md", - "Biokemi/Gamla tentor/2022-01-29/13.md", - "Biokemi/Gamla tentor/2022-01-29/14.md", - "Biokemi/Gamla tentor/2022-01-29/15.md", - "Biokemi/Gamla tentor/2022-01-29/16.md", - "Biokemi/Gamla tentor/2022-01-29/17.md", - "Biokemi/Gamla tentor/2022-01-29/18.md", - "Biokemi/Gamla tentor/2022-01-29/19.md", - "Biokemi/Gamla tentor/2022-01-29/20.md", - "Biokemi/Gamla tentor/2022-01-29/21.md", - "Biokemi/Gamla tentor/2022-01-29/22.md", - "Biokemi/Gamla tentor/2022-01-29/23.md", - "Biokemi/Gamla tentor/2022-01-29/24.md", - "Biokemi/Gamla tentor/2022-01-29/25.md", - "Biokemi/Gamla tentor/2022-01-29/26.md", - "Biokemi/Gamla tentor/2022-01-29/27.md", - "Biokemi/Gamla tentor/2022-01-29/28.md", - "Biokemi/Gamla tentor/2022-01-29/29.md", - "Biokemi/Gamla tentor/2022-01-29/30.md", - "Biokemi/Gamla tentor/2022-01-29/31.md", - "Biokemi/Gamla tentor/2022-01-29/32.md", - "Biokemi/Gamla tentor/2022-01-29/33.md", - "Biokemi/Gamla tentor/2022-01-29/34.md", - "Biokemi/Gamla tentor/2022-01-29/35.md", - "Biokemi/Gamla tentor/2022-01-29/2022-01-29-0028-UWE.md", - "Biokemi/Gamla tentor/2022-01-29/2022-01-29-0028-UWE.pdf" - ], - "Biokemi/Gamla tentor/2022-05-16": [ - "Biokemi/Gamla tentor/2022-05-16/1.md", - "Biokemi/Gamla tentor/2022-05-16/2.md", - "Biokemi/Gamla tentor/2022-05-16/3.md", - "Biokemi/Gamla tentor/2022-05-16/4.md", - "Biokemi/Gamla tentor/2022-05-16/5.md", - "Biokemi/Gamla tentor/2022-05-16/6.md", - "Biokemi/Gamla tentor/2022-05-16/7.md", - "Biokemi/Gamla tentor/2022-05-16/8.md", - "Biokemi/Gamla tentor/2022-05-16/9.md", - "Biokemi/Gamla tentor/2022-05-16/10.md", - "Biokemi/Gamla tentor/2022-05-16/11.md", - "Biokemi/Gamla tentor/2022-05-16/12.md", - "Biokemi/Gamla tentor/2022-05-16/13.md", - "Biokemi/Gamla tentor/2022-05-16/14.md", - "Biokemi/Gamla tentor/2022-05-16/15.md", - "Biokemi/Gamla tentor/2022-05-16/16.md", - "Biokemi/Gamla tentor/2022-05-16/17.md", - "Biokemi/Gamla tentor/2022-05-16/18.md", - "Biokemi/Gamla tentor/2022-05-16/19.md", - "Biokemi/Gamla tentor/2022-05-16/20.md", - "Biokemi/Gamla tentor/2022-05-16/21.md", - "Biokemi/Gamla tentor/2022-05-16/22.md", - "Biokemi/Gamla tentor/2022-05-16/23.md", - "Biokemi/Gamla tentor/2022-05-16/24.md", - "Biokemi/Gamla tentor/2022-05-16/25.md", - "Biokemi/Gamla tentor/2022-05-16/26.md", - "Biokemi/Gamla tentor/2022-05-16/27.md", - "Biokemi/Gamla tentor/2022-05-16/28.md", - "Biokemi/Gamla tentor/2022-05-16/29.md", - "Biokemi/Gamla tentor/2022-05-16/30.md", - "Biokemi/Gamla tentor/2022-05-16/31.md", - "Biokemi/Gamla tentor/2022-05-16/32.md", - "Biokemi/Gamla tentor/2022-05-16/33.md", - "Biokemi/Gamla tentor/2022-05-16/34.md", - "Biokemi/Gamla tentor/2022-05-16/35.md", - "Biokemi/Gamla tentor/2022-05-16/2022-05-16-0025-JCM.md", - "Biokemi/Gamla tentor/2022-05-16/2022-05-16-0025-JCM.pdf" - ], - "Biokemi/Gamla tentor/2022-12-19": [ - "Biokemi/Gamla tentor/2022-12-19/1.md", - "Biokemi/Gamla tentor/2022-12-19/2.md", - "Biokemi/Gamla tentor/2022-12-19/3.md", - "Biokemi/Gamla tentor/2022-12-19/4.md", - "Biokemi/Gamla tentor/2022-12-19/5.md", - "Biokemi/Gamla tentor/2022-12-19/6.md", - "Biokemi/Gamla tentor/2022-12-19/7.md", - "Biokemi/Gamla tentor/2022-12-19/8.md", - "Biokemi/Gamla tentor/2022-12-19/9.md", - "Biokemi/Gamla tentor/2022-12-19/10.md", - "Biokemi/Gamla tentor/2022-12-19/11.md", - "Biokemi/Gamla tentor/2022-12-19/12.md", - "Biokemi/Gamla tentor/2022-12-19/13.md", - "Biokemi/Gamla tentor/2022-12-19/14.md", - "Biokemi/Gamla tentor/2022-12-19/15.md", - "Biokemi/Gamla tentor/2022-12-19/16.md", - "Biokemi/Gamla tentor/2022-12-19/17.md", - "Biokemi/Gamla tentor/2022-12-19/18.md", - "Biokemi/Gamla tentor/2022-12-19/19.md", - "Biokemi/Gamla tentor/2022-12-19/20.md", - "Biokemi/Gamla tentor/2022-12-19/21.md", - "Biokemi/Gamla tentor/2022-12-19/22.md", - "Biokemi/Gamla tentor/2022-12-19/23.md", - "Biokemi/Gamla tentor/2022-12-19/24.md", - "Biokemi/Gamla tentor/2022-12-19/25.md", - "Biokemi/Gamla tentor/2022-12-19/26.md", - "Biokemi/Gamla tentor/2022-12-19/27.md", - "Biokemi/Gamla tentor/2022-12-19/28.md", - "Biokemi/Gamla tentor/2022-12-19/29.md", - "Biokemi/Gamla tentor/2022-12-19/30.md", - "Biokemi/Gamla tentor/2022-12-19/31.md", - "Biokemi/Gamla tentor/2022-12-19/32.md", - "Biokemi/Gamla tentor/2022-12-19/33.md", - "Biokemi/Gamla tentor/2022-12-19/34.md", - "Biokemi/Gamla tentor/2022-12-19/35.md", - "Biokemi/Gamla tentor/2022-12-19/2022-12-19-0097-TUX.md", - "Biokemi/Gamla tentor/2022-12-19/2022-12-19-0097-TUX.pdf", - "Biokemi/Gamla tentor/2022-12-19/2022-12-19-0119-FAE.pdf" - ], - "Biokemi/Gamla tentor/2023-05-15": [ - "Biokemi/Gamla tentor/2023-05-15/1.md", - "Biokemi/Gamla tentor/2023-05-15/2.md", - "Biokemi/Gamla tentor/2023-05-15/3.md", - "Biokemi/Gamla tentor/2023-05-15/4.md", - "Biokemi/Gamla tentor/2023-05-15/5.md", - "Biokemi/Gamla tentor/2023-05-15/6.md", - "Biokemi/Gamla tentor/2023-05-15/7.md", - "Biokemi/Gamla tentor/2023-05-15/8.md", - "Biokemi/Gamla tentor/2023-05-15/9.md", - "Biokemi/Gamla tentor/2023-05-15/10.md", - "Biokemi/Gamla tentor/2023-05-15/11.md", - "Biokemi/Gamla tentor/2023-05-15/12.md", - "Biokemi/Gamla tentor/2023-05-15/13.md", - "Biokemi/Gamla tentor/2023-05-15/14.md", - "Biokemi/Gamla tentor/2023-05-15/15.md", - "Biokemi/Gamla tentor/2023-05-15/16.md", - "Biokemi/Gamla tentor/2023-05-15/17.md", - "Biokemi/Gamla tentor/2023-05-15/18.md", - "Biokemi/Gamla tentor/2023-05-15/19.md", - "Biokemi/Gamla tentor/2023-05-15/20.md", - "Biokemi/Gamla tentor/2023-05-15/21.md", - "Biokemi/Gamla tentor/2023-05-15/22.md", - "Biokemi/Gamla tentor/2023-05-15/23.md", - "Biokemi/Gamla tentor/2023-05-15/24.md", - "Biokemi/Gamla tentor/2023-05-15/25.md", - "Biokemi/Gamla tentor/2023-05-15/26.md", - "Biokemi/Gamla tentor/2023-05-15/27.md", - "Biokemi/Gamla tentor/2023-05-15/28.md", - "Biokemi/Gamla tentor/2023-05-15/29.md", - "Biokemi/Gamla tentor/2023-05-15/30.md", - "Biokemi/Gamla tentor/2023-05-15/31.md", - "Biokemi/Gamla tentor/2023-05-15/32.md", - "Biokemi/Gamla tentor/2023-05-15/33.md", - "Biokemi/Gamla tentor/2023-05-15/34.md", - "Biokemi/Gamla tentor/2023-05-15/35.md", - "Biokemi/Gamla tentor/2023-05-15/2023-05-15-0134-FDC.md", - "Biokemi/Gamla tentor/2023-05-15/2023-05-15-0134-FDC.pdf" - ], - "Biokemi/Gamla tentor/2023-12-18": [ - "Biokemi/Gamla tentor/2023-12-18/1.md", - "Biokemi/Gamla tentor/2023-12-18/2.md", - "Biokemi/Gamla tentor/2023-12-18/3.md", - "Biokemi/Gamla tentor/2023-12-18/4.md", - "Biokemi/Gamla tentor/2023-12-18/5.md", - "Biokemi/Gamla tentor/2023-12-18/6.md", - "Biokemi/Gamla tentor/2023-12-18/7.md", - "Biokemi/Gamla tentor/2023-12-18/8.md", - "Biokemi/Gamla tentor/2023-12-18/9.md", - "Biokemi/Gamla tentor/2023-12-18/10.md", - "Biokemi/Gamla tentor/2023-12-18/11.md", - "Biokemi/Gamla tentor/2023-12-18/12.md", - "Biokemi/Gamla tentor/2023-12-18/13.md", - "Biokemi/Gamla tentor/2023-12-18/14.md", - "Biokemi/Gamla tentor/2023-12-18/15.md", - "Biokemi/Gamla tentor/2023-12-18/16.md", - "Biokemi/Gamla tentor/2023-12-18/17.md", - "Biokemi/Gamla tentor/2023-12-18/18.md", - "Biokemi/Gamla tentor/2023-12-18/19.md", - "Biokemi/Gamla tentor/2023-12-18/20.md", - "Biokemi/Gamla tentor/2023-12-18/21.md", - "Biokemi/Gamla tentor/2023-12-18/22.md", - "Biokemi/Gamla tentor/2023-12-18/23.md", - "Biokemi/Gamla tentor/2023-12-18/24.md", - "Biokemi/Gamla tentor/2023-12-18/25.md", - "Biokemi/Gamla tentor/2023-12-18/26.md", - "Biokemi/Gamla tentor/2023-12-18/27.md", - "Biokemi/Gamla tentor/2023-12-18/28.md", - "Biokemi/Gamla tentor/2023-12-18/29.md", - "Biokemi/Gamla tentor/2023-12-18/30.md", - "Biokemi/Gamla tentor/2023-12-18/31.md", - "Biokemi/Gamla tentor/2023-12-18/32.md", - "Biokemi/Gamla tentor/2023-12-18/33.md", - "Biokemi/Gamla tentor/2023-12-18/34.md", - "Biokemi/Gamla tentor/2023-12-18/35.md", - "Biokemi/Gamla tentor/2023-12-18/36.md", - "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0028-LAD.pdf", - "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0075-GXD.md", - "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0075-GXD.pdf", - "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0114-EES.pdf" - ], - "Biokemi/Gamla tentor/2024-01-27": [ - "Biokemi/Gamla tentor/2024-01-27/1.md", - "Biokemi/Gamla tentor/2024-01-27/2.md", - "Biokemi/Gamla tentor/2024-01-27/3.md", - "Biokemi/Gamla tentor/2024-01-27/4.md", - "Biokemi/Gamla tentor/2024-01-27/5.md", - "Biokemi/Gamla tentor/2024-01-27/6.md", - "Biokemi/Gamla tentor/2024-01-27/7.md", - "Biokemi/Gamla tentor/2024-01-27/8.md", - "Biokemi/Gamla tentor/2024-01-27/9.md", - "Biokemi/Gamla tentor/2024-01-27/10.md", - "Biokemi/Gamla tentor/2024-01-27/11.md", - "Biokemi/Gamla tentor/2024-01-27/12.md", - "Biokemi/Gamla tentor/2024-01-27/13.md", - "Biokemi/Gamla tentor/2024-01-27/14.md", - "Biokemi/Gamla tentor/2024-01-27/15.md", - "Biokemi/Gamla tentor/2024-01-27/16.md", - "Biokemi/Gamla tentor/2024-01-27/17.md", - "Biokemi/Gamla tentor/2024-01-27/18.md", - "Biokemi/Gamla tentor/2024-01-27/19.md", - "Biokemi/Gamla tentor/2024-01-27/20.md", - "Biokemi/Gamla tentor/2024-01-27/21.md", - "Biokemi/Gamla tentor/2024-01-27/22.md", - "Biokemi/Gamla tentor/2024-01-27/23.md", - "Biokemi/Gamla tentor/2024-01-27/24.md", - "Biokemi/Gamla tentor/2024-01-27/25.md", - "Biokemi/Gamla tentor/2024-01-27/26.md", - "Biokemi/Gamla tentor/2024-01-27/27.md", - "Biokemi/Gamla tentor/2024-01-27/28.md", - "Biokemi/Gamla tentor/2024-01-27/29.md", - "Biokemi/Gamla tentor/2024-01-27/30.md", - "Biokemi/Gamla tentor/2024-01-27/31.md", - "Biokemi/Gamla tentor/2024-01-27/32.md", - "Biokemi/Gamla tentor/2024-01-27/33.md", - "Biokemi/Gamla tentor/2024-01-27/34.md", - "Biokemi/Gamla tentor/2024-01-27/35.md", - "Biokemi/Gamla tentor/2024-01-27/36.md", - "Biokemi/Gamla tentor/2024-01-27/2024-01-27-0096-APG.md", - "Biokemi/Gamla tentor/2024-01-27/2024-01-27-0096-APG.pdf" - ], - "Biokemi/Gamla tentor/2024-05-15": [ - "Biokemi/Gamla tentor/2024-05-15/1.md", - "Biokemi/Gamla tentor/2024-05-15/2.md", - "Biokemi/Gamla tentor/2024-05-15/3.md", - "Biokemi/Gamla tentor/2024-05-15/4.md", - "Biokemi/Gamla tentor/2024-05-15/5.md", - "Biokemi/Gamla tentor/2024-05-15/6.md", - "Biokemi/Gamla tentor/2024-05-15/7.md", - "Biokemi/Gamla tentor/2024-05-15/8.md", - "Biokemi/Gamla tentor/2024-05-15/9.md", - "Biokemi/Gamla tentor/2024-05-15/10.md", - "Biokemi/Gamla tentor/2024-05-15/11.md", - "Biokemi/Gamla tentor/2024-05-15/12.md", - "Biokemi/Gamla tentor/2024-05-15/13.md", - "Biokemi/Gamla tentor/2024-05-15/14.md", - "Biokemi/Gamla tentor/2024-05-15/15.md", - "Biokemi/Gamla tentor/2024-05-15/16.md", - "Biokemi/Gamla tentor/2024-05-15/17.md", - "Biokemi/Gamla tentor/2024-05-15/18.md", - "Biokemi/Gamla tentor/2024-05-15/19.md", - "Biokemi/Gamla tentor/2024-05-15/20.md", - "Biokemi/Gamla tentor/2024-05-15/21.md", - "Biokemi/Gamla tentor/2024-05-15/22.md", - "Biokemi/Gamla tentor/2024-05-15/23.md", - "Biokemi/Gamla tentor/2024-05-15/24.md", - "Biokemi/Gamla tentor/2024-05-15/25.md", - "Biokemi/Gamla tentor/2024-05-15/26.md", - "Biokemi/Gamla tentor/2024-05-15/27.md", - "Biokemi/Gamla tentor/2024-05-15/28.md", - "Biokemi/Gamla tentor/2024-05-15/29.md", - "Biokemi/Gamla tentor/2024-05-15/30.md", - "Biokemi/Gamla tentor/2024-05-15/31.md", - "Biokemi/Gamla tentor/2024-05-15/32.md", - "Biokemi/Gamla tentor/2024-05-15/33.md", - "Biokemi/Gamla tentor/2024-05-15/34.md", - "Biokemi/Gamla tentor/2024-05-15/35.md", - "Biokemi/Gamla tentor/2024-05-15/36.md", - "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0018-UAE.pdf", - "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0020-EBK.pdf", - "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0068-GXS.md", - "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0068-GXS.pdf" - ], - "Biokemi/Gamla tentor/2024-08-01": [ - "Biokemi/Gamla tentor/2024-08-01/1.md", - "Biokemi/Gamla tentor/2024-08-01/2.md", - "Biokemi/Gamla tentor/2024-08-01/3.md", - "Biokemi/Gamla tentor/2024-08-01/4.md", - "Biokemi/Gamla tentor/2024-08-01/5.md", - "Biokemi/Gamla tentor/2024-08-01/6.md", - "Biokemi/Gamla tentor/2024-08-01/7.md", - "Biokemi/Gamla tentor/2024-08-01/8.md", - "Biokemi/Gamla tentor/2024-08-01/9.md", - "Biokemi/Gamla tentor/2024-08-01/10.md", - "Biokemi/Gamla tentor/2024-08-01/11.md", - "Biokemi/Gamla tentor/2024-08-01/12.md", - "Biokemi/Gamla tentor/2024-08-01/13.md", - "Biokemi/Gamla tentor/2024-08-01/14.md", - "Biokemi/Gamla tentor/2024-08-01/15.md", - "Biokemi/Gamla tentor/2024-08-01/16.md", - "Biokemi/Gamla tentor/2024-08-01/17.md", - "Biokemi/Gamla tentor/2024-08-01/18.md", - "Biokemi/Gamla tentor/2024-08-01/19.md", - "Biokemi/Gamla tentor/2024-08-01/20.md", - "Biokemi/Gamla tentor/2024-08-01/21.md", - "Biokemi/Gamla tentor/2024-08-01/22.md", - "Biokemi/Gamla tentor/2024-08-01/23.md", - "Biokemi/Gamla tentor/2024-08-01/24.md", - "Biokemi/Gamla tentor/2024-08-01/25.md", - "Biokemi/Gamla tentor/2024-08-01/26.md", - "Biokemi/Gamla tentor/2024-08-01/27.md", - "Biokemi/Gamla tentor/2024-08-01/28.md", - "Biokemi/Gamla tentor/2024-08-01/29.md", - "Biokemi/Gamla tentor/2024-08-01/30.md", - "Biokemi/Gamla tentor/2024-08-01/31.md", - "Biokemi/Gamla tentor/2024-08-01/32.md", - "Biokemi/Gamla tentor/2024-08-01/33.md", - "Biokemi/Gamla tentor/2024-08-01/34.md", - "Biokemi/Gamla tentor/2024-08-01/35.md", - "Biokemi/Gamla tentor/2024-08-01/2024-08-01-0089-ZGH.md", - "Biokemi/Gamla tentor/2024-08-01/2024-08-01-0089-ZGH.pdf" - ], - "Biokemi/Gamla tentor/2024-12-20": [ - "Biokemi/Gamla tentor/2024-12-20/1.md", - "Biokemi/Gamla tentor/2024-12-20/2.md", - "Biokemi/Gamla tentor/2024-12-20/3.md", - "Biokemi/Gamla tentor/2024-12-20/4.md", - "Biokemi/Gamla tentor/2024-12-20/5.md", - "Biokemi/Gamla tentor/2024-12-20/6.md", - "Biokemi/Gamla tentor/2024-12-20/7.md", - "Biokemi/Gamla tentor/2024-12-20/8.md", - "Biokemi/Gamla tentor/2024-12-20/9.md", - "Biokemi/Gamla tentor/2024-12-20/10.md", - "Biokemi/Gamla tentor/2024-12-20/11.md", - "Biokemi/Gamla tentor/2024-12-20/12.md", - "Biokemi/Gamla tentor/2024-12-20/13.md", - "Biokemi/Gamla tentor/2024-12-20/14.md", - "Biokemi/Gamla tentor/2024-12-20/15.md", - "Biokemi/Gamla tentor/2024-12-20/16.md", - "Biokemi/Gamla tentor/2024-12-20/17.md", - "Biokemi/Gamla tentor/2024-12-20/18.md", - "Biokemi/Gamla tentor/2024-12-20/19.md", - "Biokemi/Gamla tentor/2024-12-20/20.md", - "Biokemi/Gamla tentor/2024-12-20/21.md", - "Biokemi/Gamla tentor/2024-12-20/22.md", - "Biokemi/Gamla tentor/2024-12-20/23.md", - "Biokemi/Gamla tentor/2024-12-20/24.md", - "Biokemi/Gamla tentor/2024-12-20/25.md", - "Biokemi/Gamla tentor/2024-12-20/26.md", - "Biokemi/Gamla tentor/2024-12-20/27.md", - "Biokemi/Gamla tentor/2024-12-20/28.md", - "Biokemi/Gamla tentor/2024-12-20/29.md", - "Biokemi/Gamla tentor/2024-12-20/30.md", - "Biokemi/Gamla tentor/2024-12-20/31.md", - "Biokemi/Gamla tentor/2024-12-20/32.md", - "Biokemi/Gamla tentor/2024-12-20/33.md", - "Biokemi/Gamla tentor/2024-12-20/34.md", - "Biokemi/Gamla tentor/2024-12-20/35.md", - "Biokemi/Gamla tentor/2024-12-20/36.md", - "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0036-OWN.md", - "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0036-OWN.pdf", - "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0066-NDY.pdf", - "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0118-GCR.pdf" - ], - "Biokemi/Gamla tentor/2025-02-01": [ - "Biokemi/Gamla tentor/2025-02-01/1.md", - "Biokemi/Gamla tentor/2025-02-01/2.md", - "Biokemi/Gamla tentor/2025-02-01/3.md", - "Biokemi/Gamla tentor/2025-02-01/4.md", - "Biokemi/Gamla tentor/2025-02-01/5.md", - "Biokemi/Gamla tentor/2025-02-01/6.md", - "Biokemi/Gamla tentor/2025-02-01/7.md", - "Biokemi/Gamla tentor/2025-02-01/8.md", - "Biokemi/Gamla tentor/2025-02-01/9.md", - "Biokemi/Gamla tentor/2025-02-01/10.md", - "Biokemi/Gamla tentor/2025-02-01/11.md", - "Biokemi/Gamla tentor/2025-02-01/12.md", - "Biokemi/Gamla tentor/2025-02-01/13.md", - "Biokemi/Gamla tentor/2025-02-01/14.md", - "Biokemi/Gamla tentor/2025-02-01/15.md", - "Biokemi/Gamla tentor/2025-02-01/16.md", - "Biokemi/Gamla tentor/2025-02-01/17.md", - "Biokemi/Gamla tentor/2025-02-01/18.md", - "Biokemi/Gamla tentor/2025-02-01/19.md", - "Biokemi/Gamla tentor/2025-02-01/20.md", - "Biokemi/Gamla tentor/2025-02-01/21.md", - "Biokemi/Gamla tentor/2025-02-01/22.md", - "Biokemi/Gamla tentor/2025-02-01/23.md", - "Biokemi/Gamla tentor/2025-02-01/24.md", - "Biokemi/Gamla tentor/2025-02-01/25.md", - "Biokemi/Gamla tentor/2025-02-01/26.md", - "Biokemi/Gamla tentor/2025-02-01/27.md", - "Biokemi/Gamla tentor/2025-02-01/28.md", - "Biokemi/Gamla tentor/2025-02-01/29.md", - "Biokemi/Gamla tentor/2025-02-01/30.md", - "Biokemi/Gamla tentor/2025-02-01/31.md", - "Biokemi/Gamla tentor/2025-02-01/32.md", - "Biokemi/Gamla tentor/2025-02-01/33.md", - "Biokemi/Gamla tentor/2025-02-01/34.md", - "Biokemi/Gamla tentor/2025-02-01/35.md", - "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0035-UTD.md", - "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0035-UTD.pdf", - "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0076-EFT.md", - "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0076-EFT.pdf" - ], - "Biokemi/Gamla tentor/Template": [ - "Biokemi/Gamla tentor/Template/1.md", - "Biokemi/Gamla tentor/Template/2.md", - "Biokemi/Gamla tentor/Template/3.md", - "Biokemi/Gamla tentor/Template/4.md", - "Biokemi/Gamla tentor/Template/5.md", - "Biokemi/Gamla tentor/Template/6.md", - "Biokemi/Gamla tentor/Template/7.md", - "Biokemi/Gamla tentor/Template/8.md", - "Biokemi/Gamla tentor/Template/9.md", - "Biokemi/Gamla tentor/Template/10.md", - "Biokemi/Gamla tentor/Template/11.md", - "Biokemi/Gamla tentor/Template/12.md", - "Biokemi/Gamla tentor/Template/13.md", - "Biokemi/Gamla tentor/Template/14.md", - "Biokemi/Gamla tentor/Template/15.md", - "Biokemi/Gamla tentor/Template/16.md", - "Biokemi/Gamla tentor/Template/17.md", - "Biokemi/Gamla tentor/Template/18.md", - "Biokemi/Gamla tentor/Template/19.md", - "Biokemi/Gamla tentor/Template/20.md", - "Biokemi/Gamla tentor/Template/21.md", - "Biokemi/Gamla tentor/Template/22.md", - "Biokemi/Gamla tentor/Template/23.md", - "Biokemi/Gamla tentor/Template/24.md", - "Biokemi/Gamla tentor/Template/25.md", - "Biokemi/Gamla tentor/Template/26.md", - "Biokemi/Gamla tentor/Template/27.md", - "Biokemi/Gamla tentor/Template/28.md", - "Biokemi/Gamla tentor/Template/29.md", - "Biokemi/Gamla tentor/Template/30.md", - "Biokemi/Gamla tentor/Template/31.md", - "Biokemi/Gamla tentor/Template/32.md", - "Biokemi/Gamla tentor/Template/33.md", - "Biokemi/Gamla tentor/Template/34.md", - "Biokemi/Gamla tentor/Template/35.md" - ], - "Biokemi/Gamla tentor/tools": [ - "Biokemi/Gamla tentor/tools/update_tags.py", - "Biokemi/Gamla tentor/tools/topic_mapping.tsv" - ], - "Biokemi/Introduktionslab": [ - "Biokemi/Introduktionslab/Provfrågor.md", - "Biokemi/Introduktionslab/Säkerhetstest.md" - ], - "Biokemi/Makromolekyler": [ - "Biokemi/Makromolekyler/Cellmembran", - "Biokemi/Makromolekyler/Från aminosyror till proteiner", - "Biokemi/Makromolekyler/Hemoglobin", - "Biokemi/Makromolekyler/Kemiska bindingar", - "Biokemi/Makromolekyler/Kolhydrater", - "Biokemi/Makromolekyler/Lipider", - "Biokemi/Makromolekyler/Nukleotider" - ], - "Biokemi/Makromolekyler/Cellmembran": [ - "Biokemi/Makromolekyler/Cellmembran/Anteckningar.md", - "Biokemi/Makromolekyler/Cellmembran/Instuderingsfrågor.md", - "Biokemi/Makromolekyler/Cellmembran/Lärandemål.md", - "Biokemi/Makromolekyler/Cellmembran/Provfrågor.md", - "Biokemi/Makromolekyler/Cellmembran/Slides.md", - "Biokemi/Makromolekyler/Cellmembran/Slides.pdf.pdf", - "Biokemi/Makromolekyler/Cellmembran/Tentaplugg.md" - ], - "Biokemi/Makromolekyler/Från aminosyror till proteiner": [ - "Biokemi/Makromolekyler/Från aminosyror till proteiner/Anteckningar.md", - "Biokemi/Makromolekyler/Från aminosyror till proteiner/Anteckningar II.md", - "Biokemi/Makromolekyler/Från aminosyror till proteiner/Instsuderingsfrågor.md" - ], - "Biokemi/Makromolekyler/Hemoglobin": [ - "Biokemi/Makromolekyler/Hemoglobin/Hb Anteckningar.md", - "Biokemi/Makromolekyler/Hemoglobin/Instuderingsfrågor.md", - "Biokemi/Makromolekyler/Hemoglobin/Labb.md", - "Biokemi/Makromolekyler/Hemoglobin/Provfrågor.md" - ], - "Biokemi/Makromolekyler/Kemiska bindingar": [ - "Biokemi/Makromolekyler/Kemiska bindingar/Anteckningar.md", - "Biokemi/Makromolekyler/Kemiska bindingar/Instuderingsfrågor.md" - ], - "Biokemi/Makromolekyler/Kolhydrater": [ - "Biokemi/Makromolekyler/Kolhydrater/Kolhydrater Anteckningar.md", - "Biokemi/Makromolekyler/Kolhydrater/Kolhydrater Instuderingsfrågor.md", - "Biokemi/Makromolekyler/Kolhydrater/Lärandemål.md", - "Biokemi/Makromolekyler/Kolhydrater/Provfrågor.md" - ], - "Biokemi/Makromolekyler/Lipider": [ - "Biokemi/Makromolekyler/Lipider/Instuderingsuppgifter.md", - "Biokemi/Makromolekyler/Lipider/Lärandemål.md", - "Biokemi/Makromolekyler/Lipider/Lipider Anteckningar.md", - "Biokemi/Makromolekyler/Lipider/Provfrågor.md" - ], - "Biokemi/Makromolekyler/Nukleotider": [ - "Biokemi/Makromolekyler/Nukleotider/Anteckningar.md", - "Biokemi/Makromolekyler/Nukleotider/Instuderingsfrågor.md", - "Biokemi/Makromolekyler/Nukleotider/Lärandemål.md", - "Biokemi/Makromolekyler/Nukleotider/Provfrågor.md", - "Biokemi/Makromolekyler/Nukleotider/Video undertexter.md" - ], - "Biokemi/Metabolism": [ - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv", - "Biokemi/Metabolism/Diagram", - "Biokemi/Metabolism/Elektrontransportkedjan", - "Biokemi/Metabolism/🍖 Aminosyrametabolism", - "Biokemi/Metabolism/🍋 Citronsyracykeln", - "Biokemi/Metabolism/🍕 β-oxidation", - "Biokemi/Metabolism/Enzymer", - "Biokemi/Metabolism/🍟 Kolesterolsyntes", - "Biokemi/Metabolism/🧂 Glykogen", - "Biokemi/Metabolism/🍬 Glykolysen", - "Biokemi/Metabolism/🍭 Glukoneogenes", - "Biokemi/Metabolism/👋 Introduktion till metabolismen", - "Biokemi/Metabolism/🤔 Menti", - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning", - "Biokemi/Metabolism/🩸 Heme", - "Biokemi/Metabolism/Pentosfosfatvägen", - "Biokemi/Metabolism/🌡️ Termodynamik", - "Biokemi/Metabolism/📋 Metabolismen översikt.canvas" - ], - "Biokemi/Metabolism/🌡️ Termodynamik": [ - "Biokemi/Metabolism/🌡️ Termodynamik/Anteckningar.md", - "Biokemi/Metabolism/🌡️ Termodynamik/Anteckningar Gabriel.md", - "Biokemi/Metabolism/🌡️ Termodynamik/Biochemistry 10th edition 449-456.pdf", - "Biokemi/Metabolism/🌡️ Termodynamik/Biochemistry 10th edition kap 1 12-15.pdf", - "Biokemi/Metabolism/🌡️ Termodynamik/Biochemistry 10th edition kap 5.1.pdf", - "Biokemi/Metabolism/🌡️ Termodynamik/Instuderingsfrågor.md", - "Biokemi/Metabolism/🌡️ Termodynamik/Instuderingsfrågor termodynamik-4.pdf", - "Biokemi/Metabolism/🌡️ Termodynamik/Lärandemål.md", - "Biokemi/Metabolism/🌡️ Termodynamik/Provfrågor.md", - "Biokemi/Metabolism/🌡️ Termodynamik/Thermodynamik_MO-5.pdf" - ], - "Biokemi/Metabolism/🍋 Citronsyracykeln": [ - "Biokemi/Metabolism/🍋 Citronsyracykeln/Biochemistry 10th edition Kap 17.1-17.5.pdf", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Citronsyracykeln.md", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Gemini_Generated_Image_jeb8lvjeb8lvjeb8.png", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Instuderingsfrågor citronsyracykeln HT25.pdf", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Instuderingsuppgifter.md", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Lärandemål.md", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Provfrågor.md", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Slides.md", - "Biokemi/Metabolism/🍋 Citronsyracykeln/Slides.pdf.pdf", - "Biokemi/Metabolism/🍋 Citronsyracykeln/TCA overview.png" - ], - "Biokemi/Metabolism/🍕 β-oxidation": [ - "Biokemi/Metabolism/🍕 β-oxidation/Provfrågor.md", - "Biokemi/Metabolism/🍕 β-oxidation/Anteckningar.md", - "Biokemi/Metabolism/🍕 β-oxidation/Instuderingsuppgifter.md", - "Biokemi/Metabolism/🍕 β-oxidation/Lärandemål.md", - "Biokemi/Metabolism/🍕 β-oxidation/Slides.pdf.pdf" - ], - "Biokemi/Metabolism/🍖 Aminosyrametabolism": [ - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Anteckningar.md", - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Instuderingsfrågor Aminosyrametabolism LPG001 HT2025.pdf", - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Instuderingsuppgifter.md", - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Lärandemål.md", - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Provfrågor.md", - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Slides.md", - "Biokemi/Metabolism/🍖 Aminosyrametabolism/Slides.pdf.pdf" - ], - "Biokemi/Metabolism/🍟 Kolesterolsyntes": [ - "Biokemi/Metabolism/🍟 Kolesterolsyntes/❓ Provfrågor.md", - "Biokemi/Metabolism/🍟 Kolesterolsyntes/🎯 Lärandemål.md", - "Biokemi/Metabolism/🍟 Kolesterolsyntes/👨🏻‍🏫 Slides.md", - "Biokemi/Metabolism/🍟 Kolesterolsyntes/📚 Instuderingsuppgifter.md", - "Biokemi/Metabolism/🍟 Kolesterolsyntes/🗒 Anteckningar.md", - "Biokemi/Metabolism/🍟 Kolesterolsyntes/🗒 Anteckningar Gabriel.md", - "Biokemi/Metabolism/🍟 Kolesterolsyntes/Stoff.md" - ], - "Biokemi/Metabolism/🍬 Glykolysen": [ - "Biokemi/Metabolism/🍬 Glykolysen/Anteckningar.md", - "Biokemi/Metabolism/🍬 Glykolysen/Biochemistry 10th edition kap 16.1-16.3.pdf", - "Biokemi/Metabolism/🍬 Glykolysen/Instuderingsfrågor Glykolysen HT25-1.pdf", - "Biokemi/Metabolism/🍬 Glykolysen/Instuderingsuppgifter.md", - "Biokemi/Metabolism/🍬 Glykolysen/Lärandemål.md", - "Biokemi/Metabolism/🍬 Glykolysen/Översikt.png", - "Biokemi/Metabolism/🍬 Glykolysen/Översikt II.png", - "Biokemi/Metabolism/🍬 Glykolysen/Provfrågor.md", - "Biokemi/Metabolism/🍬 Glykolysen/Slides.md", - "Biokemi/Metabolism/🍬 Glykolysen/Slides.pdf.pdf" - ], - "Biokemi/Metabolism/🍭 Glukoneogenes": [ - "Biokemi/Metabolism/🍭 Glukoneogenes/Anteckningar.md", - "Biokemi/Metabolism/🍭 Glukoneogenes/Instuderingsuppgifter.md", - "Biokemi/Metabolism/🍭 Glukoneogenes/Lärandemål.md", - "Biokemi/Metabolism/🍭 Glukoneogenes/Provfrågor.md", - "Biokemi/Metabolism/🍭 Glukoneogenes/Slides.md", - "Biokemi/Metabolism/🍭 Glukoneogenes/Slides.pdf.pdf", - "Biokemi/Metabolism/🍭 Glukoneogenes/Stoff.md" - ], - "Biokemi/Metabolism/👋 Introduktion till metabolismen": [ - "Biokemi/Metabolism/👋 Introduktion till metabolismen/Anteckningar.md", - "Biokemi/Metabolism/👋 Introduktion till metabolismen/Instuderingsfrågor.md", - "Biokemi/Metabolism/👋 Introduktion till metabolismen/Slides.md", - "Biokemi/Metabolism/👋 Introduktion till metabolismen/Slides.pdf.pdf", - "Biokemi/Metabolism/👋 Introduktion till metabolismen/Stoff.md", - "Biokemi/Metabolism/👋 Introduktion till metabolismen/Untitled.canvas" - ], - "Biokemi/Metabolism/🤔 Menti": [ - "Biokemi/Metabolism/🤔 Menti/1.md", - "Biokemi/Metabolism/🤔 Menti/2.md", - "Biokemi/Metabolism/🤔 Menti/3.md", - "Biokemi/Metabolism/🤔 Menti/4.md", - "Biokemi/Metabolism/🤔 Menti/5.md", - "Biokemi/Metabolism/🤔 Menti/6.md", - "Biokemi/Metabolism/🤔 Menti/7.md", - "Biokemi/Metabolism/🤔 Menti/8.md", - "Biokemi/Metabolism/🤔 Menti/9.md", - "Biokemi/Metabolism/🤔 Menti/10.md", - "Biokemi/Metabolism/🤔 Menti/11.md", - "Biokemi/Metabolism/🤔 Menti/12.md", - "Biokemi/Metabolism/🤔 Menti/13.md", - "Biokemi/Metabolism/🤔 Menti/14.md", - "Biokemi/Metabolism/🤔 Menti/15.md", - "Biokemi/Metabolism/🤔 Menti/16.md", - "Biokemi/Metabolism/🤔 Menti/17.md", - "Biokemi/Metabolism/🤔 Menti/18.md", - "Biokemi/Metabolism/🤔 Menti/19.md", - "Biokemi/Metabolism/🤔 Menti/20.md", - "Biokemi/Metabolism/🤔 Menti/21.md", - "Biokemi/Metabolism/🤔 Menti/22.md", - "Biokemi/Metabolism/🤔 Menti/23.md", - "Biokemi/Metabolism/🤔 Menti/Anki.csv" - ], - "Biokemi/Metabolism/🧂 Glykogen": [ - "Biokemi/Metabolism/🧂 Glykogen/Anteckingar.md", - "Biokemi/Metabolism/🧂 Glykogen/Instuderingsuppgifter.md", - "Biokemi/Metabolism/🧂 Glykogen/Lärandemål.md", - "Biokemi/Metabolism/🧂 Glykogen/Provfrågor.md", - "Biokemi/Metabolism/🧂 Glykogen/Slides.md", - "Biokemi/Metabolism/🧂 Glykogen/Slides.pdf.pdf", - "Biokemi/Metabolism/🧂 Glykogen/Stoff.md" - ], - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning": [ - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/❓ Provfrågor.md", - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/🎯 Lärandemål.md", - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/👨🏻‍🏫 Slides.md", - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/📚 Instuderingsuppgifter.md", - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/🗒 Anteckningar.md", - "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/Slides.pdf.pdf" - ], - "Biokemi/Metabolism/🩸 Heme": [ - "Biokemi/Metabolism/🩸 Heme/Anteckningar.md", - "Biokemi/Metabolism/🩸 Heme/Instuderingsfrågor.md", - "Biokemi/Metabolism/🩸 Heme/Lärandemål.md", - "Biokemi/Metabolism/🩸 Heme/Provfrågor.md", - "Biokemi/Metabolism/🩸 Heme/Slides.pdf", - "Biokemi/Metabolism/🩸 Heme/Stoff.md" - ], - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv": [ - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Anteckningar.md", - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Provfrågor.md", - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Slides.pdf.pdf", - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Stoff.md", - "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Untitled.md" - ], - "Biokemi/Metabolism/Diagram": [ - "Biokemi/Metabolism/Diagram/Vägar.md", - "Biokemi/Metabolism/Diagram/Glycolysis_overview.svg", - "Biokemi/Metabolism/Diagram/TCA_cycle.svg" - ], - "Biokemi/Metabolism/Elektrontransportkedjan": [ - "Biokemi/Metabolism/Elektrontransportkedjan/🗒 Anteckningar.md", - "Biokemi/Metabolism/Elektrontransportkedjan/❓ Provfrågor.md", - "Biokemi/Metabolism/Elektrontransportkedjan/🎯 Lärandemål.md", - "Biokemi/Metabolism/Elektrontransportkedjan/👨🏻‍🏫 Slides.md", - "Biokemi/Metabolism/Elektrontransportkedjan/👩‍🏫 Slides.pdf.pdf", - "Biokemi/Metabolism/Elektrontransportkedjan/📚 Instuderingsuppgifter.md" - ], - "Biokemi/Metabolism/Enzymer": [ - "Biokemi/Metabolism/Enzymer/Anteckningar I.md", - "Biokemi/Metabolism/Enzymer/Anteckningar II.md", - "Biokemi/Metabolism/Enzymer/Biochemistry 10th edition Kap 5-6.pdf", - "Biokemi/Metabolism/Enzymer/Enzymer_1_MO-6.pdf", - "Biokemi/Metabolism/Enzymer/Enzymer_2_MO-6.pdf", - "Biokemi/Metabolism/Enzymer/Instuderingsfrågor.md", - "Biokemi/Metabolism/Enzymer/Instuderingsfrågor enzymer-3.pdf", - "Biokemi/Metabolism/Enzymer/Lärandemål.md", - "Biokemi/Metabolism/Enzymer/Provfrågor.md" - ], - "Biokemi/Metabolism/Pentosfosfatvägen": [ - "Biokemi/Metabolism/Pentosfosfatvägen/Stoff.md", - "Biokemi/Metabolism/Pentosfosfatvägen/❓ Provfrågor.md", - "Biokemi/Metabolism/Pentosfosfatvägen/🎯 Lärandemål.md", - "Biokemi/Metabolism/Pentosfosfatvägen/👨🏻‍🏫 Slides.md", - "Biokemi/Metabolism/Pentosfosfatvägen/📚 Instuderingsuppgifter.md", - "Biokemi/Metabolism/Pentosfosfatvägen/🗒 Anteckningar.md", - "Biokemi/Metabolism/Pentosfosfatvägen/Slides.pdf.pdf" - ], - "Biokemi/Metabolismseminarie": [ - "Biokemi/Metabolismseminarie/Direktiv.md", - "Biokemi/Metabolismseminarie/1. Springa.md", - "Biokemi/Metabolismseminarie/2. Fasta.md", - "Biokemi/Metabolismseminarie/3. Nattfasta.md", - "Biokemi/Metabolismseminarie/4. Syre i ETK.md", - "Biokemi/Metabolismseminarie/5. Frikopplare.md", - "Biokemi/Metabolismseminarie/6. Glykogen.md", - "Biokemi/Metabolismseminarie/7. Nyfött barn.md", - "Biokemi/Metabolismseminarie/8. Muskelbiopsi.md" - ], - "Biokemi/Plasmidlabb": [ - "Biokemi/Plasmidlabb/Provfrågor.md", - "Biokemi/Plasmidlabb/Articles", - "Biokemi/Plasmidlabb/Bilder", - "Biokemi/Plasmidlabb/Anteckningar I.md", - "Biokemi/Plasmidlabb/Anteckningar II.md", - "Biokemi/Plasmidlabb/Förståelse.md", - "Biokemi/Plasmidlabb/Instuderingsfrågor.md", - "Biokemi/Plasmidlabb/Protokoll.pdf", - "Biokemi/Plasmidlabb/Rapport.md", - "Biokemi/Plasmidlabb/Slides.md", - "Biokemi/Plasmidlabb/Slides I.pdf.pdf", - "Biokemi/Plasmidlabb/Slides II.md", - "Biokemi/Plasmidlabb/Slides II.pdf.pdf" - ], - "Biokemi/Plasmidlabb/Articles": [ - "Biokemi/Plasmidlabb/Articles/Article pUC plasmids.pdf", - "Biokemi/Plasmidlabb/Articles/Frontiers in bioprocessing.pdf", - "Biokemi/Plasmidlabb/Articles/Method for inserting New Generic.pdf", - "Biokemi/Plasmidlabb/Articles/Molecular Cloning.pdf", - "Biokemi/Plasmidlabb/Articles/Report guidelines 2025.pdf", - "Biokemi/Plasmidlabb/Articles/Role of Recombinant DNA.pdf", - "Biokemi/Plasmidlabb/Articles/Screening of Bac. recombinants.pdf" - ], - "Biokemi/Plasmidlabb/Bilder": [ - "Biokemi/Plasmidlabb/Bilder/IMG_0843.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_0844.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_0845.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_0846.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_0847.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_0848.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_1974.jpg", - "Biokemi/Plasmidlabb/Bilder/IMG_1976.jpg" - ], - "Biokemi/Proteinseminarie": [ - "Biokemi/Proteinseminarie/Proteinseminariefrågor.md", - "Biokemi/Proteinseminarie/Stödord.md" - ], - "Clippings": [], - "PU": [ - "PU/PU.md", - "PU/Tystnadsplikt.md" - ], - "Studieteknik": [ - "Studieteknik/20 regler hur man skapar Anki-kort.md" - ], - "TaskNotes": [ - "TaskNotes/Tasks", - "TaskNotes/Views" - ], - "TaskNotes/Tasks": [ - "TaskNotes/Tasks/ETK-kortlek imorgon kl 09.md" - ], - "TaskNotes/Views": [ - "TaskNotes/Views/relationships.base", - "TaskNotes/Views/agenda-default.base", - "TaskNotes/Views/calendar-default.base", - "TaskNotes/Views/tasks-default.base", - "TaskNotes/Views/kanban-default.base", - "TaskNotes/Views/mini-calendar-default.base" - ], - "Templates": [ - "Templates/{{Föreläsning}}" - ], - "Templates/{{Föreläsning}}": [], - "TYK": [ - "TYK/Presentation.md" - ], - "z-Tech": [ - "z-Tech/Export all to anki.md", - "z-Tech/GIT setup.md" - ] + "/": { + "children": [ + "Anatomi & Histologi 2", + "table-export-001.csv", + "table-export-001.xlsx", + "Untitled.canvas", + "TYK", + "TaskNotes", + "has.txt", + "all.txt", + "Biokemi", + "Anatomi & Histologi", + "attachments", + "Templates", + "Clippings", + "PU", + "Studieteknik", + "z-Tech", + "index.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi": { + "children": [ + "Anatomi & Histologi/Anatomi", + "Anatomi & Histologi/Föreläsningar", + "Anatomi & Histologi/Histologi", + "Anatomi & Histologi/Instuderingsfrågor", + "Anatomi & Histologi/Målbeskrivning", + "Anatomi & Histologi/Målbeskrivning 1", + "Anatomi & Histologi/Tentor" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi": { + "children": [ + "Anatomi & Histologi/Anatomi/Ben", + "Anatomi & Histologi/Anatomi/Kärl", + "Anatomi & Histologi/Anatomi/Leder", + "Anatomi & Histologi/Anatomi/Muskler", + "Anatomi & Histologi/Anatomi/Nerver", + "Anatomi & Histologi/Anatomi/Nervsystem", + "Anatomi & Histologi/Anatomi/Organ", + "Anatomi & Histologi/Anatomi/Terminologi", + "Anatomi & Histologi/Anatomi/index.md", + "Anatomi & Histologi/Anatomi/Muskler.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Ben": { + "children": [ + "Anatomi & Histologi/Anatomi/Ben/Calcaneus.md", + "Anatomi & Histologi/Anatomi/Ben/Carpus.md", + "Anatomi & Histologi/Anatomi/Ben/Clavicula.md", + "Anatomi & Histologi/Anatomi/Ben/Costae.md", + "Anatomi & Histologi/Anatomi/Ben/Digiti Mani.md", + "Anatomi & Histologi/Anatomi/Ben/Digiti Pedi.md", + "Anatomi & Histologi/Anatomi/Ben/Femur.md", + "Anatomi & Histologi/Anatomi/Ben/Fibula.md", + "Anatomi & Histologi/Anatomi/Ben/Humerus.md", + "Anatomi & Histologi/Anatomi/Ben/index.md", + "Anatomi & Histologi/Anatomi/Ben/Mandibula.md", + "Anatomi & Histologi/Anatomi/Ben/Maxilla.md", + "Anatomi & Histologi/Anatomi/Ben/Metacarpus.md", + "Anatomi & Histologi/Anatomi/Ben/Metatarsus.md", + "Anatomi & Histologi/Anatomi/Ben/Os Capitatum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Coccygis.md", + "Anatomi & Histologi/Anatomi/Ben/Os Coxae.md", + "Anatomi & Histologi/Anatomi/Ben/Os Cuboideum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Cuneiforme Intermedium.md", + "Anatomi & Histologi/Anatomi/Ben/Os Cuneiforme Laterale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Cuneiforme Mediale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Ethmoidale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Frontale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Hamatum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Ilium.md", + "Anatomi & Histologi/Anatomi/Ben/Os Ischii.md", + "Anatomi & Histologi/Anatomi/Ben/Os Lacrimale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Lunatum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Nasale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Naviculare.md", + "Anatomi & Histologi/Anatomi/Ben/Os Occipitale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Parietale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Pisiforme.md", + "Anatomi & Histologi/Anatomi/Ben/Os Pubis.md", + "Anatomi & Histologi/Anatomi/Ben/Os Scaphoideum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Sphenoidale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Temporale.md", + "Anatomi & Histologi/Anatomi/Ben/Os Trapezium.md", + "Anatomi & Histologi/Anatomi/Ben/Os Trapezoideum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Triquetrum.md", + "Anatomi & Histologi/Anatomi/Ben/Os Zygomaticum.md", + "Anatomi & Histologi/Anatomi/Ben/Pelvis.md", + "Anatomi & Histologi/Anatomi/Ben/Radius.md", + "Anatomi & Histologi/Anatomi/Ben/Sacrum.md", + "Anatomi & Histologi/Anatomi/Ben/Scapula.md", + "Anatomi & Histologi/Anatomi/Ben/Sternum.md", + "Anatomi & Histologi/Anatomi/Ben/Talus.md", + "Anatomi & Histologi/Anatomi/Ben/Tarsus.md", + "Anatomi & Histologi/Anatomi/Ben/Tibia.md", + "Anatomi & Histologi/Anatomi/Ben/Ulna.md", + "Anatomi & Histologi/Anatomi/Ben/Vertebra Cervicalis.md", + "Anatomi & Histologi/Anatomi/Ben/Vertebra Lumbalis.md", + "Anatomi & Histologi/Anatomi/Ben/Vertebra Thoracalis.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Kärl": { + "children": [ + "Anatomi & Histologi/Anatomi/Kärl/A Ovarica.md", + "Anatomi & Histologi/Anatomi/Kärl/A Testicularis.md", + "Anatomi & Histologi/Anatomi/Kärl/Aorta Ascendens.md", + "Anatomi & Histologi/Anatomi/Kärl/Arcus Aortae.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Brachialis.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Carotis Communis.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Carotis Externa.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Carotis Interna.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Coronaria Dextra.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Coronaria Sinistra.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Dorsalis Pedis.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Femoralis.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Poplitea.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Radialis.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Subclavia.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Tibialis Anterior.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Tibialis Posterior.md", + "Anatomi & Histologi/Anatomi/Kärl/Arteria Ulnaris.md", + "Anatomi & Histologi/Anatomi/Kärl/index.md", + "Anatomi & Histologi/Anatomi/Kärl/Ramus Circumflexus.md", + "Anatomi & Histologi/Anatomi/Kärl/Ramus Interventricularis Anterior.md", + "Anatomi & Histologi/Anatomi/Kärl/Sinus Coronarius.md", + "Anatomi & Histologi/Anatomi/Kärl/Truncus Pulmonalis.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Basilica.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Brachialis.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Cava Inferior.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Cava Superior.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Cephalica.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Femoralis.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Jugularis Interna.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Poplitea.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Portae.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Saphena Magna.md", + "Anatomi & Histologi/Anatomi/Kärl/Vena Subclavia.md", + "Anatomi & Histologi/Anatomi/Kärl/Venae Brachiocephalicae.md", + "Anatomi & Histologi/Anatomi/Kärl/Venae Pulmonales.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Leder": { + "children": [ + "Anatomi & Histologi/Anatomi/Leder/Armbågsled.md", + "Anatomi & Histologi/Anatomi/Leder/Axelled.md", + "Anatomi & Histologi/Anatomi/Leder/Fotled.md", + "Anatomi & Histologi/Anatomi/Leder/Handled.md", + "Anatomi & Histologi/Anatomi/Leder/Höftled.md", + "Anatomi & Histologi/Anatomi/Leder/index.md", + "Anatomi & Histologi/Anatomi/Leder/Interphalangealleder.md", + "Anatomi & Histologi/Anatomi/Leder/Käkled.md", + "Anatomi & Histologi/Anatomi/Leder/Knäled.md", + "Anatomi & Histologi/Anatomi/Leder/Ryggrad Mellankotsleder.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Muskler": { + "children": [ + "Anatomi & Histologi/Anatomi/Muskler/Adductor Magnus.md", + "Anatomi & Histologi/Anatomi/Muskler/Biceps Brachii.md", + "Anatomi & Histologi/Anatomi/Muskler/Biceps Femoris.md", + "Anatomi & Histologi/Anatomi/Muskler/Brachioradialis.md", + "Anatomi & Histologi/Anatomi/Muskler/Deltoideus.md", + "Anatomi & Histologi/Anatomi/Muskler/Diafragma.md", + "Anatomi & Histologi/Anatomi/Muskler/Erector Spinae.md", + "Anatomi & Histologi/Anatomi/Muskler/Extensor Digitorum.md", + "Anatomi & Histologi/Anatomi/Muskler/Flexor Digitorum Superficialis.md", + "Anatomi & Histologi/Anatomi/Muskler/Gluteus Maximus.md", + "Anatomi & Histologi/Anatomi/Muskler/Gluteus Medius.md", + "Anatomi & Histologi/Anatomi/Muskler/Iliopsoas.md", + "Anatomi & Histologi/Anatomi/Muskler/index.md", + "Anatomi & Histologi/Anatomi/Muskler/Intercostales Externi.md", + "Anatomi & Histologi/Anatomi/Muskler/Intercostales Interni.md", + "Anatomi & Histologi/Anatomi/Muskler/Latissimus Dorsi.md", + "Anatomi & Histologi/Anatomi/Muskler/Masseter.md", + "Anatomi & Histologi/Anatomi/Muskler/Pectoralis Major.md", + "Anatomi & Histologi/Anatomi/Muskler/Quadriceps Femoris.md", + "Anatomi & Histologi/Anatomi/Muskler/Rectus Abdominis.md", + "Anatomi & Histologi/Anatomi/Muskler/Semimembranosus.md", + "Anatomi & Histologi/Anatomi/Muskler/Semitendinosus.md", + "Anatomi & Histologi/Anatomi/Muskler/Sternocleidomastoideus.md", + "Anatomi & Histologi/Anatomi/Muskler/Temporalis.md", + "Anatomi & Histologi/Anatomi/Muskler/Tibialis Anterior.md", + "Anatomi & Histologi/Anatomi/Muskler/Trapezius.md", + "Anatomi & Histologi/Anatomi/Muskler/Triceps Brachii.md", + "Anatomi & Histologi/Anatomi/Muskler/Triceps Surae.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Nerver": { + "children": [ + "Anatomi & Histologi/Anatomi/Nerver/index.md", + "Anatomi & Histologi/Anatomi/Nerver/N Accessorius.md", + "Anatomi & Histologi/Anatomi/Nerver/N Axillaris.md", + "Anatomi & Histologi/Anatomi/Nerver/N Femoralis.md", + "Anatomi & Histologi/Anatomi/Nerver/N Gluteus Inferior.md", + "Anatomi & Histologi/Anatomi/Nerver/N Gluteus Superior.md", + "Anatomi & Histologi/Anatomi/Nerver/N Ischiadicus.md", + "Anatomi & Histologi/Anatomi/Nerver/N Mandibularis V3.md", + "Anatomi & Histologi/Anatomi/Nerver/N Medianus.md", + "Anatomi & Histologi/Anatomi/Nerver/N Musculocutaneus.md", + "Anatomi & Histologi/Anatomi/Nerver/N Obturatorius.md", + "Anatomi & Histologi/Anatomi/Nerver/N Peroneus Profundus.md", + "Anatomi & Histologi/Anatomi/Nerver/N Radialis.md", + "Anatomi & Histologi/Anatomi/Nerver/N Thoracodorsalis.md", + "Anatomi & Histologi/Anatomi/Nerver/N Tibialis.md", + "Anatomi & Histologi/Anatomi/Nerver/N Ulnaris.md", + "Anatomi & Histologi/Anatomi/Nerver/N Vagus.md", + "Anatomi & Histologi/Anatomi/Nerver/Nn Pectorales.md", + "Anatomi & Histologi/Anatomi/Nerver/Plexus Cervicalis.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Nervsystem": { + "children": [ + "Anatomi & Histologi/Anatomi/Nervsystem/Afferens efferens integration.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Allmän organisation.md", + "Anatomi & Histologi/Anatomi/Nervsystem/ANS.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Autonoma ganglier.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Banor.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Blod-nerv-barriär.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Cerebellum.md", + "Anatomi & Histologi/Anatomi/Nervsystem/CNS.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Diencephalon.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Hjärnhinnor och ventriklar.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Koppling PNS.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Medulla spinalis.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Nervi craniales.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Nervi spinales.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Organisation.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Perifera nerver.md", + "Anatomi & Histologi/Anatomi/Nervsystem/PNS.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Sensoriska ganglier.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Telencephalon.md", + "Anatomi & Histologi/Anatomi/Nervsystem/Truncus encephali.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/GI", + "Anatomi & Histologi/Anatomi/Organ/Hjärta", + "Anatomi & Histologi/Anatomi/Organ/KUG", + "Anatomi & Histologi/Anatomi/Organ/MUG", + "Anatomi & Histologi/Anatomi/Organ/Njure", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar", + "Anatomi & Histologi/Anatomi/Organ/Epiglottis.md", + "Anatomi & Histologi/Anatomi/Organ/Gallblåsa (Vesica biliaris).md", + "Anatomi & Histologi/Anatomi/Organ/index.md", + "Anatomi & Histologi/Anatomi/Organ/Lever.md", + "Anatomi & Histologi/Anatomi/Organ/Lymfnod.md", + "Anatomi & Histologi/Anatomi/Organ/Pancreas.md", + "Anatomi & Histologi/Anatomi/Organ/Thymus.md", + "Anatomi & Histologi/Anatomi/Organ/Trachea.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ/GI": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/GI/Antrum (Ventriculus).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Anus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Appendix Vermiformis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Caecum.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Canalis Analis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Caniner.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Cardia (Ventriculus).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Cavum Oris.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Colon.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Corpus (Ventriculus).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Dentes (Tänder).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Choledochus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Cysticus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Hepaticus Communis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Ductus Pancreaticus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Duodenum.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Esophagus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Fundus (Ventriculus).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Glandula Parotis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Glandula Sublingualis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Glandula Submandibularis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Haustra Coli.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Hiatus Oesophageus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Ileum.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Incisiver.md", + "Anatomi & Histologi/Anatomi/Organ/GI/index.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Jejunum.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Lingua.md", + "Anatomi & Histologi/Anatomi/Organ/GI/M Sphincter Ani Externus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/M Sphincter Ani Internus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/M Sphincter Pylori.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Mikrovilli.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Molarer.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Os (Mun).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Palatum Durum.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Palatum Molle.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Papilla Vateri.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Peristaltik.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Pharynx.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Premolarer.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Pylorus (Ventriculus).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Rectum.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Rugae (Ventriculus).md", + "Anatomi & Histologi/Anatomi/Organ/GI/Taeniae Coli.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Valva Ileocaecalis.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Ventriculus.md", + "Anatomi & Histologi/Anatomi/Organ/GI/Villus (Villi).md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ/Hjärta": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Atrium Dexter.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Atrium Sinister.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/His Bunt.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/index.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Nodus Atrioventricularis.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Nodus Sinuatrialis.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Pericardium Fibrosum.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Pericardium Serosum.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Plexus Cardiacus.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Purkinjefibrer.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Septum Interatriale.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Septum Interventriculare.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Aortae.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Mitralis.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Tricuspidalis.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Valva Trunci Pulmonalis.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Ventriculus Dexter.md", + "Anatomi & Histologi/Anatomi/Organ/Hjärta/Ventriculus Sinister.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ/KUG": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/KUG/Ampulla.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Cervix Uteri.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Clitoris.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Corpus Uteri.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Endometrium.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Fundus Uteri.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Hymen.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Infundibulum.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Isthmus.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Isthmus Uteri.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Labia Majora.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Labia Minora.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Lig Ovarii Proprium.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Mons Pubis.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Myometrium.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Ostium Urethrae Femina.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Ovarium.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Perimetrium.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Portio Vaginalis.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Tuba Uterina.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Uterus.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Vagina.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Vestibulum Vaginae.md", + "Anatomi & Histologi/Anatomi/Organ/KUG/Vulva.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ/MUG": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/MUG/Bulbus Penis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Canalis Inguinalis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Corpora Cavernosa.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Corpus Spongiosum.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Ductus Deferens.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Epididymis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Funiculus Spermaticus.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Glandulae Bulbourethrales.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Glans Penis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/M Cremaster.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Penis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Penis Corpus.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Penis Radix.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Plexus Pampiniformis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Preputium.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Prostata.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Raphe Scroti.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Rete Testis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Scrotum.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Septum Scroti.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Testis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Tubuli Seminiferi.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Tunica Dartos.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Tunica Vaginalis.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Urethra Masculina.md", + "Anatomi & Histologi/Anatomi/Organ/MUG/Vesicula Seminalis.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ/Njure": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/Njure/Calyx Renalis.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Gerotas Fascia.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Hilum Renale.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Index.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Njurbäcken.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Njurbark.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Njurmärg.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Papilla Renalis.md", + "Anatomi & Histologi/Anatomi/Organ/Njure/Vasa Renalia.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Organ/Urinvägar": { + "children": [ + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Detrusor.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/M Sphincter Urethrae.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Miktion.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ostium Ureteris.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ostium Urethrae Externum.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ostium Urethrae Internum.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Pars Membranacea.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Pars Prostatica.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Pars Spongiosa.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Trigonum Vesicae.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Ureter.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Urethra.md", + "Anatomi & Histologi/Anatomi/Organ/Urinvägar/Vesica Urinaria.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Anatomi/Terminologi": { + "children": [ + "Anatomi & Histologi/Anatomi/Terminologi/Abduktion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Adduktion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Anatomisk Grundställning.md", + "Anatomi & Histologi/Anatomi/Terminologi/Anterior.md", + "Anatomi & Histologi/Anatomi/Terminologi/Caudal.md", + "Anatomi & Histologi/Anatomi/Terminologi/Cranial.md", + "Anatomi & Histologi/Anatomi/Terminologi/Dexter.md", + "Anatomi & Histologi/Anatomi/Terminologi/Distal.md", + "Anatomi & Histologi/Anatomi/Terminologi/Dorsal.md", + "Anatomi & Histologi/Anatomi/Terminologi/Dorsalflexion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Eversion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Extension.md", + "Anatomi & Histologi/Anatomi/Terminologi/Flexion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Inåtrotation.md", + "Anatomi & Histologi/Anatomi/Terminologi/index.md", + "Anatomi & Histologi/Anatomi/Terminologi/Inferior.md", + "Anatomi & Histologi/Anatomi/Terminologi/Inversion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Kinematisk Terminologi.md", + "Anatomi & Histologi/Anatomi/Terminologi/Lage Och Riktningsbegrepp.md", + "Anatomi & Histologi/Anatomi/Terminologi/Lateral.md", + "Anatomi & Histologi/Anatomi/Terminologi/Lateralflexion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Magnus.md", + "Anatomi & Histologi/Anatomi/Terminologi/Major.md", + "Anatomi & Histologi/Anatomi/Terminologi/Maximus.md", + "Anatomi & Histologi/Anatomi/Terminologi/Medial.md", + "Anatomi & Histologi/Anatomi/Terminologi/Minimus.md", + "Anatomi & Histologi/Anatomi/Terminologi/Minor.md", + "Anatomi & Histologi/Anatomi/Terminologi/Muskelfunktioner.md", + "Anatomi & Histologi/Anatomi/Terminologi/Palmarflexion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Parvus.md", + "Anatomi & Histologi/Anatomi/Terminologi/Plantarflexion.md", + "Anatomi & Histologi/Anatomi/Terminologi/Posterior.md", + "Anatomi & Histologi/Anatomi/Terminologi/Profundus.md", + "Anatomi & Histologi/Anatomi/Terminologi/Proximal.md", + "Anatomi & Histologi/Anatomi/Terminologi/Rorelseplan Och Axlar.md", + "Anatomi & Histologi/Anatomi/Terminologi/Sinister.md", + "Anatomi & Histologi/Anatomi/Terminologi/Strukturella Prefix.md", + "Anatomi & Histologi/Anatomi/Terminologi/Superficialis.md", + "Anatomi & Histologi/Anatomi/Terminologi/Superior.md", + "Anatomi & Histologi/Anatomi/Terminologi/Termers Uppbyggnad.md", + "Anatomi & Histologi/Anatomi/Terminologi/Utåtrotation.md", + "Anatomi & Histologi/Anatomi/Terminologi/Ventral.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Föreläsningar": { + "children": [ + "Anatomi & Histologi/Föreläsningar/00 Index.md", + "Anatomi & Histologi/Föreläsningar/0926 GI Anatomi repetition.md", + "Anatomi & Histologi/Föreläsningar/0930 Endokrina organ.md", + "Anatomi & Histologi/Föreläsningar/0930 Endokrina organ repetion.md", + "Anatomi & Histologi/Föreläsningar/0930 GI Histologi 1.md", + "Anatomi & Histologi/Föreläsningar/1001 Respirationsystemet.md", + "Anatomi & Histologi/Föreläsningar/1009 Histologi KUG del 1.md", + "Anatomi & Histologi/Föreläsningar/1010 Histologi Njure och Urin.md", + "Anatomi & Histologi/Föreläsningar/1013 Histologi KUG.md", + "Anatomi & Histologi/Föreläsningar/1014 Histologi MUG.md", + "Anatomi & Histologi/Föreläsningar/1023 Inför preptanta.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi": { + "children": [ + "Anatomi & Histologi/Histologi/Ben", + "Anatomi & Histologi/Histologi/Bindväv", + "Anatomi & Histologi/Histologi/Blod", + "Anatomi & Histologi/Histologi/Blodkärl", + "Anatomi & Histologi/Histologi/Brosk", + "Anatomi & Histologi/Histologi/Bröstkörtel", + "Anatomi & Histologi/Histologi/Demokompendium", + "Anatomi & Histologi/Histologi/Endokrina", + "Anatomi & Histologi/Histologi/Epitel", + "Anatomi & Histologi/Histologi/GI", + "Anatomi & Histologi/Histologi/Hjärta", + "Anatomi & Histologi/Histologi/Hud", + "Anatomi & Histologi/Histologi/Körtlar", + "Anatomi & Histologi/Histologi/KUG", + "Anatomi & Histologi/Histologi/MUG", + "Anatomi & Histologi/Histologi/Muskelvävnad", + "Anatomi & Histologi/Histologi/Nervsystem", + "Anatomi & Histologi/Histologi/Njure", + "Anatomi & Histologi/Histologi/Respiration", + "Anatomi & Histologi/Histologi/Urinvägar", + "Anatomi & Histologi/Histologi/Basalmembran.md", + "Anatomi & Histologi/Histologi/Celltyper.md", + "Anatomi & Histologi/Histologi/Hjärta.md", + "Anatomi & Histologi/Histologi/index.md", + "Anatomi & Histologi/Histologi/Lager & Höljen i vävnader.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Ben": { + "children": [ + "Anatomi & Histologi/Histologi/Ben/Benremodellering.md", + "Anatomi & Histologi/Histologi/Ben/Canaliculi.md", + "Anatomi & Histologi/Histologi/Ben/Endokondral Ossifikation.md", + "Anatomi & Histologi/Histologi/Ben/Endosteum.md", + "Anatomi & Histologi/Histologi/Ben/Frakturläkning.md", + "Anatomi & Histologi/Histologi/Ben/Haversk Kanal.md", + "Anatomi & Histologi/Histologi/Ben/Howships Lakuner.md", + "Anatomi & Histologi/Histologi/Ben/index.md", + "Anatomi & Histologi/Histologi/Ben/Intramembranös Ossifikation.md", + "Anatomi & Histologi/Histologi/Ben/Kompakt Ben.md", + "Anatomi & Histologi/Histologi/Ben/Kompakt vs Spongiöst Ben.md", + "Anatomi & Histologi/Histologi/Ben/Lakuner.md", + "Anatomi & Histologi/Histologi/Ben/Mineralisering och Osteoid.md", + "Anatomi & Histologi/Histologi/Ben/Osteoblast.md", + "Anatomi & Histologi/Histologi/Ben/Osteocyt.md", + "Anatomi & Histologi/Histologi/Ben/Osteoid.md", + "Anatomi & Histologi/Histologi/Ben/Osteoklast.md", + "Anatomi & Histologi/Histologi/Ben/Osteon Haverska System.md", + "Anatomi & Histologi/Histologi/Ben/Periost och Endost.md", + "Anatomi & Histologi/Histologi/Ben/Periosteum.md", + "Anatomi & Histologi/Histologi/Ben/Primärt och Sekundärt Ossifikationscenter.md", + "Anatomi & Histologi/Histologi/Ben/Sharpeys fibrer.md", + "Anatomi & Histologi/Histologi/Ben/Spongiöst Ben.md", + "Anatomi & Histologi/Histologi/Ben/Tillväxtplatta Zonindelning.md", + "Anatomi & Histologi/Histologi/Ben/Vävnadsben vs Lamellärt Ben.md", + "Anatomi & Histologi/Histologi/Ben/Volkmanns Kanal.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Bindväv": { + "children": [ + "Anatomi & Histologi/Histologi/Bindväv/Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Brun Fettväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Elastisk Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Fibrer i Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Fibroblast.md", + "Anatomi & Histologi/Histologi/Bindväv/Gelatinös Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Grundsubstans.md", + "Anatomi & Histologi/Histologi/Bindväv/index.md", + "Anatomi & Histologi/Histologi/Bindväv/Kollagen.md", + "Anatomi & Histologi/Histologi/Bindväv/Kollagensyntes.md", + "Anatomi & Histologi/Histologi/Bindväv/Lamina propria.md", + "Anatomi & Histologi/Histologi/Bindväv/Lucker Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Makrofag.md", + "Anatomi & Histologi/Histologi/Bindväv/Mastcell.md", + "Anatomi & Histologi/Histologi/Bindväv/Mesenkym.md", + "Anatomi & Histologi/Histologi/Bindväv/Myofibroblast.md", + "Anatomi & Histologi/Histologi/Bindväv/Pericyt.md", + "Anatomi & Histologi/Histologi/Bindväv/Plasmacell.md", + "Anatomi & Histologi/Histologi/Bindväv/Retikulär Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Stram Oregelbunden Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Stram Regelbunden Bindväv.md", + "Anatomi & Histologi/Histologi/Bindväv/Vit Fettväv.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Blod": { + "children": [ + "Anatomi & Histologi/Histologi/Blod/B-Lymfocyt.md", + "Anatomi & Histologi/Histologi/Blod/Bandcell.md", + "Anatomi & Histologi/Histologi/Blod/Basofil.md", + "Anatomi & Histologi/Histologi/Blod/Basofil Erytroblast.md", + "Anatomi & Histologi/Histologi/Blod/Benmärg.md", + "Anatomi & Histologi/Histologi/Blod/Blodets Sammansättning.md", + "Anatomi & Histologi/Histologi/Blod/Blodutstryk och Färgning.md", + "Anatomi & Histologi/Histologi/Blod/Buffy Coat.md", + "Anatomi & Histologi/Histologi/Blod/Dendritisk cell.md", + "Anatomi & Histologi/Histologi/Blod/Diapedes.md", + "Anatomi & Histologi/Histologi/Blod/Eosinofil.md", + "Anatomi & Histologi/Histologi/Blod/Erytopoes.md", + "Anatomi & Histologi/Histologi/Blod/Erytrocyt.md", + "Anatomi & Histologi/Histologi/Blod/Fibrinolys.md", + "Anatomi & Histologi/Histologi/Blod/Granulocytgranula.md", + "Anatomi & Histologi/Histologi/Blod/Granulopoes.md", + "Anatomi & Histologi/Histologi/Blod/Hematopoes Översikt.md", + "Anatomi & Histologi/Histologi/Blod/Hematopoetisk Stamcell.md", + "Anatomi & Histologi/Histologi/Blod/Hemostas Primär.md", + "Anatomi & Histologi/Histologi/Blod/Heparin.md", + "Anatomi & Histologi/Histologi/Blod/Histamin.md", + "Anatomi & Histologi/Histologi/Blod/index.md", + "Anatomi & Histologi/Histologi/Blod/Koagulation Sekundär.md", + "Anatomi & Histologi/Histologi/Blod/Leukocyter Översikt.md", + "Anatomi & Histologi/Histologi/Blod/Lymfocyt.md", + "Anatomi & Histologi/Histologi/Blod/Lymfopoes.md", + "Anatomi & Histologi/Histologi/Blod/Lysozym.md", + "Anatomi & Histologi/Histologi/Blod/Megakaryocyt.md", + "Anatomi & Histologi/Histologi/Blod/Metamyelocyt.md", + "Anatomi & Histologi/Histologi/Blod/Monocyt.md", + "Anatomi & Histologi/Histologi/Blod/Monocytopoes.md", + "Anatomi & Histologi/Histologi/Blod/Myeloblast.md", + "Anatomi & Histologi/Histologi/Blod/Myelocyt.md", + "Anatomi & Histologi/Histologi/Blod/Neutrofil.md", + "Anatomi & Histologi/Histologi/Blod/Ortokromatisk Erytroblast.md", + "Anatomi & Histologi/Histologi/Blod/Plasma.md", + "Anatomi & Histologi/Histologi/Blod/Polykromatisk Erytroblast.md", + "Anatomi & Histologi/Histologi/Blod/Promyelocyt.md", + "Anatomi & Histologi/Histologi/Blod/Retikulocyt.md", + "Anatomi & Histologi/Histologi/Blod/Serum.md", + "Anatomi & Histologi/Histologi/Blod/Stomacell Benmärg.md", + "Anatomi & Histologi/Histologi/Blod/T-Lymfocyt.md", + "Anatomi & Histologi/Histologi/Blod/Trombocyt.md", + "Anatomi & Histologi/Histologi/Blod/Trombopoes.md", + "Anatomi & Histologi/Histologi/Blod/WilEtc.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Blodkärl": { + "children": [ + "Anatomi & Histologi/Histologi/Blodkärl/Anastomos.md", + "Anatomi & Histologi/Histologi/Blodkärl/Arteriol.md", + "Anatomi & Histologi/Histologi/Blodkärl/Elastisk Artär.md", + "Anatomi & Histologi/Histologi/Blodkärl/Endotelcell.md", + "Anatomi & Histologi/Histologi/Blodkärl/Fenestrerad kapillär.md", + "Anatomi & Histologi/Histologi/Blodkärl/index.md", + "Anatomi & Histologi/Histologi/Blodkärl/Kapillär Kontinuerlig.md", + "Anatomi & Histologi/Histologi/Blodkärl/Lymfkärl.md", + "Anatomi & Histologi/Histologi/Blodkärl/Membrana Elastica Externa.md", + "Anatomi & Histologi/Histologi/Blodkärl/Membrana Elastica Interna.md", + "Anatomi & Histologi/Histologi/Blodkärl/Muskelartär.md", + "Anatomi & Histologi/Histologi/Blodkärl/Pericyt.md", + "Anatomi & Histologi/Histologi/Blodkärl/Sinusoid.md", + "Anatomi & Histologi/Histologi/Blodkärl/Tunica Adventitia.md", + "Anatomi & Histologi/Histologi/Blodkärl/Tunica Intima.md", + "Anatomi & Histologi/Histologi/Blodkärl/Tunica Media.md", + "Anatomi & Histologi/Histologi/Blodkärl/Vasa Vasorum.md", + "Anatomi & Histologi/Histologi/Blodkärl/Ven.md", + "Anatomi & Histologi/Histologi/Blodkärl/Ven 1.md", + "Anatomi & Histologi/Histologi/Blodkärl/Venklaff.md", + "Anatomi & Histologi/Histologi/Blodkärl/Venol.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Brosk": { + "children": [ + "Anatomi & Histologi/Histologi/Brosk/Elastiskt Brosk.md", + "Anatomi & Histologi/Histologi/Brosk/Hyalint Brosk.md", + "Anatomi & Histologi/Histologi/Brosk/index.md", + "Anatomi & Histologi/Histologi/Brosk/Kondroblast.md", + "Anatomi & Histologi/Histologi/Brosk/Kondrocyt.md", + "Anatomi & Histologi/Histologi/Brosk/Kondroprogenitor.md", + "Anatomi & Histologi/Histologi/Brosk/Lakuner.md", + "Anatomi & Histologi/Histologi/Brosk/Perikondrium.md", + "Anatomi & Histologi/Histologi/Brosk/Trådbrosk.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Bröstkörtel": { + "children": [ + "Anatomi & Histologi/Histologi/Bröstkörtel/Ductus Lactiferus.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Körtelgångar.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Lakterande och Icke-lakterande Mamma.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Lob.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Lobulus.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Mamill.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Mamma – översikt.md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Sekretorisk Del (Mamma).md", + "Anatomi & Histologi/Histologi/Bröstkörtel/Sinus Lactiferus.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Demokompendium": { + "children": [ + "Anatomi & Histologi/Histologi/Demokompendium/benvävnad.md", + "Anatomi & Histologi/Histologi/Demokompendium/bindväv.md", + "Anatomi & Histologi/Histologi/Demokompendium/blod-och-blodbildning.md", + "Anatomi & Histologi/Histologi/Demokompendium/blodkärl-klaffar.md", + "Anatomi & Histologi/Histologi/Demokompendium/broskvävnad.md", + "Anatomi & Histologi/Histologi/Demokompendium/centrala-nervsystemet.md", + "Anatomi & Histologi/Histologi/Demokompendium/endokrina-organ.md", + "Anatomi & Histologi/Histologi/Demokompendium/Epitel.md", + "Anatomi & Histologi/Histologi/Demokompendium/gastrointestinalkanalen.md", + "Anatomi & Histologi/Histologi/Demokompendium/hud-med-adnexa.md", + "Anatomi & Histologi/Histologi/Demokompendium/index.md", + "Anatomi & Histologi/Histologi/Demokompendium/introduktion.md", + "Anatomi & Histologi/Histologi/Demokompendium/kvinnliga-genitalia.md", + "Anatomi & Histologi/Histologi/Demokompendium/Lymfoida organ.md", + "Anatomi & Histologi/Histologi/Demokompendium/Manliga Genitalia.md", + "Anatomi & Histologi/Histologi/Demokompendium/Mun och Tänder.md", + "Anatomi & Histologi/Histologi/Demokompendium/muskelvävnad.md", + "Anatomi & Histologi/Histologi/Demokompendium/Nervävnad.md", + "Anatomi & Histologi/Histologi/Demokompendium/Njuren och Urinvägar.md", + "Anatomi & Histologi/Histologi/Demokompendium/Preparattabell.md", + "Anatomi & Histologi/Histologi/Demokompendium/respirationssystemet.md", + "Anatomi & Histologi/Histologi/Demokompendium/sinnesorgan.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Endokrina": { + "children": [ + "Anatomi & Histologi/Histologi/Endokrina/Adenohypofysen – celler och hormoner.md", + "Anatomi & Histologi/Histologi/Endokrina/Binjurebark – zoner och hormoner.md", + "Anatomi & Histologi/Histologi/Endokrina/Binjuremärg – kromaffina celler.md", + "Anatomi & Histologi/Histologi/Endokrina/Bisköldkörtlar – struktur och hormoner.md", + "Anatomi & Histologi/Histologi/Endokrina/Endokrin signalering – principer.md", + "Anatomi & Histologi/Histologi/Endokrina/Endokrina hormoner – produktionsorgan och funktion.md", + "Anatomi & Histologi/Histologi/Endokrina/Hypofysen – anatomi och kärl.md", + "Anatomi & Histologi/Histologi/Endokrina/Hypofysen – översikt.md", + "Anatomi & Histologi/Histologi/Endokrina/Hypofysen – portasystem.md", + "Anatomi & Histologi/Histologi/Endokrina/Hypothalamus – läge och funktion.md", + "Anatomi & Histologi/Histologi/Endokrina/index.md", + "Anatomi & Histologi/Histologi/Endokrina/Negativ feedback – principer och exempel.md", + "Anatomi & Histologi/Histologi/Endokrina/Neurohypofysen – delar och hormoner.md", + "Anatomi & Histologi/Histologi/Endokrina/Pankreas – endokrin del.md", + "Anatomi & Histologi/Histologi/Endokrina/Sköldkörteln – struktur och hormoner.md", + "Anatomi & Histologi/Histologi/Endokrina/Tallkottkörteln – struktur och funktion.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Epitel": { + "children": [ + "Anatomi & Histologi/Histologi/Epitel/Basalmembran.md", + "Anatomi & Histologi/Histologi/Epitel/Cellkontakter.md", + "Anatomi & Histologi/Histologi/Epitel/Cylindriskt Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Desmosom.md", + "Anatomi & Histologi/Histologi/Epitel/Endotel.md", + "Anatomi & Histologi/Histologi/Epitel/Enkelt Cylinderepitel Cilierat.md", + "Anatomi & Histologi/Histologi/Epitel/Enkelt Cylinderepitel Icke Cilierat.md", + "Anatomi & Histologi/Histologi/Epitel/Enkelt Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Enkelt Kubiskt Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Enkelt Skivepitel.md", + "Anatomi & Histologi/Histologi/Epitel/Ependym.md", + "Anatomi & Histologi/Histologi/Epitel/Epitelens Huvudfunktioner.md", + "Anatomi & Histologi/Histologi/Epitel/Epiteltabell.md", + "Anatomi & Histologi/Histologi/Epitel/Flerradigt Cylinderepitel Cilierat.md", + "Anatomi & Histologi/Histologi/Epitel/Flerradigt Cylinderepitel Icke Cilierat.md", + "Anatomi & Histologi/Histologi/Epitel/Flerradigt Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Cylinderepitel.md", + "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Kubiskt Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Skivepitel Förhornat.md", + "Anatomi & Histologi/Histologi/Epitel/Flerskiktat Skivepitel Oförhornat.md", + "Anatomi & Histologi/Histologi/Epitel/index.md", + "Anatomi & Histologi/Histologi/Epitel/Kubiskt Epitel.md", + "Anatomi & Histologi/Histologi/Epitel/Mesotel.md", + "Anatomi & Histologi/Histologi/Epitel/Övergångsepitel.md", + "Anatomi & Histologi/Histologi/Epitel/Övergångsepitel Urotel.md", + "Anatomi & Histologi/Histologi/Epitel/Respirationsvägsepitel.md", + "Anatomi & Histologi/Histologi/Epitel/Skivepitel.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/GI": { + "children": [ + "Anatomi & Histologi/Histologi/GI/Colon vs rektum.md", + "Anatomi & Histologi/Histologi/GI/Diabetes typ I och II.md", + "Anatomi & Histologi/Histologi/GI/Esofagus – struktur och funktion.md", + "Anatomi & Histologi/Histologi/GI/Esofagus–magsäck – övergång.md", + "Anatomi & Histologi/Histologi/GI/Gallblåsa – struktur och funktion.md", + "Anatomi & Histologi/Histologi/GI/GI-kanal – histologisk översikt.md", + "Anatomi & Histologi/Histologi/GI/Hormoner – glukagon och insulin.md", + "Anatomi & Histologi/Histologi/GI/index.md", + "Anatomi & Histologi/Histologi/GI/Lever – cellorganisation och funktion.md", + "Anatomi & Histologi/Histologi/GI/Lever – flöde av blod galla och lymfa.md", + "Anatomi & Histologi/Histologi/GI/Leverlobulus – histologisk uppbyggnad.md", + "Anatomi & Histologi/Histologi/GI/Magsäck – histologi och regionala skillnader.md", + "Anatomi & Histologi/Histologi/GI/Magsäck – slemhinnans celltyper.md", + "Anatomi & Histologi/Histologi/GI/Pankreas – struktur och funktion.md", + "Anatomi & Histologi/Histologi/GI/Rektum–analkanal – övergång.md", + "Anatomi & Histologi/Histologi/GI/Slemhinna – struktur och funktion.md", + "Anatomi & Histologi/Histologi/GI/Stora spottkörtlar – skillnader.md", + "Anatomi & Histologi/Histologi/GI/Stora spottkörtlar – struktur och funktion.md", + "Anatomi & Histologi/Histologi/GI/Tandens uppbyggnad och utveckling.md", + "Anatomi & Histologi/Histologi/GI/Tjocktarm – funktion.md", + "Anatomi & Histologi/Histologi/GI/Tjocktarm – väggens uppbyggnad.md", + "Anatomi & Histologi/Histologi/GI/Tonsiller – struktur.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Hjärta": { + "children": [ + "Anatomi & Histologi/Histologi/Hjärta/AV-nod (Atrioventrikulär Nod).md", + "Anatomi & Histologi/Histologi/Hjärta/Endocardium.md", + "Anatomi & Histologi/Histologi/Hjärta/Epicardium.md", + "Anatomi & Histologi/Histologi/Hjärta/Glansstrimmor.md", + "Anatomi & Histologi/Histologi/Hjärta/His Bunt.md", + "Anatomi & Histologi/Histologi/Hjärta/index.md", + "Anatomi & Histologi/Histologi/Hjärta/Klafflager Atrialis.md", + "Anatomi & Histologi/Histologi/Hjärta/Klafflager Fibrosa.md", + "Anatomi & Histologi/Histologi/Hjärta/Klafflager Spongiosa.md", + "Anatomi & Histologi/Histologi/Hjärta/Klafflager Ventricularis.md", + "Anatomi & Histologi/Histologi/Hjärta/Myocardium.md", + "Anatomi & Histologi/Histologi/Hjärta/Myoendokrina Celler (Hjärta).md", + "Anatomi & Histologi/Histologi/Hjärta/Nekros (Myokard).md", + "Anatomi & Histologi/Histologi/Hjärta/Pericardium fibrosum.md", + "Anatomi & Histologi/Histologi/Hjärta/Pericardium Serosum.md", + "Anatomi & Histologi/Histologi/Hjärta/Purkinjefibrer.md", + "Anatomi & Histologi/Histologi/Hjärta/Retledningssystem.md", + "Anatomi & Histologi/Histologi/Hjärta/SA-nod (Sinusknuta).md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Hud": { + "children": [ + "Anatomi & Histologi/Histologi/Hud/Apokrin Svettkörtel.md", + "Anatomi & Histologi/Histologi/Hud/Arrector Pili (Hårresarmuskel).md", + "Anatomi & Histologi/Histologi/Hud/Bindvävsskida (Hår).md", + "Anatomi & Histologi/Histologi/Hud/Cytokeratin.md", + "Anatomi & Histologi/Histologi/Hud/Dermis.md", + "Anatomi & Histologi/Histologi/Hud/Epidermis.md", + "Anatomi & Histologi/Histologi/Hud/Feromon.md", + "Anatomi & Histologi/Histologi/Hud/Fria Nervändslut.md", + "Anatomi & Histologi/Histologi/Hud/Hår Bark.md", + "Anatomi & Histologi/Histologi/Hud/Hår Cuticula.md", + "Anatomi & Histologi/Histologi/Hud/Hår Märg.md", + "Anatomi & Histologi/Histologi/Hud/Hårfollikel.md", + "Anatomi & Histologi/Histologi/Hud/Hårfollikelns Stamceller.md", + "Anatomi & Histologi/Histologi/Hud/Hårrot.md", + "Anatomi & Histologi/Histologi/Hud/Inre Epiteliala Skidan.md", + "Anatomi & Histologi/Histologi/Hud/Keratinocyt.md", + "Anatomi & Histologi/Histologi/Hud/Keratohyalingranula.md", + "Anatomi & Histologi/Histologi/Hud/Lamellära Kroppar.md", + "Anatomi & Histologi/Histologi/Hud/Langerhanscell.md", + "Anatomi & Histologi/Histologi/Hud/Meissners Korpuskel.md", + "Anatomi & Histologi/Histologi/Hud/Melanocyt.md", + "Anatomi & Histologi/Histologi/Hud/Melanosom.md", + "Anatomi & Histologi/Histologi/Hud/Merkelcell (Merkelkorpuskel).md", + "Anatomi & Histologi/Histologi/Hud/Merokrin Svettkörtel.md", + "Anatomi & Histologi/Histologi/Hud/Nervändslut – översikt.md", + "Anatomi & Histologi/Histologi/Hud/Pacinikropp (Vater-Pacini).md", + "Anatomi & Histologi/Histologi/Hud/Sebocyt.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Basale.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Corneum.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Granulosum.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Lucidum.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Papillare.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Retikulare.md", + "Anatomi & Histologi/Histologi/Hud/Stratum Spinosum.md", + "Anatomi & Histologi/Histologi/Hud/Subcutis.md", + "Anatomi & Histologi/Histologi/Hud/Svettkörtel Dark Cells.md", + "Anatomi & Histologi/Histologi/Hud/Svettkörtel Light Cells.md", + "Anatomi & Histologi/Histologi/Hud/Svettkörtel Sekretorisk Del.md", + "Anatomi & Histologi/Histologi/Hud/Svettkörtel Utförsgång.md", + "Anatomi & Histologi/Histologi/Hud/Talgkörtel.md", + "Anatomi & Histologi/Histologi/Hud/Yttre Epiteliala Skidan.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Körtlar": { + "children": [ + "Anatomi & Histologi/Histologi/Körtlar/Apokrin sekretion.md", + "Anatomi & Histologi/Histologi/Körtlar/Bägarcell.md", + "Anatomi & Histologi/Histologi/Körtlar/Endokrin Follikulär Typ.md", + "Anatomi & Histologi/Histologi/Körtlar/Endokrin strängtyp.md", + "Anatomi & Histologi/Histologi/Körtlar/Enkel Acinus.md", + "Anatomi & Histologi/Histologi/Körtlar/Enkel Tubularkörtel.md", + "Anatomi & Histologi/Histologi/Körtlar/Förgrenad Acinus.md", + "Anatomi & Histologi/Histologi/Körtlar/Förgrenad Tubular Körtel.md", + "Anatomi & Histologi/Histologi/Körtlar/Holokrin sekretion.md", + "Anatomi & Histologi/Histologi/Körtlar/index.md", + "Anatomi & Histologi/Histologi/Körtlar/Merokrin sekretion.md", + "Anatomi & Histologi/Histologi/Körtlar/Mukös Kortel.md", + "Anatomi & Histologi/Histologi/Körtlar/Myoepitelial Cell.md", + "Anatomi & Histologi/Histologi/Körtlar/Sammansatt Tubularkörtel.md", + "Anatomi & Histologi/Histologi/Körtlar/Sammansatt Tubuloacinarkörtel.md", + "Anatomi & Histologi/Histologi/Körtlar/Sekretorisk Cell.md", + "Anatomi & Histologi/Histologi/Körtlar/Seromuköskörtel.md", + "Anatomi & Histologi/Histologi/Körtlar/Seröskörtel.md", + "Anatomi & Histologi/Histologi/Körtlar/Slingrad Tubularkörtel.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/KUG": { + "children": [ + "Anatomi & Histologi/Histologi/KUG/Äggstocksfolliklar.md", + "Anatomi & Histologi/Histologi/KUG/Clitoris.md", + "Anatomi & Histologi/Histologi/KUG/Corpora Cavernosa.md", + "Anatomi & Histologi/Histologi/KUG/Labia major.md", + "Anatomi & Histologi/Histologi/KUG/Labia minor.md", + "Anatomi & Histologi/Histologi/KUG/oocyt.md", + "Anatomi & Histologi/Histologi/KUG/Ovariet.md", + "Anatomi & Histologi/Histologi/KUG/Primordialfollikel.md", + "Anatomi & Histologi/Histologi/KUG/Sekundärfollikel.md", + "Anatomi & Histologi/Histologi/KUG/Sen primärfollikel.md", + "Anatomi & Histologi/Histologi/KUG/Tidigt primärfollikel.md", + "Anatomi & Histologi/Histologi/KUG/Vagina.md", + "Anatomi & Histologi/Histologi/KUG/Vulva.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/MUG": { + "children": [ + "Anatomi & Histologi/Histologi/MUG/Accessoriska Körtlar.md", + "Anatomi & Histologi/Histologi/MUG/Ductuli Efferentes.md", + "Anatomi & Histologi/Histologi/MUG/Ductus Deferens.md", + "Anatomi & Histologi/Histologi/MUG/Ductus Epididymis.md", + "Anatomi & Histologi/Histologi/MUG/Funiculus Spermaticus.md", + "Anatomi & Histologi/Histologi/MUG/Gångsystem.md", + "Anatomi & Histologi/Histologi/MUG/Glandulae Bulbourethrales.md", + "Anatomi & Histologi/Histologi/MUG/index.md", + "Anatomi & Histologi/Histologi/MUG/Leydigceller.md", + "Anatomi & Histologi/Histologi/MUG/Penis.md", + "Anatomi & Histologi/Histologi/MUG/Prostata.md", + "Anatomi & Histologi/Histologi/MUG/Spermatogenes.md", + "Anatomi & Histologi/Histologi/MUG/Testis.md", + "Anatomi & Histologi/Histologi/MUG/Tubuli Seminiferi.md", + "Anatomi & Histologi/Histologi/MUG/Tunica Albuginea.md", + "Anatomi & Histologi/Histologi/MUG/Vesica Seminalis.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Muskelvävnad": { + "children": [ + "Anatomi & Histologi/Histologi/Muskelvävnad/Aktin.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Anatomisk Muskel.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Atrofi (Muskel).md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Endomysium.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Epimysium.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Fascikel.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Glatt Muskelcell.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Glattmuskel.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Hjärtmuskel.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Hyperplasi (Muskel).md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Hypertrofi (Muskel).md", + "Anatomi & Histologi/Histologi/Muskelvävnad/index.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Motorändplatta.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Motorisk Enhet.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber Typ I.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber Typ IIa.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelfiber Typ IIb.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Muskelspole.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Myofibrill.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Myofilament.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Myosin.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Perimysium.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Plastisk Anpassning (Glatt muskel).md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Sarcolemma.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Sarkoplasma.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Sarkoplasmatiskt Retikel.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Satellitcell (Skelettmuskel).md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Skelettmuskel.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Syncytium.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/T-tubuli.md", + "Anatomi & Histologi/Histologi/Muskelvävnad/Triad.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Nervsystem": { + "children": [ + "Anatomi & Histologi/Histologi/Nervsystem/Astrocyt.md", + "Anatomi & Histologi/Histologi/Nervsystem/Autonom Innervation.md", + "Anatomi & Histologi/Histologi/Nervsystem/Axon.md", + "Anatomi & Histologi/Histologi/Nervsystem/Blod-hjärnbarriaren.md", + "Anatomi & Histologi/Histologi/Nervsystem/Bouton En Passage.md", + "Anatomi & Histologi/Histologi/Nervsystem/Dendrit.md", + "Anatomi & Histologi/Histologi/Nervsystem/Dorsalrotsganglion.md", + "Anatomi & Histologi/Histologi/Nervsystem/Endoneurium.md", + "Anatomi & Histologi/Histologi/Nervsystem/Ependymcell.md", + "Anatomi & Histologi/Histologi/Nervsystem/Epineurium.md", + "Anatomi & Histologi/Histologi/Nervsystem/Mikroglia.md", + "Anatomi & Histologi/Histologi/Nervsystem/Myelin och axonal transport.md", + "Anatomi & Histologi/Histologi/Nervsystem/Nervsystemet Oversikt och celler.md", + "Anatomi & Histologi/Histologi/Nervsystem/Neurontyper.md", + "Anatomi & Histologi/Histologi/Nervsystem/Nissl-substans.md", + "Anatomi & Histologi/Histologi/Nervsystem/Oligodendrocyt.md", + "Anatomi & Histologi/Histologi/Nervsystem/Perineurium.md", + "Anatomi & Histologi/Histologi/Nervsystem/Postsynaps.md", + "Anatomi & Histologi/Histologi/Nervsystem/Presynaps.md", + "Anatomi & Histologi/Histologi/Nervsystem/Ranviers nod.md", + "Anatomi & Histologi/Histologi/Nervsystem/Satellitcell.md", + "Anatomi & Histologi/Histologi/Nervsystem/Schwanncell.md", + "Anatomi & Histologi/Histologi/Nervsystem/Soma.md", + "Anatomi & Histologi/Histologi/Nervsystem/Synaps.md", + "Anatomi & Histologi/Histologi/Nervsystem/Synaptisk klyfta.md", + "Anatomi & Histologi/Histologi/Nervsystem/Synaptiska receptorer.md", + "Anatomi & Histologi/Histologi/Nervsystem/Synaptiska vesiklar.md", + "Anatomi & Histologi/Histologi/Nervsystem/Transmittorer.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Njure": { + "children": [ + "Anatomi & Histologi/Histologi/Njure/Afferent arteriol.md", + "Anatomi & Histologi/Histologi/Njure/Blodfiltrationsbarriär.md", + "Anatomi & Histologi/Histologi/Njure/Bowmans kapsel.md", + "Anatomi & Histologi/Histologi/Njure/Distala tubulus.md", + "Anatomi & Histologi/Histologi/Njure/Efferent arteriol.md", + "Anatomi & Histologi/Histologi/Njure/Glomerulus.md", + "Anatomi & Histologi/Histologi/Njure/Henles slynga.md", + "Anatomi & Histologi/Histologi/Njure/index.md", + "Anatomi & Histologi/Histologi/Njure/Juxtaglomerulär apparat.md", + "Anatomi & Histologi/Histologi/Njure/Makula densa.md", + "Anatomi & Histologi/Histologi/Njure/Märgstråle.md", + "Anatomi & Histologi/Histologi/Njure/Mesangiell cell.md", + "Anatomi & Histologi/Histologi/Njure/Nefron.md", + "Anatomi & Histologi/Histologi/Njure/Njurbäcken.md", + "Anatomi & Histologi/Histologi/Njure/Njurbark.md", + "Anatomi & Histologi/Histologi/Njure/Njure.md", + "Anatomi & Histologi/Histologi/Njure/Njurmärg.md", + "Anatomi & Histologi/Histologi/Njure/Njurpapill.md", + "Anatomi & Histologi/Histologi/Njure/Podocyt.md", + "Anatomi & Histologi/Histologi/Njure/Proximala tubulus.md", + "Anatomi & Histologi/Histologi/Njure/Renin.md", + "Anatomi & Histologi/Histologi/Njure/Samlingsrör.md", + "Anatomi & Histologi/Histologi/Njure/Vasa recta.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Respiration": { + "children": [ + "Anatomi & Histologi/Histologi/Respiration/Alveol.md", + "Anatomi & Histologi/Histologi/Respiration/Alveolargång.md", + "Anatomi & Histologi/Histologi/Respiration/Alveolarsäck.md", + "Anatomi & Histologi/Histologi/Respiration/Bronkiol.md", + "Anatomi & Histologi/Histologi/Respiration/Epiglottis.md", + "Anatomi & Histologi/Histologi/Respiration/Extrapulmonär Bronk.md", + "Anatomi & Histologi/Histologi/Respiration/index.md", + "Anatomi & Histologi/Histologi/Respiration/Intrapulmonär Bronk.md", + "Anatomi & Histologi/Histologi/Respiration/Näshåla.md", + "Anatomi & Histologi/Histologi/Respiration/Olfaktoriskt Epitel.md", + "Anatomi & Histologi/Histologi/Respiration/Pleura.md", + "Anatomi & Histologi/Histologi/Respiration/Respiratorisk Bronkiol.md", + "Anatomi & Histologi/Histologi/Respiration/Stämband.md", + "Anatomi & Histologi/Histologi/Respiration/Terminal Bronkiol.md", + "Anatomi & Histologi/Histologi/Respiration/Trachea.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Histologi/Urinvägar": { + "children": [ + "Anatomi & Histologi/Histologi/Urinvägar/Paraplycell.md", + "Anatomi & Histologi/Histologi/Urinvägar/Ureter.md", + "Anatomi & Histologi/Histologi/Urinvägar/Urinblåsa.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Instuderingsfrågor": { + "children": [ + "Anatomi & Histologi/Instuderingsfrågor/1.1 Rörelseapparaten.md", + "Anatomi & Histologi/Instuderingsfrågor/1.2 Hjärta och cirkulation.md", + "Anatomi & Histologi/Instuderingsfrågor/index.md", + "Anatomi & Histologi/Instuderingsfrågor/Zoom meeting.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Målbeskrivning": { + "children": [ + "Anatomi & Histologi/Målbeskrivning/1.1 Anatomi Rörelseapparaten.md", + "Anatomi & Histologi/Målbeskrivning/1.2 Anatomi Hjärta och cirkulation.md", + "Anatomi & Histologi/Målbeskrivning/2.1 Histologi Epitel.md", + "Anatomi & Histologi/Målbeskrivning/2.2 Histologi Bindväv.md", + "Anatomi & Histologi/Målbeskrivning/2.3 Histologi Ben och Benbildning.md", + "Anatomi & Histologi/Målbeskrivning/2.4 Nervsystem.md", + "Anatomi & Histologi/Målbeskrivning/2.6 Histologi Muskelvävnad och Hjärta.md", + "Anatomi & Histologi/Målbeskrivning/2.7 Histologi Blodkärl, blod och blodbildning.md", + "Anatomi & Histologi/Målbeskrivning/3.1 Histologi Lymfatiska organ.md", + "Anatomi & Histologi/Målbeskrivning/3.2 Histologi Hud och Adnexa.md", + "Anatomi & Histologi/Målbeskrivning/3.3 Anatomi GI.md", + "Anatomi & Histologi/Målbeskrivning/3.4 Histologi Endokrina organ.md", + "Anatomi & Histologi/Målbeskrivning/3.5 Histologi GI.md", + "Anatomi & Histologi/Målbeskrivning/3.6 Respiration.md", + "Anatomi & Histologi/Målbeskrivning/4.1 Anatomi MUG, KUG, Njurar, urinvägar.md", + "Anatomi & Histologi/Målbeskrivning/4.2 Histologi KUG 1.md", + "Anatomi & Histologi/Målbeskrivning/4.3 Histologi Njurar och Urinvägar.md", + "Anatomi & Histologi/Målbeskrivning/4.4 Histologi KUG 2.md", + "Anatomi & Histologi/Målbeskrivning/4.5 Histologi MUG.md", + "Anatomi & Histologi/Målbeskrivning/index.md", + "Anatomi & Histologi/Målbeskrivning/Mål.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Målbeskrivning 1": { + "children": [ + "Anatomi & Histologi/Målbeskrivning 1/Alla mål.md", + "Anatomi & Histologi/Målbeskrivning 1/Plan.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi/Tentor": { + "children": [ + "Anatomi & Histologi/Tentor/ht21.json", + "Anatomi & Histologi/Tentor/ht21.md", + "Anatomi & Histologi/Tentor/ht22.json", + "Anatomi & Histologi/Tentor/ht22.md", + "Anatomi & Histologi/Tentor/ht22om.json", + "Anatomi & Histologi/Tentor/ht22om.md", + "Anatomi & Histologi/Tentor/ht23.json", + "Anatomi & Histologi/Tentor/ht23.md", + "Anatomi & Histologi/Tentor/ht24.json", + "Anatomi & Histologi/Tentor/ht24.md", + "Anatomi & Histologi/Tentor/index.md", + "Anatomi & Histologi/Tentor/vt22.json", + "Anatomi & Histologi/Tentor/vt22.md", + "Anatomi & Histologi/Tentor/vt22sommar.md", + "Anatomi & Histologi/Tentor/vt23.json", + "Anatomi & Histologi/Tentor/vt23.md", + "Anatomi & Histologi/Tentor/vt23sommar.md", + "Anatomi & Histologi/Tentor/vt24.json", + "Anatomi & Histologi/Tentor/vt24.md", + "Anatomi & Histologi/Tentor/vt24sommar.md", + "Anatomi & Histologi/Tentor/vt25.md", + "Anatomi & Histologi/Tentor/vt25.json", + "Anatomi & Histologi/Tentor/vt25-omtenta.json", + "Anatomi & Histologi/Tentor/vt25-omtenta.md", + "Anatomi & Histologi/Tentor/vt25sommar.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2": { + "children": [ + "Anatomi & Histologi 2/Öga anatomi", + "Anatomi & Histologi 2/Öra anatomi", + "Anatomi & Histologi 2/Öga histologi", + "Anatomi & Histologi 2/Öra histologi", + "Anatomi & Histologi 2/TBL Öga & öra", + "Anatomi & Histologi 2/CNS översikt", + "Anatomi & Histologi 2/CNS cerebrum", + "Anatomi & Histologi 2/CNS truncus encephali", + "Anatomi & Histologi 2/CNS diencephalon", + "Anatomi & Histologi 2/CNS medulla spinalis", + "Anatomi & Histologi 2/CNS hinnor, hålrum och kärl", + "Anatomi & Histologi 2/CNS histologi", + "Anatomi & Histologi 2/PNS", + "Anatomi & Histologi 2/ANS", + "Anatomi & Histologi 2/TBL CNS", + "Anatomi & Histologi 2/Gamla tentor", + "Anatomi & Histologi 2/Kandidaterna", + "Anatomi & Histologi 2/! Översikt.md", + "Anatomi & Histologi 2/DEMOkompedium T1 .docx", + "Anatomi & Histologi 2/Demokompendium.md", + "Anatomi & Histologi 2/F. Detaljerad målbeskrivning.docx", + "Anatomi & Histologi 2/Instuderingsfrågor.md", + "Anatomi & Histologi 2/Instuderingsfrågor.pdf.pdf", + "Anatomi & Histologi 2/Målbeskrivning.md", + "Anatomi & Histologi 2/Schema.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/ANS": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS cerebrum": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS diencephalon": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS hinnor, hålrum och kärl": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS histologi": { + "children": [ + "Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.md", + "Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS medulla spinalis": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS översikt": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/CNS truncus encephali": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Gamla tentor": { + "children": [ + "Anatomi & Histologi 2/Gamla tentor/2025-08-08", + "Anatomi & Histologi 2/Gamla tentor/2022-01-06-adrihajdu-Anatomi och histologi 2 quiz.docx", + "Anatomi & Histologi 2/Gamla tentor/2022-01-15-0032-BWD.pdf", + "Anatomi & Histologi 2/Gamla tentor/2022-06-01-0101-MGY.pdf", + "Anatomi & Histologi 2/Gamla tentor/2023-01-11-0044-PRX.pdf", + "Anatomi & Histologi 2/Gamla tentor/2023-02-23-adderino-anki.apkg", + "Anatomi & Histologi 2/Gamla tentor/2023-05-31-0100-DKS.pdf", + "Anatomi & Histologi 2/Gamla tentor/2024-01-10-0009-RYY.pdf", + "Anatomi & Histologi 2/Gamla tentor/2024-01-10-0088-KOM.pdf", + "Anatomi & Histologi 2/Gamla tentor/2024-05-29-0125-GZX.pdf", + "Anatomi & Histologi 2/Gamla tentor/2025-01-15-0021-HRY.pdf", + "Anatomi & Histologi 2/Gamla tentor/2025-01-15-0024-HFS.pdf", + "Anatomi & Histologi 2/Gamla tentor/2025-02-08-0003-ESW.pdf", + "Anatomi & Histologi 2/Gamla tentor/2025-02-08-0004-PNZ.pdf", + "Anatomi & Histologi 2/Gamla tentor/2025-06-03-0003-UJR.pdf", + "Anatomi & Histologi 2/Gamla tentor/Anatomi och Histologi 2 av Nils.apkg", + "Anatomi & Histologi 2/Gamla tentor/gusgoranvi Anki.zip", + "Anatomi & Histologi 2/Gamla tentor/Maja Arnetorp Ankisar anatomi och histologi del 2.apkg", + "Anatomi & Histologi 2/Gamla tentor/Statistik.md", + "Anatomi & Histologi 2/Gamla tentor/tentor-utan-svar.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Gamla tentor/2025-08-08": { + "children": [ + "Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.pdf", + "Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.md" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Kandidaterna": { + "children": [ + "Anatomi & Histologi 2/Kandidaterna/2022-09-05-sara-berglin-sammanfattning.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-01-23-annie-bernn-sammanfattning.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-motorik.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-somatosensorik.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-syn.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-vestibularis.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo-alonso-sammanfattning-hörsel.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-03-09-tuve34-sammanfattning.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-05-17-judy-mind-map-cns-3.pdf", + "Anatomi & Histologi 2/Kandidaterna/2023-06-26-dante-salheri.pdf", + "Anatomi & Histologi 2/Kandidaterna/2025-09-25-gabriel-anteckningar.pdf", + "Anatomi & Histologi 2/Kandidaterna/Anatomi & histologi 2 - Adian Fashil.pdf", + "Anatomi & Histologi 2/Kandidaterna/anonym anteckningar.pdf", + "Anatomi & Histologi 2/Kandidaterna/e70ae2b3-eec3-4eaf-a750-54ef474aca93.pdf", + "Anatomi & Histologi 2/Kandidaterna/Tentafrågor gamla läkarprogrammet.pdf", + "Anatomi & Histologi 2/Kandidaterna/tentamen HT23 inga svar.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Öga anatomi": { + "children": [ + "Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.md", + "Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.pdf", + "Anatomi & Histologi 2/Öga anatomi/Instuderingsfrågor.md", + "Anatomi & Histologi 2/Öga anatomi/Målbeskrivning.md", + "Anatomi & Histologi 2/Öga anatomi/Slides.md", + "Anatomi & Histologi 2/Öga anatomi/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Öga histologi": { + "children": [ + "Anatomi & Histologi 2/Öga histologi/~$Ögat histologi handout.pptx", + "Anatomi & Histologi 2/Öga histologi/24 Eye.pdf", + "Anatomi & Histologi 2/Öga histologi/24 Eye.md", + "Anatomi & Histologi 2/Öga histologi/Instuderingsfrågor.md", + "Anatomi & Histologi 2/Öga histologi/Målbeskrivning.md", + "Anatomi & Histologi 2/Öga histologi/Ögat histologi handout.pptx", + "Anatomi & Histologi 2/Öga histologi/Slides.md", + "Anatomi & Histologi 2/Öga histologi/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Öra anatomi": { + "children": [ + "Anatomi & Histologi 2/Öra anatomi/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/Öra histologi": { + "children": [ + "Anatomi & Histologi 2/Öra histologi/~$Ögat histologi handout.pptx", + "Anatomi & Histologi 2/Öra histologi/25 Ear.md", + "Anatomi & Histologi 2/Öra histologi/25 Ear.pdf", + "Anatomi & Histologi 2/Öra histologi/Ögat histologi handout.pptx", + "Anatomi & Histologi 2/Öra histologi/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/PNS": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/TBL CNS": { + "children": [], + "sortOrder": "custom" + }, + "Anatomi & Histologi 2/TBL Öga & öra": { + "children": [], + "sortOrder": "custom" + }, + "attachments": { + "children": [ + "attachments/Pasted image 20251209111439.png", + "attachments/Pasted image 20251209104203.png", + "attachments/Pasted image 20251009083311.png", + "attachments/Pasted image 20251009083336.png", + "attachments/Pasted image 20251009083506.png", + "attachments/Pasted image 20251009094822.png", + "attachments/Pasted image 20251009185652.png", + "attachments/Pasted image 20251009185731.png", + "attachments/Pasted image 20251009185740.png", + "attachments/Pasted image 20251009191239.png", + "attachments/Pasted image 20251009191323.png", + "attachments/Pasted image 20251009191345.png", + "attachments/Pasted image 20251009191512.png", + "attachments/Pasted image 20251009191835.png", + "attachments/Pasted image 20251009194855.png", + "attachments/Pasted image 20251009194913.png", + "attachments/Pasted image 20251009194927.png", + "attachments/Pasted image 20251009194941.png", + "attachments/Pasted image 20251009194956.png", + "attachments/Pasted image 20251009195012.png", + "attachments/Pasted image 20251009195041.png", + "attachments/Pasted image 20251009195052.png", + "attachments/Pasted image 20251009195116.png", + "attachments/Pasted image 20251009195129.png", + "attachments/Pasted image 20251009195312.png", + "attachments/Pasted image 20251009195325.png", + "attachments/Pasted image 20251009195340.png", + "attachments/Pasted image 20251009195402.png", + "attachments/Pasted image 20251009195413.png", + "attachments/Pasted image 20251009195426.png", + "attachments/Pasted image 20251009195440.png", + "attachments/Pasted image 20251009195452.png", + "attachments/Pasted image 20251009195504.png", + "attachments/Pasted image 20251009195518.png", + "attachments/Pasted image 20251009195531.png", + "attachments/Pasted image 20251009195544.png", + "attachments/Pasted image 20251009195555.png", + "attachments/Pasted image 20251009195605.png", + "attachments/Pasted image 20251009195618.png", + "attachments/Pasted image 20251009195630.png", + "attachments/Pasted image 20251009195642.png", + "attachments/Pasted image 20251009195653.png", + "attachments/Pasted image 20251009201853.png", + "attachments/Pasted image 20251009201902.png", + "attachments/Pasted image 20251009201915.png", + "attachments/Pasted image 20251009201929.png", + "attachments/Pasted image 20251009201954.png", + "attachments/Pasted image 20251009202003.png", + "attachments/Pasted image 20251009202148.png", + "attachments/Pasted image 20251009202216.png", + "attachments/Pasted image 20251009202337.png", + "attachments/Pasted image 20251009202350.png", + "attachments/Pasted image 20251009202442.png", + "attachments/Pasted image 20251009203716.png", + "attachments/Pasted image 20251009203738.png", + "attachments/Pasted image 20251009203756.png", + "attachments/Pasted image 20251010111337.png", + "attachments/Pasted image 20251010111727.png", + "attachments/Pasted image 20251010111818.png", + "attachments/Pasted image 20251010113521.png", + "attachments/Pasted image 20251010134449.png", + "attachments/Pasted image 20251010135008.png", + "attachments/Pasted image 20251010141529.png", + "attachments/Pasted image 20251010142904.png", + "attachments/Pasted image 20251010142940.png", + "attachments/Pasted image 20251010194143.png", + "attachments/Pasted image 20251010194225.png", + "attachments/Pasted image 20251010194249.png", + "attachments/Pasted image 20251010194412.png", + "attachments/Pasted image 20251013082115.png", + "attachments/Pasted image 20251013082506.png", + "attachments/Pasted image 20251013082702.png", + "attachments/Pasted image 20251013082822.png", + "attachments/Pasted image 20251013083139.png", + "attachments/Pasted image 20251013083517.png", + "attachments/Pasted image 20251013083733.png", + "attachments/Pasted image 20251013083841.png", + "attachments/Pasted image 20251013083956.png", + "attachments/Pasted image 20251013084103.png", + "attachments/Pasted image 20251013084121.png", + "attachments/Pasted image 20251013091255.png", + "attachments/Pasted image 20251013091428.png", + "attachments/Pasted image 20251013092357.png", + "attachments/Pasted image 20251013093144.png", + "attachments/Pasted image 20251013093246.png", + "attachments/Pasted image 20251013093316.png", + "attachments/Pasted image 20251013093713.png", + "attachments/Pasted image 20251013102442.png", + "attachments/Pasted image 20251013125816.png", + "attachments/Pasted image 20251013130752.png", + "attachments/Pasted image 20251013131124.png", + "attachments/Pasted image 20251013131138.png", + "attachments/Pasted image 20251013142434.png", + "attachments/Pasted image 20251013144037.png", + "attachments/Pasted image 20251013234100.png", + "attachments/Pasted image 20251013234128.png", + "attachments/Pasted image 20251013234200.png", + "attachments/Pasted image 20251013234226.png", + "attachments/Pasted image 20251013234249.png", + "attachments/Pasted image 20251013234307.png", + "attachments/Pasted image 20251013234337.png", + "attachments/Pasted image 20251013234405.png", + "attachments/Pasted image 20251014084300.png", + "attachments/Pasted image 20251014084908.png", + "attachments/Pasted image 20251014085324.png", + "attachments/Pasted image 20251014093027.png", + "attachments/Pasted image 20251014093206.png", + "attachments/Pasted image 20251014093531.png", + "attachments/Pasted image 20251014093758.png", + "attachments/Pasted image 20251014094004.png", + "attachments/Pasted image 20251014095436.png", + "attachments/Pasted image 20251014095600.png", + "attachments/Pasted image 20251014095634.png", + "attachments/Pasted image 20251014095958.png", + "attachments/Pasted image 20251014103332.png", + "attachments/Pasted image 20251015081047.png", + "attachments/Pasted image 20251015081118.png", + "attachments/Pasted image 20251015081141.png", + "attachments/Pasted image 20251015081142.png", + "attachments/Pasted image 20251015081202.png", + "attachments/Pasted image 20251015081205.png", + "attachments/Pasted image 20251015081216.png", + "attachments/Pasted image 20251015081256.png", + "attachments/Pasted image 20251015081457.png", + "attachments/Pasted image 20251016101908.png", + "attachments/Pasted image 20251027185923.png", + "attachments/Pasted image 20251027205207.png", + "attachments/Pasted image 20251105120149.png", + "attachments/Pasted image 20251105144005.png", + "attachments/Pasted image 20251105150519.png", + "attachments/Pasted image 20251105153332.png", + "attachments/Pasted image 20251106083847.png", + "attachments/Pasted image 20251106084028.png", + "attachments/Pasted image 20251106092004.png", + "attachments/Pasted image 20251106143824.png", + "attachments/Pasted image 20251106144030.png", + "attachments/Pasted image 20251106145417.png", + "attachments/Pasted image 20251107092012.png", + "attachments/Pasted image 20251107092234.png", + "attachments/Pasted image 20251107092720.png", + "attachments/Pasted image 20251107092855.png", + "attachments/Pasted image 20251107094222.png", + "attachments/Pasted image 20251107094532.png", + "attachments/Pasted image 20251107100016.png", + "attachments/Pasted image 20251107100241.png", + "attachments/Pasted image 20251107102710.png", + "attachments/Pasted image 20251107102828.png", + "attachments/Pasted image 20251107103007.png", + "attachments/Pasted image 20251107103403.png", + "attachments/Pasted image 20251107103427.png", + "attachments/Pasted image 20251107122326.png", + "attachments/Pasted image 20251107122832.png", + "attachments/Pasted image 20251107125523.png", + "attachments/Pasted image 20251107141657.png", + "attachments/Pasted image 20251107143236.png", + "attachments/Pasted image 20251108121121.png", + "attachments/Pasted image 20251111103839.png", + "attachments/Pasted image 20251111105409.png", + "attachments/Pasted image 20251111110058.png", + "attachments/Pasted image 20251111110139.png", + "attachments/Pasted image 20251112081325.png", + "attachments/Pasted image 20251112085054.png", + "attachments/Pasted image 20251112085710.png", + "attachments/Pasted image 20251112093538.png", + "attachments/Pasted image 20251112093609.png", + "attachments/Pasted image 20251112094043.png", + "attachments/Pasted image 20251112095158.png", + "attachments/Pasted image 20251112095205.png", + "attachments/Pasted image 20251114102119.png", + "attachments/Pasted image 20251114102625.png", + "attachments/Pasted image 20251114102644.png", + "attachments/Pasted image 20251114103044.png", + "attachments/Pasted image 20251114103113.png", + "attachments/Pasted image 20251114103312.png", + "attachments/Pasted image 20251114104912.png", + "attachments/Pasted image 20251114104918.png", + "attachments/Pasted image 20251114104938.png", + "attachments/Pasted image 20251114105141.png", + "attachments/Pasted image 20251114105502.png", + "attachments/Pasted image 20251114113432.png", + "attachments/Pasted image 20251114113453.png", + "attachments/Pasted image 20251114114501.png", + "attachments/Pasted image 20251117092226.png", + "attachments/Pasted image 20251117102815.png", + "attachments/Pasted image 20251117102926.png", + "attachments/Pasted image 20251117103100.png", + "attachments/Pasted image 20251117103159.png", + "attachments/Pasted image 20251117103518.png", + "attachments/Pasted image 20251117110537.png", + "attachments/Pasted image 20251117110947.png", + "attachments/Pasted image 20251117111753.png", + "attachments/Pasted image 20251117111922.png", + "attachments/Pasted image 20251117113528.png", + "attachments/Pasted image 20251117113814.png", + "attachments/Pasted image 20251117134344.png", + "attachments/Pasted image 20251117134540.png", + "attachments/Pasted image 20251117134953.png", + "attachments/Pasted image 20251117135916.png", + "attachments/Pasted image 20251117142658.png", + "attachments/Pasted image 20251117143608.png", + "attachments/Pasted image 20251117143805.png", + "attachments/Pasted image 20251117145754.png", + "attachments/Pasted image 20251118084220.png", + "attachments/Pasted image 20251118084654.png", + "attachments/Pasted image 20251118084729.png", + "attachments/Pasted image 20251118085246.png", + "attachments/Pasted image 20251118085412.png", + "attachments/Pasted image 20251118091516.png", + "attachments/Pasted image 20251118092253.png", + "attachments/Pasted image 20251120092257.png", + "attachments/Pasted image 20251120092944.png", + "attachments/Pasted image 20251120093249.png", + "attachments/Pasted image 20251120093433.png", + "attachments/Pasted image 20251120093609.png", + "attachments/Pasted image 20251120094230.png", + "attachments/Pasted image 20251120094424.png", + "attachments/Pasted image 20251120095449.png", + "attachments/Pasted image 20251120095744.png", + "attachments/Pasted image 20251120095916.png", + "attachments/Pasted image 20251120100019.png", + "attachments/Pasted image 20251120102405.png", + "attachments/Pasted image 20251120102841.png", + "attachments/Pasted image 20251120103237.png", + "attachments/Pasted image 20251120103622.png", + "attachments/Pasted image 20251120104003.png", + "attachments/Pasted image 20251120104141.png", + "attachments/Pasted image 20251120104236.png", + "attachments/Pasted image 20251120104417.png", + "attachments/Pasted image 20251120104737.png", + "attachments/Pasted image 20251120105000.png", + "attachments/Pasted image 20251120105345.png", + "attachments/Pasted image 20251120105404.png", + "attachments/Pasted image 20251120105531.png", + "attachments/Pasted image 20251120105722.png", + "attachments/Pasted image 20251120105759.png", + "attachments/Pasted image 20251120110037.png", + "attachments/Pasted image 20251120110123.png", + "attachments/Pasted image 20251120110135.png", + "attachments/Pasted image 20251120112102.png", + "attachments/Pasted image 20251120112333.png", + "attachments/Pasted image 20251120112426.png", + "attachments/Pasted image 20251120112639.png", + "attachments/Pasted image 20251120112819.png", + "attachments/Pasted image 20251120113102.png", + "attachments/Pasted image 20251120113310.png", + "attachments/Pasted image 20251120113550.png", + "attachments/Pasted image 20251120113832.png", + "attachments/Pasted image 20251120113850.png", + "attachments/Pasted image 20251120114017.png", + "attachments/Pasted image 20251120114149.png", + "attachments/Pasted image 20251120114332.png", + "attachments/Pasted image 20251120114415.png", + "attachments/Pasted image 20251120114519.png", + "attachments/Pasted image 20251120114710.png", + "attachments/Pasted image 20251120114840.png", + "attachments/Pasted image 20251120114922.png", + "attachments/Pasted image 20251121081923.png", + "attachments/Pasted image 20251121081958.png", + "attachments/Pasted image 20251121091934.png", + "attachments/Pasted image 20251121092321.png", + "attachments/Pasted image 20251121092516.png", + "attachments/Pasted image 20251121092705.png", + "attachments/Pasted image 20251121092822.png", + "attachments/Pasted image 20251121093320.png", + "attachments/Pasted image 20251121093608.png", + "attachments/Pasted image 20251121093757.png", + "attachments/Pasted image 20251121094040.png", + "attachments/Pasted image 20251121094218.png", + "attachments/Pasted image 20251121094606.png", + "attachments/Pasted image 20251121094625.png", + "attachments/Pasted image 20251121094943.png", + "attachments/Pasted image 20251121095304.png", + "attachments/Pasted image 20251121095710.png", + "attachments/Pasted image 20251121095938.png", + "attachments/Pasted image 20251121102046.png", + "attachments/Pasted image 20251121102319.png", + "attachments/Pasted image 20251121102545.png", + "attachments/Pasted image 20251121102658.png", + "attachments/Pasted image 20251121102747.png", + "attachments/Pasted image 20251121102941.png", + "attachments/Pasted image 20251121103232.png", + "attachments/Pasted image 20251121103336.png", + "attachments/Pasted image 20251121103747.png", + "attachments/Pasted image 20251121103912.png", + "attachments/Pasted image 20251121104100.png", + "attachments/Pasted image 20251121104106.png", + "attachments/Pasted image 20251121104555.png", + "attachments/Pasted image 20251121104707.png", + "attachments/Pasted image 20251121105233.png", + "attachments/Pasted image 20251121111405.png", + "attachments/Pasted image 20251121111829.png", + "attachments/Pasted image 20251121111945.png", + "attachments/Pasted image 20251121112158.png", + "attachments/Pasted image 20251121112518.png", + "attachments/Pasted image 20251121113014.png", + "attachments/Pasted image 20251121113046.png", + "attachments/Pasted image 20251121113406.png", + "attachments/Pasted image 20251121114215.png", + "attachments/Pasted image 20251121114507.png", + "attachments/Pasted image 20251121114559.png", + "attachments/Pasted image 20251123220725.png", + "attachments/Pasted image 20251125093128.png", + "attachments/Pasted image 20251125120137.png", + "attachments/Pasted image 20251125132516.png", + "attachments/Pasted image 20251125133543.png", + "attachments/Pasted image 20251125135429.png", + "attachments/Pasted image 20251127131807.png", + "attachments/Pasted image 20251128074813.png", + "attachments/Pasted image 20251128080404.png", + "attachments/Pasted image 20251128080420.png", + "attachments/Pasted image 20251128081622.png", + "attachments/Pasted image 20251128081722.png", + "attachments/Pasted image 20251128083857.png", + "attachments/Pasted image 20251128085457.png", + "attachments/Pasted image 20251128085533.png", + "attachments/Pasted image 20251128085555.png", + "attachments/Pasted image 20251128085603.png", + "attachments/Pasted image 20251128085625.png", + "attachments/Pasted image 20251128085752.png", + "attachments/Pasted image 20251128104012.png", + "attachments/Pasted image 20251128104645.png", + "attachments/Pasted image 20251128104854.png", + "attachments/Pasted image 20251128104949.png", + "attachments/Pasted image 20251128144158.png", + "attachments/Pasted image 20251128145049.png", + "attachments/Pasted image 20251128152451.png", + "attachments/Pasted image 20251128152516.png", + "attachments/Pasted image 20251128153544.png", + "attachments/Pasted image 20251128153720.png", + "attachments/Pasted image 20251128154328.png", + "attachments/Pasted image 20251128154656.png", + "attachments/Pasted image 20251129234842.png", + "attachments/Pasted image 20251129235001.png", + "attachments/Pasted image 20251129235023.png", + "attachments/Pasted image 20251129235131.png", + "attachments/Pasted image 20251129235154.png", + "attachments/Pasted image 20251129235214.png", + "attachments/Pasted image 20251129235251.png", + "attachments/Pasted image 20251129235332.png", + "attachments/Pasted image 20251129235408.png", + "attachments/Pasted image 20251129235411.png", + "attachments/Pasted image 20251129235437.png", + "attachments/Pasted image 20251129235458.png", + "attachments/Pasted image 20251129235536.png", + "attachments/Pasted image 20251129235602.png", + "attachments/Pasted image 20251129235633.png", + "attachments/Pasted image 20251129235730.png", + "attachments/Pasted image 20251129235808.png", + "attachments/Pasted image 20251129235900.png", + "attachments/Pasted image 20251129235913.png", + "attachments/Pasted image 20251130105827.png", + "attachments/Pasted image 20251201104247.png", + "attachments/Pasted image 20251201112326.png", + "attachments/Pasted image 20251201114708.png", + "attachments/Pasted image 20251202082256.png", + "attachments/Pasted image 20251202082551.png", + "attachments/Pasted image 20251202084148.png", + "attachments/Pasted image 20251202084530.png", + "attachments/Pasted image 20251203104011.png", + "attachments/Pasted image 20251203104338.png", + "attachments/Pasted image 20251203104752.png", + "attachments/Pasted image 20251203105326.png", + "attachments/Pasted image 20251203110550.png", + "attachments/Pasted image 20251203112517.png", + "attachments/Pasted image 20251203113615.png", + "attachments/Pasted image 20251203114330.png", + "attachments/Pasted image 20251203114930.png", + "attachments/Pasted image 20251203115628.png", + "attachments/Pasted image 20251203115653.png", + "attachments/Pasted image 20251203132330.png", + "attachments/Pasted image 20251203132940.png", + "attachments/Pasted image 20251203133759.png", + "attachments/Pasted image 20251203133837.png", + "attachments/Pasted image 20251203134701.png", + "attachments/Pasted image 20251203142123.png", + "attachments/Pasted image 20251203142252.png", + "attachments/Pasted image 20251205132645.png" + ], + "sortOrder": "custom" + }, + "Biokemi": { + "children": [ + "Biokemi/Frågestund.md", + "Biokemi/Regleringar.md", + "Biokemi/Cellulära processer", + "Biokemi/Gamla tentor", + "Biokemi/Introduktionslab", + "Biokemi/Makromolekyler", + "Biokemi/Metabolism", + "Biokemi/Plasmidlabb", + "Biokemi/Proteinseminarie", + "Biokemi/Metabolismseminarie", + "Biokemi/Behöver göra.md", + "Biokemi/Biokemi Base.base", + "Biokemi/Introduktion.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer": { + "children": [ + "Biokemi/Cellulära processer/DNA replikation", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter", + "Biokemi/Cellulära processer/Kromatin", + "Biokemi/Cellulära processer/RNA syntes", + "Biokemi/Cellulära processer/Translation", + "Biokemi/Cellulära processer/Transport över cellmembran", + "Biokemi/Cellulära processer/Utforska proteiner" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/DNA replikation": { + "children": [ + "Biokemi/Cellulära processer/DNA replikation/Anteckningar.md", + "Biokemi/Cellulära processer/DNA replikation/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/DNA replikation/Instuderingsfrågor_DNA replikation-5.pdf", + "Biokemi/Cellulära processer/DNA replikation/Lärandemål.md", + "Biokemi/Cellulära processer/DNA replikation/Provfrågor.md", + "Biokemi/Cellulära processer/DNA replikation/Slides.md", + "Biokemi/Cellulära processer/DNA replikation/Slides.pdf.pdf", + "Biokemi/Cellulära processer/DNA replikation/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation": { + "children": [ + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Anteckningar.md", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Instuderingsfrågor_Initiering och terminering av eukaryot replikation-5.pdf", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Lärandemål.md", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Provfrågor.md", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Slides.md", + "Biokemi/Cellulära processer/Initiering och terminering av DNA replikation/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter": { + "children": [ + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Anteckningar.md", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Instuderingsfrågor_genuttryck i prokaryoter-3.pdf", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Lärandemål.md", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Provfrågor.md", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Slides.md", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Slides.pdf.pdf", + "Biokemi/Cellulära processer/Kontroll av genuttryck i prokaryoter/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/Kromatin": { + "children": [ + "Biokemi/Cellulära processer/Kromatin/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/Kromatin/Chapter 29 RNA Functions, Biosynthesis, and Processing.md", + "Biokemi/Cellulära processer/Kromatin/Chapter 29 RNA Functions, Biosynthesis, and Processing.pdf", + "Biokemi/Cellulära processer/Kromatin/Instuderingsfrågor_Kromatin-5.pdf", + "Biokemi/Cellulära processer/Kromatin/Kromatin Anteckningar.md", + "Biokemi/Cellulära processer/Kromatin/Kromatin Lärandemål.md", + "Biokemi/Cellulära processer/Kromatin/Kromatin Provfrågor.md", + "Biokemi/Cellulära processer/Kromatin/Kromatin Stoff.md", + "Biokemi/Cellulära processer/Kromatin/Slides.md", + "Biokemi/Cellulära processer/Kromatin/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/RNA syntes": { + "children": [ + "Biokemi/Cellulära processer/RNA syntes/Anteckningar.md", + "Biokemi/Cellulära processer/RNA syntes/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Instuderingsfrågor.pdf.pdf", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Kurslitteratur.md", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Kurslitteratur.pdf.pdf", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Lärandemål.md", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Provfrågor.md", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Slides.md", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Slides.pdf.pdf", + "Biokemi/Cellulära processer/RNA syntes/RNA syntes Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/Translation": { + "children": [ + "Biokemi/Cellulära processer/Translation/Anteckningar.md", + "Biokemi/Cellulära processer/Translation/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/Translation/Instuderingsfrågor.pdf.pdf", + "Biokemi/Cellulära processer/Translation/Lärandemål.md", + "Biokemi/Cellulära processer/Translation/Slides.md", + "Biokemi/Cellulära processer/Translation/Slides.pdf.pdf", + "Biokemi/Cellulära processer/Translation/Stoff.md", + "Biokemi/Cellulära processer/Translation/Translation Undertexter.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/Transport över cellmembran": { + "children": [ + "Biokemi/Cellulära processer/Transport över cellmembran/Anteckningar.md", + "Biokemi/Cellulära processer/Transport över cellmembran/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/Transport över cellmembran/Instuderingsfrågor.pdf.pdf", + "Biokemi/Cellulära processer/Transport över cellmembran/Lärandemål.md", + "Biokemi/Cellulära processer/Transport över cellmembran/Provfrågor.md", + "Biokemi/Cellulära processer/Transport över cellmembran/Slides.md", + "Biokemi/Cellulära processer/Transport över cellmembran/Slides.pdf.pdf", + "Biokemi/Cellulära processer/Transport över cellmembran/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Cellulära processer/Utforska proteiner": { + "children": [ + "Biokemi/Cellulära processer/Utforska proteiner/Instuderingsfrågor.md", + "Biokemi/Cellulära processer/Utforska proteiner/Lärandemål.md", + "Biokemi/Cellulära processer/Utforska proteiner/Provfrågor.md", + "Biokemi/Cellulära processer/Utforska proteiner/Slides.md", + "Biokemi/Cellulära processer/Utforska proteiner/Slides.pdf.pdf", + "Biokemi/Cellulära processer/Utforska proteiner/Utforska proteiner Anteckningar.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor": { + "children": [ + "Biokemi/Gamla tentor/tools", + "Biokemi/Gamla tentor/md_only.zip", + "Biokemi/Gamla tentor/2021-12-16", + "Biokemi/Gamla tentor/2022-01-29", + "Biokemi/Gamla tentor/2022-05-16", + "Biokemi/Gamla tentor/2022-12-19", + "Biokemi/Gamla tentor/2023-05-15", + "Biokemi/Gamla tentor/2023-12-18", + "Biokemi/Gamla tentor/2024-01-27", + "Biokemi/Gamla tentor/2024-05-15", + "Biokemi/Gamla tentor/2024-08-01", + "Biokemi/Gamla tentor/2024-12-20", + "Biokemi/Gamla tentor/2025-02-01", + "Biokemi/Gamla tentor/Template", + "Biokemi/Gamla tentor/Provfrågor.base", + "Biokemi/Gamla tentor/Status.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2021-12-16": { + "children": [ + "Biokemi/Gamla tentor/2021-12-16/1.md", + "Biokemi/Gamla tentor/2021-12-16/2.md", + "Biokemi/Gamla tentor/2021-12-16/3.md", + "Biokemi/Gamla tentor/2021-12-16/4.md", + "Biokemi/Gamla tentor/2021-12-16/5.md", + "Biokemi/Gamla tentor/2021-12-16/6.md", + "Biokemi/Gamla tentor/2021-12-16/7.md", + "Biokemi/Gamla tentor/2021-12-16/8.md", + "Biokemi/Gamla tentor/2021-12-16/9.md", + "Biokemi/Gamla tentor/2021-12-16/10.md", + "Biokemi/Gamla tentor/2021-12-16/11.md", + "Biokemi/Gamla tentor/2021-12-16/12.md", + "Biokemi/Gamla tentor/2021-12-16/13.md", + "Biokemi/Gamla tentor/2021-12-16/14.md", + "Biokemi/Gamla tentor/2021-12-16/15.md", + "Biokemi/Gamla tentor/2021-12-16/16.md", + "Biokemi/Gamla tentor/2021-12-16/17.md", + "Biokemi/Gamla tentor/2021-12-16/18.md", + "Biokemi/Gamla tentor/2021-12-16/19.md", + "Biokemi/Gamla tentor/2021-12-16/20.md", + "Biokemi/Gamla tentor/2021-12-16/21.md", + "Biokemi/Gamla tentor/2021-12-16/22.md", + "Biokemi/Gamla tentor/2021-12-16/23.md", + "Biokemi/Gamla tentor/2021-12-16/24.md", + "Biokemi/Gamla tentor/2021-12-16/25.md", + "Biokemi/Gamla tentor/2021-12-16/26.md", + "Biokemi/Gamla tentor/2021-12-16/27.md", + "Biokemi/Gamla tentor/2021-12-16/28.md", + "Biokemi/Gamla tentor/2021-12-16/29.md", + "Biokemi/Gamla tentor/2021-12-16/30.md", + "Biokemi/Gamla tentor/2021-12-16/31.md", + "Biokemi/Gamla tentor/2021-12-16/32.md", + "Biokemi/Gamla tentor/2021-12-16/33.md", + "Biokemi/Gamla tentor/2021-12-16/34.md", + "Biokemi/Gamla tentor/2021-12-16/35.md", + "Biokemi/Gamla tentor/2021-12-16/2021-12-16-0073-AXA.md", + "Biokemi/Gamla tentor/2021-12-16/2021-12-16-0073-AXA.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2022-01-29": { + "children": [ + "Biokemi/Gamla tentor/2022-01-29/1.md", + "Biokemi/Gamla tentor/2022-01-29/2.md", + "Biokemi/Gamla tentor/2022-01-29/3.md", + "Biokemi/Gamla tentor/2022-01-29/4.md", + "Biokemi/Gamla tentor/2022-01-29/5.md", + "Biokemi/Gamla tentor/2022-01-29/6.md", + "Biokemi/Gamla tentor/2022-01-29/7.md", + "Biokemi/Gamla tentor/2022-01-29/8.md", + "Biokemi/Gamla tentor/2022-01-29/9.md", + "Biokemi/Gamla tentor/2022-01-29/10.md", + "Biokemi/Gamla tentor/2022-01-29/11.md", + "Biokemi/Gamla tentor/2022-01-29/12.md", + "Biokemi/Gamla tentor/2022-01-29/13.md", + "Biokemi/Gamla tentor/2022-01-29/14.md", + "Biokemi/Gamla tentor/2022-01-29/15.md", + "Biokemi/Gamla tentor/2022-01-29/16.md", + "Biokemi/Gamla tentor/2022-01-29/17.md", + "Biokemi/Gamla tentor/2022-01-29/18.md", + "Biokemi/Gamla tentor/2022-01-29/19.md", + "Biokemi/Gamla tentor/2022-01-29/20.md", + "Biokemi/Gamla tentor/2022-01-29/21.md", + "Biokemi/Gamla tentor/2022-01-29/22.md", + "Biokemi/Gamla tentor/2022-01-29/23.md", + "Biokemi/Gamla tentor/2022-01-29/24.md", + "Biokemi/Gamla tentor/2022-01-29/25.md", + "Biokemi/Gamla tentor/2022-01-29/26.md", + "Biokemi/Gamla tentor/2022-01-29/27.md", + "Biokemi/Gamla tentor/2022-01-29/28.md", + "Biokemi/Gamla tentor/2022-01-29/29.md", + "Biokemi/Gamla tentor/2022-01-29/30.md", + "Biokemi/Gamla tentor/2022-01-29/31.md", + "Biokemi/Gamla tentor/2022-01-29/32.md", + "Biokemi/Gamla tentor/2022-01-29/33.md", + "Biokemi/Gamla tentor/2022-01-29/34.md", + "Biokemi/Gamla tentor/2022-01-29/35.md", + "Biokemi/Gamla tentor/2022-01-29/2022-01-29-0028-UWE.md", + "Biokemi/Gamla tentor/2022-01-29/2022-01-29-0028-UWE.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2022-05-16": { + "children": [ + "Biokemi/Gamla tentor/2022-05-16/1.md", + "Biokemi/Gamla tentor/2022-05-16/2.md", + "Biokemi/Gamla tentor/2022-05-16/3.md", + "Biokemi/Gamla tentor/2022-05-16/4.md", + "Biokemi/Gamla tentor/2022-05-16/5.md", + "Biokemi/Gamla tentor/2022-05-16/6.md", + "Biokemi/Gamla tentor/2022-05-16/7.md", + "Biokemi/Gamla tentor/2022-05-16/8.md", + "Biokemi/Gamla tentor/2022-05-16/9.md", + "Biokemi/Gamla tentor/2022-05-16/10.md", + "Biokemi/Gamla tentor/2022-05-16/11.md", + "Biokemi/Gamla tentor/2022-05-16/12.md", + "Biokemi/Gamla tentor/2022-05-16/13.md", + "Biokemi/Gamla tentor/2022-05-16/14.md", + "Biokemi/Gamla tentor/2022-05-16/15.md", + "Biokemi/Gamla tentor/2022-05-16/16.md", + "Biokemi/Gamla tentor/2022-05-16/17.md", + "Biokemi/Gamla tentor/2022-05-16/18.md", + "Biokemi/Gamla tentor/2022-05-16/19.md", + "Biokemi/Gamla tentor/2022-05-16/20.md", + "Biokemi/Gamla tentor/2022-05-16/21.md", + "Biokemi/Gamla tentor/2022-05-16/22.md", + "Biokemi/Gamla tentor/2022-05-16/23.md", + "Biokemi/Gamla tentor/2022-05-16/24.md", + "Biokemi/Gamla tentor/2022-05-16/25.md", + "Biokemi/Gamla tentor/2022-05-16/26.md", + "Biokemi/Gamla tentor/2022-05-16/27.md", + "Biokemi/Gamla tentor/2022-05-16/28.md", + "Biokemi/Gamla tentor/2022-05-16/29.md", + "Biokemi/Gamla tentor/2022-05-16/30.md", + "Biokemi/Gamla tentor/2022-05-16/31.md", + "Biokemi/Gamla tentor/2022-05-16/32.md", + "Biokemi/Gamla tentor/2022-05-16/33.md", + "Biokemi/Gamla tentor/2022-05-16/34.md", + "Biokemi/Gamla tentor/2022-05-16/35.md", + "Biokemi/Gamla tentor/2022-05-16/2022-05-16-0025-JCM.md", + "Biokemi/Gamla tentor/2022-05-16/2022-05-16-0025-JCM.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2022-12-19": { + "children": [ + "Biokemi/Gamla tentor/2022-12-19/1.md", + "Biokemi/Gamla tentor/2022-12-19/2.md", + "Biokemi/Gamla tentor/2022-12-19/3.md", + "Biokemi/Gamla tentor/2022-12-19/4.md", + "Biokemi/Gamla tentor/2022-12-19/5.md", + "Biokemi/Gamla tentor/2022-12-19/6.md", + "Biokemi/Gamla tentor/2022-12-19/7.md", + "Biokemi/Gamla tentor/2022-12-19/8.md", + "Biokemi/Gamla tentor/2022-12-19/9.md", + "Biokemi/Gamla tentor/2022-12-19/10.md", + "Biokemi/Gamla tentor/2022-12-19/11.md", + "Biokemi/Gamla tentor/2022-12-19/12.md", + "Biokemi/Gamla tentor/2022-12-19/13.md", + "Biokemi/Gamla tentor/2022-12-19/14.md", + "Biokemi/Gamla tentor/2022-12-19/15.md", + "Biokemi/Gamla tentor/2022-12-19/16.md", + "Biokemi/Gamla tentor/2022-12-19/17.md", + "Biokemi/Gamla tentor/2022-12-19/18.md", + "Biokemi/Gamla tentor/2022-12-19/19.md", + "Biokemi/Gamla tentor/2022-12-19/20.md", + "Biokemi/Gamla tentor/2022-12-19/21.md", + "Biokemi/Gamla tentor/2022-12-19/22.md", + "Biokemi/Gamla tentor/2022-12-19/23.md", + "Biokemi/Gamla tentor/2022-12-19/24.md", + "Biokemi/Gamla tentor/2022-12-19/25.md", + "Biokemi/Gamla tentor/2022-12-19/26.md", + "Biokemi/Gamla tentor/2022-12-19/27.md", + "Biokemi/Gamla tentor/2022-12-19/28.md", + "Biokemi/Gamla tentor/2022-12-19/29.md", + "Biokemi/Gamla tentor/2022-12-19/30.md", + "Biokemi/Gamla tentor/2022-12-19/31.md", + "Biokemi/Gamla tentor/2022-12-19/32.md", + "Biokemi/Gamla tentor/2022-12-19/33.md", + "Biokemi/Gamla tentor/2022-12-19/34.md", + "Biokemi/Gamla tentor/2022-12-19/35.md", + "Biokemi/Gamla tentor/2022-12-19/2022-12-19-0097-TUX.md", + "Biokemi/Gamla tentor/2022-12-19/2022-12-19-0097-TUX.pdf", + "Biokemi/Gamla tentor/2022-12-19/2022-12-19-0119-FAE.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2023-05-15": { + "children": [ + "Biokemi/Gamla tentor/2023-05-15/1.md", + "Biokemi/Gamla tentor/2023-05-15/2.md", + "Biokemi/Gamla tentor/2023-05-15/3.md", + "Biokemi/Gamla tentor/2023-05-15/4.md", + "Biokemi/Gamla tentor/2023-05-15/5.md", + "Biokemi/Gamla tentor/2023-05-15/6.md", + "Biokemi/Gamla tentor/2023-05-15/7.md", + "Biokemi/Gamla tentor/2023-05-15/8.md", + "Biokemi/Gamla tentor/2023-05-15/9.md", + "Biokemi/Gamla tentor/2023-05-15/10.md", + "Biokemi/Gamla tentor/2023-05-15/11.md", + "Biokemi/Gamla tentor/2023-05-15/12.md", + "Biokemi/Gamla tentor/2023-05-15/13.md", + "Biokemi/Gamla tentor/2023-05-15/14.md", + "Biokemi/Gamla tentor/2023-05-15/15.md", + "Biokemi/Gamla tentor/2023-05-15/16.md", + "Biokemi/Gamla tentor/2023-05-15/17.md", + "Biokemi/Gamla tentor/2023-05-15/18.md", + "Biokemi/Gamla tentor/2023-05-15/19.md", + "Biokemi/Gamla tentor/2023-05-15/20.md", + "Biokemi/Gamla tentor/2023-05-15/21.md", + "Biokemi/Gamla tentor/2023-05-15/22.md", + "Biokemi/Gamla tentor/2023-05-15/23.md", + "Biokemi/Gamla tentor/2023-05-15/24.md", + "Biokemi/Gamla tentor/2023-05-15/25.md", + "Biokemi/Gamla tentor/2023-05-15/26.md", + "Biokemi/Gamla tentor/2023-05-15/27.md", + "Biokemi/Gamla tentor/2023-05-15/28.md", + "Biokemi/Gamla tentor/2023-05-15/29.md", + "Biokemi/Gamla tentor/2023-05-15/30.md", + "Biokemi/Gamla tentor/2023-05-15/31.md", + "Biokemi/Gamla tentor/2023-05-15/32.md", + "Biokemi/Gamla tentor/2023-05-15/33.md", + "Biokemi/Gamla tentor/2023-05-15/34.md", + "Biokemi/Gamla tentor/2023-05-15/35.md", + "Biokemi/Gamla tentor/2023-05-15/2023-05-15-0134-FDC.md", + "Biokemi/Gamla tentor/2023-05-15/2023-05-15-0134-FDC.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2023-12-18": { + "children": [ + "Biokemi/Gamla tentor/2023-12-18/1.md", + "Biokemi/Gamla tentor/2023-12-18/2.md", + "Biokemi/Gamla tentor/2023-12-18/3.md", + "Biokemi/Gamla tentor/2023-12-18/4.md", + "Biokemi/Gamla tentor/2023-12-18/5.md", + "Biokemi/Gamla tentor/2023-12-18/6.md", + "Biokemi/Gamla tentor/2023-12-18/7.md", + "Biokemi/Gamla tentor/2023-12-18/8.md", + "Biokemi/Gamla tentor/2023-12-18/9.md", + "Biokemi/Gamla tentor/2023-12-18/10.md", + "Biokemi/Gamla tentor/2023-12-18/11.md", + "Biokemi/Gamla tentor/2023-12-18/12.md", + "Biokemi/Gamla tentor/2023-12-18/13.md", + "Biokemi/Gamla tentor/2023-12-18/14.md", + "Biokemi/Gamla tentor/2023-12-18/15.md", + "Biokemi/Gamla tentor/2023-12-18/16.md", + "Biokemi/Gamla tentor/2023-12-18/17.md", + "Biokemi/Gamla tentor/2023-12-18/18.md", + "Biokemi/Gamla tentor/2023-12-18/19.md", + "Biokemi/Gamla tentor/2023-12-18/20.md", + "Biokemi/Gamla tentor/2023-12-18/21.md", + "Biokemi/Gamla tentor/2023-12-18/22.md", + "Biokemi/Gamla tentor/2023-12-18/23.md", + "Biokemi/Gamla tentor/2023-12-18/24.md", + "Biokemi/Gamla tentor/2023-12-18/25.md", + "Biokemi/Gamla tentor/2023-12-18/26.md", + "Biokemi/Gamla tentor/2023-12-18/27.md", + "Biokemi/Gamla tentor/2023-12-18/28.md", + "Biokemi/Gamla tentor/2023-12-18/29.md", + "Biokemi/Gamla tentor/2023-12-18/30.md", + "Biokemi/Gamla tentor/2023-12-18/31.md", + "Biokemi/Gamla tentor/2023-12-18/32.md", + "Biokemi/Gamla tentor/2023-12-18/33.md", + "Biokemi/Gamla tentor/2023-12-18/34.md", + "Biokemi/Gamla tentor/2023-12-18/35.md", + "Biokemi/Gamla tentor/2023-12-18/36.md", + "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0028-LAD.pdf", + "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0075-GXD.md", + "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0075-GXD.pdf", + "Biokemi/Gamla tentor/2023-12-18/2023-12-18-0114-EES.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2024-01-27": { + "children": [ + "Biokemi/Gamla tentor/2024-01-27/1.md", + "Biokemi/Gamla tentor/2024-01-27/2.md", + "Biokemi/Gamla tentor/2024-01-27/3.md", + "Biokemi/Gamla tentor/2024-01-27/4.md", + "Biokemi/Gamla tentor/2024-01-27/5.md", + "Biokemi/Gamla tentor/2024-01-27/6.md", + "Biokemi/Gamla tentor/2024-01-27/7.md", + "Biokemi/Gamla tentor/2024-01-27/8.md", + "Biokemi/Gamla tentor/2024-01-27/9.md", + "Biokemi/Gamla tentor/2024-01-27/10.md", + "Biokemi/Gamla tentor/2024-01-27/11.md", + "Biokemi/Gamla tentor/2024-01-27/12.md", + "Biokemi/Gamla tentor/2024-01-27/13.md", + "Biokemi/Gamla tentor/2024-01-27/14.md", + "Biokemi/Gamla tentor/2024-01-27/15.md", + "Biokemi/Gamla tentor/2024-01-27/16.md", + "Biokemi/Gamla tentor/2024-01-27/17.md", + "Biokemi/Gamla tentor/2024-01-27/18.md", + "Biokemi/Gamla tentor/2024-01-27/19.md", + "Biokemi/Gamla tentor/2024-01-27/20.md", + "Biokemi/Gamla tentor/2024-01-27/21.md", + "Biokemi/Gamla tentor/2024-01-27/22.md", + "Biokemi/Gamla tentor/2024-01-27/23.md", + "Biokemi/Gamla tentor/2024-01-27/24.md", + "Biokemi/Gamla tentor/2024-01-27/25.md", + "Biokemi/Gamla tentor/2024-01-27/26.md", + "Biokemi/Gamla tentor/2024-01-27/27.md", + "Biokemi/Gamla tentor/2024-01-27/28.md", + "Biokemi/Gamla tentor/2024-01-27/29.md", + "Biokemi/Gamla tentor/2024-01-27/30.md", + "Biokemi/Gamla tentor/2024-01-27/31.md", + "Biokemi/Gamla tentor/2024-01-27/32.md", + "Biokemi/Gamla tentor/2024-01-27/33.md", + "Biokemi/Gamla tentor/2024-01-27/34.md", + "Biokemi/Gamla tentor/2024-01-27/35.md", + "Biokemi/Gamla tentor/2024-01-27/36.md", + "Biokemi/Gamla tentor/2024-01-27/2024-01-27-0096-APG.md", + "Biokemi/Gamla tentor/2024-01-27/2024-01-27-0096-APG.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2024-05-15": { + "children": [ + "Biokemi/Gamla tentor/2024-05-15/1.md", + "Biokemi/Gamla tentor/2024-05-15/2.md", + "Biokemi/Gamla tentor/2024-05-15/3.md", + "Biokemi/Gamla tentor/2024-05-15/4.md", + "Biokemi/Gamla tentor/2024-05-15/5.md", + "Biokemi/Gamla tentor/2024-05-15/6.md", + "Biokemi/Gamla tentor/2024-05-15/7.md", + "Biokemi/Gamla tentor/2024-05-15/8.md", + "Biokemi/Gamla tentor/2024-05-15/9.md", + "Biokemi/Gamla tentor/2024-05-15/10.md", + "Biokemi/Gamla tentor/2024-05-15/11.md", + "Biokemi/Gamla tentor/2024-05-15/12.md", + "Biokemi/Gamla tentor/2024-05-15/13.md", + "Biokemi/Gamla tentor/2024-05-15/14.md", + "Biokemi/Gamla tentor/2024-05-15/15.md", + "Biokemi/Gamla tentor/2024-05-15/16.md", + "Biokemi/Gamla tentor/2024-05-15/17.md", + "Biokemi/Gamla tentor/2024-05-15/18.md", + "Biokemi/Gamla tentor/2024-05-15/19.md", + "Biokemi/Gamla tentor/2024-05-15/20.md", + "Biokemi/Gamla tentor/2024-05-15/21.md", + "Biokemi/Gamla tentor/2024-05-15/22.md", + "Biokemi/Gamla tentor/2024-05-15/23.md", + "Biokemi/Gamla tentor/2024-05-15/24.md", + "Biokemi/Gamla tentor/2024-05-15/25.md", + "Biokemi/Gamla tentor/2024-05-15/26.md", + "Biokemi/Gamla tentor/2024-05-15/27.md", + "Biokemi/Gamla tentor/2024-05-15/28.md", + "Biokemi/Gamla tentor/2024-05-15/29.md", + "Biokemi/Gamla tentor/2024-05-15/30.md", + "Biokemi/Gamla tentor/2024-05-15/31.md", + "Biokemi/Gamla tentor/2024-05-15/32.md", + "Biokemi/Gamla tentor/2024-05-15/33.md", + "Biokemi/Gamla tentor/2024-05-15/34.md", + "Biokemi/Gamla tentor/2024-05-15/35.md", + "Biokemi/Gamla tentor/2024-05-15/36.md", + "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0018-UAE.pdf", + "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0020-EBK.pdf", + "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0068-GXS.md", + "Biokemi/Gamla tentor/2024-05-15/2024-05-15-0068-GXS.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2024-08-01": { + "children": [ + "Biokemi/Gamla tentor/2024-08-01/1.md", + "Biokemi/Gamla tentor/2024-08-01/2.md", + "Biokemi/Gamla tentor/2024-08-01/3.md", + "Biokemi/Gamla tentor/2024-08-01/4.md", + "Biokemi/Gamla tentor/2024-08-01/5.md", + "Biokemi/Gamla tentor/2024-08-01/6.md", + "Biokemi/Gamla tentor/2024-08-01/7.md", + "Biokemi/Gamla tentor/2024-08-01/8.md", + "Biokemi/Gamla tentor/2024-08-01/9.md", + "Biokemi/Gamla tentor/2024-08-01/10.md", + "Biokemi/Gamla tentor/2024-08-01/11.md", + "Biokemi/Gamla tentor/2024-08-01/12.md", + "Biokemi/Gamla tentor/2024-08-01/13.md", + "Biokemi/Gamla tentor/2024-08-01/14.md", + "Biokemi/Gamla tentor/2024-08-01/15.md", + "Biokemi/Gamla tentor/2024-08-01/16.md", + "Biokemi/Gamla tentor/2024-08-01/17.md", + "Biokemi/Gamla tentor/2024-08-01/18.md", + "Biokemi/Gamla tentor/2024-08-01/19.md", + "Biokemi/Gamla tentor/2024-08-01/20.md", + "Biokemi/Gamla tentor/2024-08-01/21.md", + "Biokemi/Gamla tentor/2024-08-01/22.md", + "Biokemi/Gamla tentor/2024-08-01/23.md", + "Biokemi/Gamla tentor/2024-08-01/24.md", + "Biokemi/Gamla tentor/2024-08-01/25.md", + "Biokemi/Gamla tentor/2024-08-01/26.md", + "Biokemi/Gamla tentor/2024-08-01/27.md", + "Biokemi/Gamla tentor/2024-08-01/28.md", + "Biokemi/Gamla tentor/2024-08-01/29.md", + "Biokemi/Gamla tentor/2024-08-01/30.md", + "Biokemi/Gamla tentor/2024-08-01/31.md", + "Biokemi/Gamla tentor/2024-08-01/32.md", + "Biokemi/Gamla tentor/2024-08-01/33.md", + "Biokemi/Gamla tentor/2024-08-01/34.md", + "Biokemi/Gamla tentor/2024-08-01/35.md", + "Biokemi/Gamla tentor/2024-08-01/2024-08-01-0089-ZGH.md", + "Biokemi/Gamla tentor/2024-08-01/2024-08-01-0089-ZGH.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2024-12-20": { + "children": [ + "Biokemi/Gamla tentor/2024-12-20/1.md", + "Biokemi/Gamla tentor/2024-12-20/2.md", + "Biokemi/Gamla tentor/2024-12-20/3.md", + "Biokemi/Gamla tentor/2024-12-20/4.md", + "Biokemi/Gamla tentor/2024-12-20/5.md", + "Biokemi/Gamla tentor/2024-12-20/6.md", + "Biokemi/Gamla tentor/2024-12-20/7.md", + "Biokemi/Gamla tentor/2024-12-20/8.md", + "Biokemi/Gamla tentor/2024-12-20/9.md", + "Biokemi/Gamla tentor/2024-12-20/10.md", + "Biokemi/Gamla tentor/2024-12-20/11.md", + "Biokemi/Gamla tentor/2024-12-20/12.md", + "Biokemi/Gamla tentor/2024-12-20/13.md", + "Biokemi/Gamla tentor/2024-12-20/14.md", + "Biokemi/Gamla tentor/2024-12-20/15.md", + "Biokemi/Gamla tentor/2024-12-20/16.md", + "Biokemi/Gamla tentor/2024-12-20/17.md", + "Biokemi/Gamla tentor/2024-12-20/18.md", + "Biokemi/Gamla tentor/2024-12-20/19.md", + "Biokemi/Gamla tentor/2024-12-20/20.md", + "Biokemi/Gamla tentor/2024-12-20/21.md", + "Biokemi/Gamla tentor/2024-12-20/22.md", + "Biokemi/Gamla tentor/2024-12-20/23.md", + "Biokemi/Gamla tentor/2024-12-20/24.md", + "Biokemi/Gamla tentor/2024-12-20/25.md", + "Biokemi/Gamla tentor/2024-12-20/26.md", + "Biokemi/Gamla tentor/2024-12-20/27.md", + "Biokemi/Gamla tentor/2024-12-20/28.md", + "Biokemi/Gamla tentor/2024-12-20/29.md", + "Biokemi/Gamla tentor/2024-12-20/30.md", + "Biokemi/Gamla tentor/2024-12-20/31.md", + "Biokemi/Gamla tentor/2024-12-20/32.md", + "Biokemi/Gamla tentor/2024-12-20/33.md", + "Biokemi/Gamla tentor/2024-12-20/34.md", + "Biokemi/Gamla tentor/2024-12-20/35.md", + "Biokemi/Gamla tentor/2024-12-20/36.md", + "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0036-OWN.md", + "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0036-OWN.pdf", + "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0066-NDY.pdf", + "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0118-GCR.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/2025-02-01": { + "children": [ + "Biokemi/Gamla tentor/2025-02-01/1.md", + "Biokemi/Gamla tentor/2025-02-01/2.md", + "Biokemi/Gamla tentor/2025-02-01/3.md", + "Biokemi/Gamla tentor/2025-02-01/4.md", + "Biokemi/Gamla tentor/2025-02-01/5.md", + "Biokemi/Gamla tentor/2025-02-01/6.md", + "Biokemi/Gamla tentor/2025-02-01/7.md", + "Biokemi/Gamla tentor/2025-02-01/8.md", + "Biokemi/Gamla tentor/2025-02-01/9.md", + "Biokemi/Gamla tentor/2025-02-01/10.md", + "Biokemi/Gamla tentor/2025-02-01/11.md", + "Biokemi/Gamla tentor/2025-02-01/12.md", + "Biokemi/Gamla tentor/2025-02-01/13.md", + "Biokemi/Gamla tentor/2025-02-01/14.md", + "Biokemi/Gamla tentor/2025-02-01/15.md", + "Biokemi/Gamla tentor/2025-02-01/16.md", + "Biokemi/Gamla tentor/2025-02-01/17.md", + "Biokemi/Gamla tentor/2025-02-01/18.md", + "Biokemi/Gamla tentor/2025-02-01/19.md", + "Biokemi/Gamla tentor/2025-02-01/20.md", + "Biokemi/Gamla tentor/2025-02-01/21.md", + "Biokemi/Gamla tentor/2025-02-01/22.md", + "Biokemi/Gamla tentor/2025-02-01/23.md", + "Biokemi/Gamla tentor/2025-02-01/24.md", + "Biokemi/Gamla tentor/2025-02-01/25.md", + "Biokemi/Gamla tentor/2025-02-01/26.md", + "Biokemi/Gamla tentor/2025-02-01/27.md", + "Biokemi/Gamla tentor/2025-02-01/28.md", + "Biokemi/Gamla tentor/2025-02-01/29.md", + "Biokemi/Gamla tentor/2025-02-01/30.md", + "Biokemi/Gamla tentor/2025-02-01/31.md", + "Biokemi/Gamla tentor/2025-02-01/32.md", + "Biokemi/Gamla tentor/2025-02-01/33.md", + "Biokemi/Gamla tentor/2025-02-01/34.md", + "Biokemi/Gamla tentor/2025-02-01/35.md", + "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0035-UTD.md", + "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0035-UTD.pdf", + "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0076-EFT.md", + "Biokemi/Gamla tentor/2025-02-01/2025-02-01-0076-EFT.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/Template": { + "children": [ + "Biokemi/Gamla tentor/Template/1.md", + "Biokemi/Gamla tentor/Template/2.md", + "Biokemi/Gamla tentor/Template/3.md", + "Biokemi/Gamla tentor/Template/4.md", + "Biokemi/Gamla tentor/Template/5.md", + "Biokemi/Gamla tentor/Template/6.md", + "Biokemi/Gamla tentor/Template/7.md", + "Biokemi/Gamla tentor/Template/8.md", + "Biokemi/Gamla tentor/Template/9.md", + "Biokemi/Gamla tentor/Template/10.md", + "Biokemi/Gamla tentor/Template/11.md", + "Biokemi/Gamla tentor/Template/12.md", + "Biokemi/Gamla tentor/Template/13.md", + "Biokemi/Gamla tentor/Template/14.md", + "Biokemi/Gamla tentor/Template/15.md", + "Biokemi/Gamla tentor/Template/16.md", + "Biokemi/Gamla tentor/Template/17.md", + "Biokemi/Gamla tentor/Template/18.md", + "Biokemi/Gamla tentor/Template/19.md", + "Biokemi/Gamla tentor/Template/20.md", + "Biokemi/Gamla tentor/Template/21.md", + "Biokemi/Gamla tentor/Template/22.md", + "Biokemi/Gamla tentor/Template/23.md", + "Biokemi/Gamla tentor/Template/24.md", + "Biokemi/Gamla tentor/Template/25.md", + "Biokemi/Gamla tentor/Template/26.md", + "Biokemi/Gamla tentor/Template/27.md", + "Biokemi/Gamla tentor/Template/28.md", + "Biokemi/Gamla tentor/Template/29.md", + "Biokemi/Gamla tentor/Template/30.md", + "Biokemi/Gamla tentor/Template/31.md", + "Biokemi/Gamla tentor/Template/32.md", + "Biokemi/Gamla tentor/Template/33.md", + "Biokemi/Gamla tentor/Template/34.md", + "Biokemi/Gamla tentor/Template/35.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Gamla tentor/tools": { + "children": [ + "Biokemi/Gamla tentor/tools/update_tags.py", + "Biokemi/Gamla tentor/tools/topic_mapping.tsv" + ], + "sortOrder": "custom" + }, + "Biokemi/Introduktionslab": { + "children": [ + "Biokemi/Introduktionslab/Provfrågor.md", + "Biokemi/Introduktionslab/Säkerhetstest.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler": { + "children": [ + "Biokemi/Makromolekyler/Cellmembran", + "Biokemi/Makromolekyler/Från aminosyror till proteiner", + "Biokemi/Makromolekyler/Hemoglobin", + "Biokemi/Makromolekyler/Kemiska bindingar", + "Biokemi/Makromolekyler/Kolhydrater", + "Biokemi/Makromolekyler/Lipider", + "Biokemi/Makromolekyler/Nukleotider" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Cellmembran": { + "children": [ + "Biokemi/Makromolekyler/Cellmembran/Anteckningar.md", + "Biokemi/Makromolekyler/Cellmembran/Instuderingsfrågor.md", + "Biokemi/Makromolekyler/Cellmembran/Lärandemål.md", + "Biokemi/Makromolekyler/Cellmembran/Provfrågor.md", + "Biokemi/Makromolekyler/Cellmembran/Slides.md", + "Biokemi/Makromolekyler/Cellmembran/Slides.pdf.pdf", + "Biokemi/Makromolekyler/Cellmembran/Tentaplugg.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Från aminosyror till proteiner": { + "children": [ + "Biokemi/Makromolekyler/Från aminosyror till proteiner/Instuderingsfrågor.md", + "Biokemi/Makromolekyler/Från aminosyror till proteiner/Anteckningar.md", + "Biokemi/Makromolekyler/Från aminosyror till proteiner/Anteckningar II.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Hemoglobin": { + "children": [ + "Biokemi/Makromolekyler/Hemoglobin/Hb Anteckningar.md", + "Biokemi/Makromolekyler/Hemoglobin/Instuderingsfrågor.md", + "Biokemi/Makromolekyler/Hemoglobin/Labb.md", + "Biokemi/Makromolekyler/Hemoglobin/Provfrågor.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Kemiska bindingar": { + "children": [ + "Biokemi/Makromolekyler/Kemiska bindingar/Anteckningar.md", + "Biokemi/Makromolekyler/Kemiska bindingar/Instuderingsfrågor.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Kolhydrater": { + "children": [ + "Biokemi/Makromolekyler/Kolhydrater/Instuderingsfrågor.md", + "Biokemi/Makromolekyler/Kolhydrater/Kolhydrater Anteckningar.md", + "Biokemi/Makromolekyler/Kolhydrater/Lärandemål.md", + "Biokemi/Makromolekyler/Kolhydrater/Provfrågor.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Lipider": { + "children": [ + "Biokemi/Makromolekyler/Lipider/Slides.pdf.pdf", + "Biokemi/Makromolekyler/Lipider/Instuderingsuppgifter.md", + "Biokemi/Makromolekyler/Lipider/Lärandemål.md", + "Biokemi/Makromolekyler/Lipider/Lipider Anteckningar.md", + "Biokemi/Makromolekyler/Lipider/Provfrågor.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Makromolekyler/Nukleotider": { + "children": [ + "Biokemi/Makromolekyler/Nukleotider/Anteckningar.md", + "Biokemi/Makromolekyler/Nukleotider/Instuderingsfrågor.md", + "Biokemi/Makromolekyler/Nukleotider/Lärandemål.md", + "Biokemi/Makromolekyler/Nukleotider/Provfrågor.md", + "Biokemi/Makromolekyler/Nukleotider/Video undertexter.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism": { + "children": [ + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv", + "Biokemi/Metabolism/Diagram", + "Biokemi/Metabolism/Elektrontransportkedjan", + "Biokemi/Metabolism/🍖 Aminosyrametabolism", + "Biokemi/Metabolism/🍋 Citronsyracykeln", + "Biokemi/Metabolism/🍕 β-oxidation", + "Biokemi/Metabolism/Enzymer", + "Biokemi/Metabolism/🍟 Kolesterolsyntes", + "Biokemi/Metabolism/🧂 Glykogen", + "Biokemi/Metabolism/🍬 Glykolysen", + "Biokemi/Metabolism/🍭 Glukoneogenes", + "Biokemi/Metabolism/👋 Introduktion till metabolismen", + "Biokemi/Metabolism/🤔 Menti", + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning", + "Biokemi/Metabolism/🩸 Heme", + "Biokemi/Metabolism/Pentosfosfatvägen", + "Biokemi/Metabolism/🌡️ Termodynamik", + "Biokemi/Metabolism/📋 Metabolismen översikt.canvas" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🌡️ Termodynamik": { + "children": [ + "Biokemi/Metabolism/🌡️ Termodynamik/Anteckningar.md", + "Biokemi/Metabolism/🌡️ Termodynamik/Anteckningar Gabriel.md", + "Biokemi/Metabolism/🌡️ Termodynamik/Biochemistry 10th edition 449-456.pdf", + "Biokemi/Metabolism/🌡️ Termodynamik/Biochemistry 10th edition kap 1 12-15.pdf", + "Biokemi/Metabolism/🌡️ Termodynamik/Biochemistry 10th edition kap 5.1.pdf", + "Biokemi/Metabolism/🌡️ Termodynamik/Instuderingsfrågor.md", + "Biokemi/Metabolism/🌡️ Termodynamik/Instuderingsfrågor termodynamik-4.pdf", + "Biokemi/Metabolism/🌡️ Termodynamik/Lärandemål.md", + "Biokemi/Metabolism/🌡️ Termodynamik/Provfrågor.md", + "Biokemi/Metabolism/🌡️ Termodynamik/Thermodynamik_MO-5.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🍋 Citronsyracykeln": { + "children": [ + "Biokemi/Metabolism/🍋 Citronsyracykeln/Biochemistry 10th edition Kap 17.1-17.5.pdf", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Citronsyracykeln.md", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Gemini_Generated_Image_jeb8lvjeb8lvjeb8.png", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Instuderingsfrågor citronsyracykeln HT25.pdf", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Instuderingsuppgifter.md", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Lärandemål.md", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Provfrågor.md", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Slides.md", + "Biokemi/Metabolism/🍋 Citronsyracykeln/Slides.pdf.pdf", + "Biokemi/Metabolism/🍋 Citronsyracykeln/TCA overview.png" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🍕 β-oxidation": { + "children": [ + "Biokemi/Metabolism/🍕 β-oxidation/Provfrågor.md", + "Biokemi/Metabolism/🍕 β-oxidation/Anteckningar.md", + "Biokemi/Metabolism/🍕 β-oxidation/Instuderingsuppgifter.md", + "Biokemi/Metabolism/🍕 β-oxidation/Lärandemål.md", + "Biokemi/Metabolism/🍕 β-oxidation/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🍖 Aminosyrametabolism": { + "children": [ + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Anteckningar.md", + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Instuderingsfrågor Aminosyrametabolism LPG001 HT2025.pdf", + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Instuderingsuppgifter.md", + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Lärandemål.md", + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Provfrågor.md", + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Slides.md", + "Biokemi/Metabolism/🍖 Aminosyrametabolism/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🍟 Kolesterolsyntes": { + "children": [ + "Biokemi/Metabolism/🍟 Kolesterolsyntes/❓ Provfrågor.md", + "Biokemi/Metabolism/🍟 Kolesterolsyntes/🎯 Lärandemål.md", + "Biokemi/Metabolism/🍟 Kolesterolsyntes/👨🏻‍🏫 Slides.md", + "Biokemi/Metabolism/🍟 Kolesterolsyntes/📚 Instuderingsuppgifter.md", + "Biokemi/Metabolism/🍟 Kolesterolsyntes/🗒 Anteckningar.md", + "Biokemi/Metabolism/🍟 Kolesterolsyntes/🗒 Anteckningar Gabriel.md", + "Biokemi/Metabolism/🍟 Kolesterolsyntes/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🍬 Glykolysen": { + "children": [ + "Biokemi/Metabolism/🍬 Glykolysen/Anteckningar.md", + "Biokemi/Metabolism/🍬 Glykolysen/Biochemistry 10th edition kap 16.1-16.3.pdf", + "Biokemi/Metabolism/🍬 Glykolysen/Instuderingsfrågor Glykolysen HT25-1.pdf", + "Biokemi/Metabolism/🍬 Glykolysen/Instuderingsuppgifter.md", + "Biokemi/Metabolism/🍬 Glykolysen/Lärandemål.md", + "Biokemi/Metabolism/🍬 Glykolysen/Översikt.png", + "Biokemi/Metabolism/🍬 Glykolysen/Översikt II.png", + "Biokemi/Metabolism/🍬 Glykolysen/Provfrågor.md", + "Biokemi/Metabolism/🍬 Glykolysen/Slides.md", + "Biokemi/Metabolism/🍬 Glykolysen/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🍭 Glukoneogenes": { + "children": [ + "Biokemi/Metabolism/🍭 Glukoneogenes/Anteckningar.md", + "Biokemi/Metabolism/🍭 Glukoneogenes/Instuderingsuppgifter.md", + "Biokemi/Metabolism/🍭 Glukoneogenes/Lärandemål.md", + "Biokemi/Metabolism/🍭 Glukoneogenes/Provfrågor.md", + "Biokemi/Metabolism/🍭 Glukoneogenes/Slides.md", + "Biokemi/Metabolism/🍭 Glukoneogenes/Slides.pdf.pdf", + "Biokemi/Metabolism/🍭 Glukoneogenes/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/👋 Introduktion till metabolismen": { + "children": [ + "Biokemi/Metabolism/👋 Introduktion till metabolismen/Anteckningar.md", + "Biokemi/Metabolism/👋 Introduktion till metabolismen/Instuderingsfrågor.md", + "Biokemi/Metabolism/👋 Introduktion till metabolismen/Slides.md", + "Biokemi/Metabolism/👋 Introduktion till metabolismen/Slides.pdf.pdf", + "Biokemi/Metabolism/👋 Introduktion till metabolismen/Stoff.md", + "Biokemi/Metabolism/👋 Introduktion till metabolismen/Untitled.canvas" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🤔 Menti": { + "children": [ + "Biokemi/Metabolism/🤔 Menti/1.md", + "Biokemi/Metabolism/🤔 Menti/2.md", + "Biokemi/Metabolism/🤔 Menti/3.md", + "Biokemi/Metabolism/🤔 Menti/4.md", + "Biokemi/Metabolism/🤔 Menti/5.md", + "Biokemi/Metabolism/🤔 Menti/6.md", + "Biokemi/Metabolism/🤔 Menti/7.md", + "Biokemi/Metabolism/🤔 Menti/8.md", + "Biokemi/Metabolism/🤔 Menti/9.md", + "Biokemi/Metabolism/🤔 Menti/10.md", + "Biokemi/Metabolism/🤔 Menti/11.md", + "Biokemi/Metabolism/🤔 Menti/12.md", + "Biokemi/Metabolism/🤔 Menti/13.md", + "Biokemi/Metabolism/🤔 Menti/14.md", + "Biokemi/Metabolism/🤔 Menti/15.md", + "Biokemi/Metabolism/🤔 Menti/16.md", + "Biokemi/Metabolism/🤔 Menti/17.md", + "Biokemi/Metabolism/🤔 Menti/18.md", + "Biokemi/Metabolism/🤔 Menti/19.md", + "Biokemi/Metabolism/🤔 Menti/20.md", + "Biokemi/Metabolism/🤔 Menti/21.md", + "Biokemi/Metabolism/🤔 Menti/22.md", + "Biokemi/Metabolism/🤔 Menti/23.md", + "Biokemi/Metabolism/🤔 Menti/Anki.csv" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🧂 Glykogen": { + "children": [ + "Biokemi/Metabolism/🧂 Glykogen/Anteckingar.md", + "Biokemi/Metabolism/🧂 Glykogen/Instuderingsuppgifter.md", + "Biokemi/Metabolism/🧂 Glykogen/Lärandemål.md", + "Biokemi/Metabolism/🧂 Glykogen/Provfrågor.md", + "Biokemi/Metabolism/🧂 Glykogen/Slides.md", + "Biokemi/Metabolism/🧂 Glykogen/Slides.pdf.pdf", + "Biokemi/Metabolism/🧂 Glykogen/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning": { + "children": [ + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/❓ Provfrågor.md", + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/🎯 Lärandemål.md", + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/👨🏻‍🏫 Slides.md", + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/📚 Instuderingsuppgifter.md", + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/🗒 Anteckningar.md", + "Biokemi/Metabolism/🧬 Nukleotidnedbrytning/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/🩸 Heme": { + "children": [ + "Biokemi/Metabolism/🩸 Heme/Studera.md", + "Biokemi/Metabolism/🩸 Heme/Anteckningar.md", + "Biokemi/Metabolism/🩸 Heme/Instuderingsfrågor.md", + "Biokemi/Metabolism/🩸 Heme/Lärandemål.md", + "Biokemi/Metabolism/🩸 Heme/Provfrågor.md", + "Biokemi/Metabolism/🩸 Heme/Slides.pdf", + "Biokemi/Metabolism/🩸 Heme/Stoff.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv": { + "children": [ + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Instuderingsfrågor.md", + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Anteckningar.md", + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Provfrågor.md", + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Slides.pdf.pdf", + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Stoff.md", + "Biokemi/Metabolism/Biokemi ur ett evolutionsperspektiv/Untitled.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/Diagram": { + "children": [ + "Biokemi/Metabolism/Diagram/Vägar.md", + "Biokemi/Metabolism/Diagram/Glycolysis_overview.svg", + "Biokemi/Metabolism/Diagram/TCA_cycle.svg" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/Elektrontransportkedjan": { + "children": [ + "Biokemi/Metabolism/Elektrontransportkedjan/🗒 Anteckningar.md", + "Biokemi/Metabolism/Elektrontransportkedjan/❓ Provfrågor.md", + "Biokemi/Metabolism/Elektrontransportkedjan/🎯 Lärandemål.md", + "Biokemi/Metabolism/Elektrontransportkedjan/👨🏻‍🏫 Slides.md", + "Biokemi/Metabolism/Elektrontransportkedjan/👩‍🏫 Slides.pdf.pdf", + "Biokemi/Metabolism/Elektrontransportkedjan/📚 Instuderingsuppgifter.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/Enzymer": { + "children": [ + "Biokemi/Metabolism/Enzymer/Anteckningar I.md", + "Biokemi/Metabolism/Enzymer/Anteckningar II.md", + "Biokemi/Metabolism/Enzymer/Biochemistry 10th edition Kap 5-6.pdf", + "Biokemi/Metabolism/Enzymer/Enzymer_1_MO-6.pdf", + "Biokemi/Metabolism/Enzymer/Enzymer_2_MO-6.pdf", + "Biokemi/Metabolism/Enzymer/Instuderingsfrågor.md", + "Biokemi/Metabolism/Enzymer/Instuderingsfrågor enzymer-3.pdf", + "Biokemi/Metabolism/Enzymer/Lärandemål.md", + "Biokemi/Metabolism/Enzymer/Provfrågor.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolism/Pentosfosfatvägen": { + "children": [ + "Biokemi/Metabolism/Pentosfosfatvägen/Stoff.md", + "Biokemi/Metabolism/Pentosfosfatvägen/❓ Provfrågor.md", + "Biokemi/Metabolism/Pentosfosfatvägen/🎯 Lärandemål.md", + "Biokemi/Metabolism/Pentosfosfatvägen/👨🏻‍🏫 Slides.md", + "Biokemi/Metabolism/Pentosfosfatvägen/📚 Instuderingsuppgifter.md", + "Biokemi/Metabolism/Pentosfosfatvägen/🗒 Anteckningar.md", + "Biokemi/Metabolism/Pentosfosfatvägen/Slides.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Metabolismseminarie": { + "children": [ + "Biokemi/Metabolismseminarie/Direktiv.md", + "Biokemi/Metabolismseminarie/1. Springa.md", + "Biokemi/Metabolismseminarie/2. Fasta.md", + "Biokemi/Metabolismseminarie/3. Nattfasta.md", + "Biokemi/Metabolismseminarie/4. Syre i ETK.md", + "Biokemi/Metabolismseminarie/5. Frikopplare.md", + "Biokemi/Metabolismseminarie/6. Glykogen.md", + "Biokemi/Metabolismseminarie/7. Nyfött barn.md", + "Biokemi/Metabolismseminarie/8. Muskelbiopsi.md" + ], + "sortOrder": "custom" + }, + "Biokemi/Plasmidlabb": { + "children": [ + "Biokemi/Plasmidlabb/Provfrågor.md", + "Biokemi/Plasmidlabb/Articles", + "Biokemi/Plasmidlabb/Bilder", + "Biokemi/Plasmidlabb/Anteckningar I.md", + "Biokemi/Plasmidlabb/Anteckningar II.md", + "Biokemi/Plasmidlabb/Förståelse.md", + "Biokemi/Plasmidlabb/Instuderingsfrågor.md", + "Biokemi/Plasmidlabb/Protokoll.pdf", + "Biokemi/Plasmidlabb/Rapport.md", + "Biokemi/Plasmidlabb/Slides.md", + "Biokemi/Plasmidlabb/Slides I.pdf.pdf", + "Biokemi/Plasmidlabb/Slides II.md", + "Biokemi/Plasmidlabb/Slides II.pdf.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Plasmidlabb/Articles": { + "children": [ + "Biokemi/Plasmidlabb/Articles/Article pUC plasmids.pdf", + "Biokemi/Plasmidlabb/Articles/Frontiers in bioprocessing.pdf", + "Biokemi/Plasmidlabb/Articles/Method for inserting New Generic.pdf", + "Biokemi/Plasmidlabb/Articles/Molecular Cloning.pdf", + "Biokemi/Plasmidlabb/Articles/Report guidelines 2025.pdf", + "Biokemi/Plasmidlabb/Articles/Role of Recombinant DNA.pdf", + "Biokemi/Plasmidlabb/Articles/Screening of Bac. recombinants.pdf" + ], + "sortOrder": "custom" + }, + "Biokemi/Plasmidlabb/Bilder": { + "children": [ + "Biokemi/Plasmidlabb/Bilder/IMG_0843.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_0844.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_0845.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_0846.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_0847.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_0848.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_1974.jpg", + "Biokemi/Plasmidlabb/Bilder/IMG_1976.jpg" + ], + "sortOrder": "custom" + }, + "Biokemi/Proteinseminarie": { + "children": [ + "Biokemi/Proteinseminarie/Proteinseminariefrågor.md", + "Biokemi/Proteinseminarie/Stödord.md" + ], + "sortOrder": "custom" + }, + "Clippings": { + "children": [], + "sortOrder": "custom" + }, + "PU": { + "children": [ + "PU/PU.md", + "PU/Tystnadsplikt.md" + ], + "sortOrder": "custom" + }, + "Studieteknik": { + "children": [ + "Studieteknik/20 regler hur man skapar Anki-kort.md" + ], + "sortOrder": "custom" + }, + "TaskNotes": { + "children": [ + "TaskNotes/Tasks", + "TaskNotes/Views" + ], + "sortOrder": "custom" + }, + "TaskNotes/Tasks": { + "children": [ + "TaskNotes/Tasks/ETK-kortlek imorgon kl 09.md" + ], + "sortOrder": "custom" + }, + "TaskNotes/Views": { + "children": [ + "TaskNotes/Views/relationships.base", + "TaskNotes/Views/agenda-default.base", + "TaskNotes/Views/calendar-default.base", + "TaskNotes/Views/tasks-default.base", + "TaskNotes/Views/kanban-default.base", + "TaskNotes/Views/mini-calendar-default.base" + ], + "sortOrder": "custom" + }, + "Templates": { + "children": [ + "Templates/{{Föreläsning}}" + ], + "sortOrder": "custom" + }, + "Templates/{{Föreläsning}}": { + "children": [], + "sortOrder": "custom" + }, + "TYK": { + "children": [ + "TYK/Presentation.md" + ], + "sortOrder": "custom" + }, + "z-Tech": { + "children": [ + "z-Tech/Export all to anki.md", + "z-Tech/GIT setup.md" + ], + "sortOrder": "custom" + } }, - "sortOrder": "customOrder", + "sortOrder": "custom", "debugMode": false, "newItemPlacement": "top" } \ No newline at end of file diff --git a/content/.obsidian/plugins/manual-sorting/main.js b/content/.obsidian/plugins/manual-sorting/main.js index 681bcae..8e65373 100644 --- a/content/.obsidian/plugins/manual-sorting/main.js +++ b/content/.obsidian/plugins/manual-sorting/main.js @@ -1,2 +1,2 @@ -let e=require(`obsidian`);var t=class e{static logLevel=`silent`;style;prefix;constructor(e,t){this.scope=e,this.color=t,this.style=`color: ${this.color}; background: #21202a; padding: 1px 5px; border-radius: 5px; font-family: consolas, monospace; font-size: 11px; border: 1px solid ${this.color}50;`,this.prefix=`%cMS|${this.scope}`}info=(...e)=>this.log(`log`,...e);warn=(...e)=>this.log(`warn`,...e);error=(...e)=>this.log(`error`,...e);infoCompact=(t,...n)=>{e.logLevel!==`silent`&&(console.groupCollapsed(this.prefix,this.style,t),console.log(...n),console.groupEnd())};log(t=`log`,...n){e.logLevel!==`silent`&&console[t](this.prefix,this.style,...n)}},n=class extends e.PluginSettingTab{constructor(e,t){super(e,t),this.plugin=t}display(){this.containerEl.empty(),new e.Setting(this.containerEl).setName(`New item placement`).setDesc(`Default new item placement.`).addDropdown(e=>e.addOption(`top`,`Top`).addOption(`bottom`,`Bottom`).setValue(this.plugin.settings.newItemPlacement).onChange(async e=>{this.plugin.settings.newItemPlacement=e,await this.plugin.saveSettings()})),new e.Setting(this.containerEl).setName(`Debug Mode`).setDesc(`Show debug logs in the console.`).addToggle(e=>e.setValue(this.plugin.settings.debugMode).onChange(async e=>{this.plugin.settings.debugMode=e,t.logLevel=e?`debug`:`silent`,await this.plugin.saveSettings()}))}},r=class extends e.Modal{constructor(t,n){super(t),this.setTitle(`Manual sorting`),this.modalEl.addClass(`manual-sorting-modal`);let r=this.contentEl.createEl(`div`);r.createEl(`p`,{text:`Reset custom order?`});let i=r.createEl(`div`,{cls:`modal-buttons`});new e.ButtonComponent(i).setButtonText(`Yep`).setCta().onClick(()=>{this.close(),n()}),new e.ButtonComponent(i).setButtonText(`Cancel`).onClick(()=>{this.close()})}},i=class{log=new t(`DND-MANAGER`,`#a6ff00`);explorerEl;dragStartHandler=null;dragStartEventType=e.Platform.isMobile?`touchstart`:`dragstart`;dragEventType=e.Platform.isMobile?`touchmove`:`drag`;dropEventType=e.Platform.isMobile?`touchend`:`dragend`;rafId=0;folderExpandTimeout=null;pendingExpandFolder=null;scrollRafId=null;scrollZone=50;scrollSpeed=5;constructor(e){this.plugin=e}async enable(){this.explorerEl=await this.plugin.explorerManager.waitForExplorerElement(!0);let t,n;this.dragStartHandler=r=>{let i=r.target,a=r instanceof DragEvent?r:r.touches[0],o=i.getBoundingClientRect().right-a.clientX;if(e.Platform.isMobile&&o>25)return;let s=this.explorerEl.getBoundingClientRect(),c=!1;this.explorerEl.dataset.dragActive=``,i.dataset.isBeingDragged=``;let l=r=>{e.Platform.isMobile&&(r.stopPropagation(),r.preventDefault()),cancelAnimationFrame(this.rafId),this.rafId=requestAnimationFrame(()=>{let e=r instanceof DragEvent?r:r.touches[0];if(c=e.clientXs.right||e.clientYs.bottom,c){this.clearDropIndicators();return}this.collapseDraggedFolder(i),{futureSibling:t,dropPosition:n}=this.findDropTarget(e.clientY),this.updateDropIndicators(t,n),this.handleAutoScroll(e.clientY,s)})};i.addEventListener(this.dragEventType,l),i.addEventListener(this.dropEventType,()=>{if(cancelAnimationFrame(this.rafId),i.removeEventListener(this.dragEventType,l),this.clearDropIndicators(),this.stopAutoScroll(),delete this.explorerEl.dataset.dragActive,c)return;let e=i.dataset.path,r=this.plugin.getFileExplorerView().fileItems[e],a=t.querySelector(`.tree-item-self`)?.dataset.path??``,o=t.classList.contains(`temp-child`);this.plugin.orderManager.reconcileOrder();let s=this.plugin.getFileExplorerView().tree.selectedDoms;s.has(r)?this.moveSelectedItems(s,a,o,n):this.moveItem(r,a,n,o)},{once:!0})},this.explorerEl.addEventListener(this.dragStartEventType,this.dragStartHandler),this.log.info(`Drag and drop enabled`)}disable(){this.dragStartHandler&&this.explorerEl.removeEventListener(this.dragStartEventType,this.dragStartHandler),this.log.info(`Drag and drop disabled`)}collapseDraggedFolder(e){if(e.classList.contains(`nav-folder-title`)&&e.dataset.path){let t=this.plugin.getFileExplorerView().fileItems[e.dataset.path];t.collapsed||t.setCollapsed(!0,!0)}}findDropTarget(e){let t=Array.from(this.explorerEl.querySelectorAll(`.tree-item:not(.nav-folder:has(> [data-is-being-dragged]) .tree-item)`));if(!t.length)return{futureSibling:t[0],dropPosition:`before`};let n=t[0],r=t[0].matches(`.tree-item:nth-child(1 of .tree-item)`)?`before`:`after`;return t.forEach(t=>{let i=t.classList.contains(`temp-child`),a=t.getBoundingClientRect(),o=a.top,s=a.bottom;t.matches(`.tree-item-children .tree-item:nth-last-child(1 of .tree-item)`)&&(s-=.01);let c=n.getBoundingClientRect()[r===`before`?`top`:`bottom`],l=Math.abs(c-e),u=Math.abs(s-e);if(ue.removeAttribute(`data-drop-position`)),t.dataset.dropPosition=n;let r=t.querySelector(`:scope > .tree-item-self`),i=r?.dataset.path??``;e.Platform.isMobile&&[`nav-folder`,`is-collapsed`].every(e=>t.classList.contains(e))&&r?.dataset.isBeingDragged===void 0?this.pendingExpandFolder!==i&&(this.folderExpandTimeout!==null&&(clearTimeout(this.folderExpandTimeout),this.folderExpandTimeout=null),this.pendingExpandFolder=i,this.folderExpandTimeout=window.setTimeout(()=>{this.plugin.getFileExplorerView().fileItems[i].setCollapsed(!1,!0),this.folderExpandTimeout=null,this.pendingExpandFolder=null},800)):this.folderExpandTimeout!==null&&(clearTimeout(this.folderExpandTimeout),this.folderExpandTimeout=null,this.pendingExpandFolder=null);let a=t.querySelector(`.tree-item-children`);if(a&&!a.children.length){let e=Object.assign(document.createElement(`div`),{className:`tree-item temp-child`,innerHTML:`
`});a.appendChild(e)}document.querySelectorAll(`.nav-folder.is-drop-target`).forEach(e=>e.classList.remove(`is-drop-target`));let o=t.parentElement.closest(`.nav-folder, [data-type="file-explorer"] > .nav-files-container > div`);o&&o.classList.add(`is-drop-target`)}clearDropIndicators(){this.folderExpandTimeout!==null&&(clearTimeout(this.folderExpandTimeout),this.folderExpandTimeout=null,this.pendingExpandFolder=null),document.querySelectorAll(`[data-is-being-dragged]`).forEach(e=>e.removeAttribute(`data-is-being-dragged`)),document.querySelectorAll(`[data-drop-position]`).forEach(e=>e.removeAttribute(`data-drop-position`)),document.querySelectorAll(`.is-drop-target`).forEach(e=>e.classList.remove(`is-drop-target`)),document.querySelectorAll(`.temp-child`).forEach(e=>e.remove())}moveItem(t,n,r,i){let a=t.file,o=a.path,s=n.substring(0,n.lastIndexOf(`/`)),c=s?s+`/`+a.name:a.name;if(o!==c&&this.plugin.app.vault.getAbstractFileByPath(c)){let t=a instanceof e.TFile?c.slice(0,-(a.extension.length+1)):c;c=this.plugin.app.vault.getAvailablePath(t,a instanceof e.TFile?a.extension:``)}return i&&(n=``),o!==c||c!==n?(this.log.info(`Moving '${o}' to '${c}' (${r} '${n}')`),this.plugin.app.fileManager.renameFile(a,c),this.plugin.orderManager.move(o,c,n,r)):this.log.info(`No move needed: '${o}' is already at the target position`),this.plugin.saveSettings(),this.plugin.getFileExplorerView().lastDropTargetEl=t.el,c}moveSelectedItems(t,n,r,i){let a=Array.from(t);a.some(t=>t.file instanceof e.TFolder)&&(a=a.filter(t=>{if(t.file instanceof e.TFolder)return!0;let n=t.file;return!a.some(t=>t.file instanceof e.TFolder&&n.path.startsWith(t.file.path+`/`))})),a=a.sort((e,t)=>{let n=e.el,r=t.el;return n.compareDocumentPosition(r)&Node.DOCUMENT_POSITION_FOLLOWING?-1:n.compareDocumentPosition(r)&Node.DOCUMENT_POSITION_PRECEDING?1:0}),a.forEach((e,t)=>{t>0&&(i=`after`,r=!1),n=this.moveItem(e,n,i,r)})}handleAutoScroll(e,t){let n=e-t.top,r=t.bottom-e;n{this.explorerEl.scrollTop+=e,this.scrollRafId=requestAnimationFrame(t)};this.scrollRafId=requestAnimationFrame(t)}stopAutoScroll(){this.scrollRafId&&=(cancelAnimationFrame(this.scrollRafId),null)}};const a=`customOrder`,o=`[data-type="file-explorer"] > .nav-files-container`,s={customOrder:{"/":[]},sortOrder:`customOrder`,debugMode:!1,newItemPlacement:`top`};var c=class{log=new t(`EXPLORER-MANAGER`,`#ffa700`);constructor(e){this.plugin=e}waitForExplorerElement=async(e=!1)=>new Promise(t=>{this.observeExplorerMount(t,!0,!0,e)});refreshExplorerOnMount=()=>this.observeExplorerMount(()=>this.refreshExplorer(),!1,!1);refreshExplorer(){this.log.info(`Refreshing Explorer after mount`),this.plugin.orderManager.reconcileOrder(),this.plugin.getFileExplorerView().setSortOrder(this.plugin.settings.sortOrder),this.plugin.isCustomSortingActive()&&this.plugin.dndManager.enable()}observeExplorerMount(e,t=!1,n=!0,r=!1){if(n){let t=document.querySelector(o);if(t instanceof HTMLElement){r||this.log.info(`Explorer already mounted`,t),console.log(),e(t);return}}new MutationObserver((n,i)=>{for(let a of n)for(let n of a.addedNodes)if(n instanceof HTMLElement&&n.matches(o)){t&&i.disconnect(),r||this.log.info(`Explorer mounted`,n),e(n);return}}).observe(document.querySelector(`.workspace`)??document.body,{childList:!0,subtree:!0})}},l=class{log=new t(`ORDER-MANAGER`,`#00ccff`);constructor(e){this.plugin=e}add(t){let n=t.path;this.log.info(`Inserting new item: '${n}'`);let r=this.plugin.settings.customOrder,i=n.substring(0,n.lastIndexOf(`/`))||`/`,a=t instanceof e.TFolder,o=this.plugin.settings.newItemPlacement;a&&(r[n]=[]),o===`top`?r[i].unshift(n):r[i].push(n),this.logOrder(`Updated order after adding new item:`)}rename(e,t){this.log.info(`Renaming '${e}' to '${t}'`);let n=this.plugin.settings.customOrder,r=e.substring(0,e.lastIndexOf(`/`))||`/`;n[r]=n[r].map(n=>n===e?t:n),e in n&&this.renameFolder(e,t),this.logOrder(`Updated order after renaming item:`)}move(e,t,n,r){this.log.info(`Moving '${e}' to '${t}' (${r} '${n}')`);let i=this.plugin.settings.customOrder,a=e.substring(0,e.lastIndexOf(`/`))||`/`,o=t.substring(0,t.lastIndexOf(`/`))||`/`,s=e in i,c=a!==o;i[a]=i[a].filter(t=>t!==e);let l=0;if(n){let e=i[o].indexOf(n);l=r===`before`?e:e+1}i[o].splice(l,0,t),s&&this.renameFolder(e,t),this.logOrder(`Updated order after moving item:`),c||(this.log.info(`Directory did not change, calling sort on File Explorer manually`),this.plugin.getFileExplorerView().sort())}remove(e){this.log.info(`Removing item: '${e}'`);let t=this.plugin.settings.customOrder,n=e.substring(0,e.lastIndexOf(`/`))||`/`,r=e in t;t[n]=t[n].filter(t=>t!==e),r&&delete t[e],this.logOrder(`Updated order after removing item:`)}reconcileOrder(){this.log.info(`Updating order...`);let e=this.getCurrentOrder(),t=this.plugin.settings.customOrder,n=this.matchSavedOrder(e,t);this.plugin.settings.customOrder=n,this.logOrder(`Order updated:`)}resetOrder(){this.plugin.settings.customOrder={"/":[]}}logOrder(e){this.log.infoCompact(e,JSON.stringify(this.plugin.settings.customOrder,null,4))}getCurrentOrder(){let t={},n=this.plugin.getFileExplorerView(),r=i=>{let a=n.getSortedFolderItems(i,!0),o=a.map(e=>e.file.path);t[i.path]=o;for(let t of a){let n=t.file;n instanceof e.TFolder&&r(n)}};return r(this.plugin.app.vault.root),t}matchSavedOrder(e,t){let n={};for(let r in e)if(r in t){let i=t[r],a=e[r],o=i.filter(e=>a.includes(e)),s=a.filter(e=>!i.includes(e));this.plugin.settings.newItemPlacement===`top`?n[r]=Array.from(new Set([...s,...o])):n[r]=Array.from(new Set([...o,...s]))}else n[r]=Array.from(new Set(e[r]));return n}removeFolder(e){let t=this.plugin.settings.customOrder;t[e].forEach(e=>{e in t&&this.removeFolder(e)}),delete t[e]}renameFolder(e,t){if(e===t)return;let n=this.plugin.settings.customOrder;n[t]=n[e],delete n[e],n[t]=n[t].map(r=>{let i=r.replace(e,t);return r in n&&this.renameFolder(r,i),i})}};function u(e,t){let n=Object.keys(t).map(n=>d(e,n,t[n]));return n.length===1?n[0]:function(){n.forEach(e=>e())}}function d(e,t,n){let r=e[t],i=e.hasOwnProperty(t),a=i?r:function(){return Object.getPrototypeOf(e)[t].apply(this,arguments)},o=n(a);return r&&Object.setPrototypeOf(o,r),Object.setPrototypeOf(s,o),e[t]=s,c;function s(...n){return o===a&&e[t]===s&&c(),o.apply(this,n)}function c(){e[t]===s&&(i?e[t]=a:delete e[t]),o!==a&&(o=a,Object.setPrototypeOf(s,r||Function))}}var f=class{explorerUninstaller=null;menuUninstaller=null;log=new t(`PATCHER`,`#988bff`);constructor(e){this.plugin=e}patchExplorer(){let e=this,t=this.plugin,n=t.getFileExplorerView();this.explorerUninstaller=u(Object.getPrototypeOf(n),{getSortedFolderItems:e=>function(n,r){let i=e.call(this,n);if(r||!t.isCustomSortingActive())return i;let a=n.path,o=t.settings.customOrder[a];return i.sort((e,t)=>o.indexOf(e.file.path)-o.indexOf(t.file.path))},setSortOrder:n=>function(r){n.call(this,r),e.log.info(`Sort order changed to: '${r}'`);let i=t.isCustomSortingActive();t.settings.sortOrder=r,t.saveSettings(),i&&!t.isCustomSortingActive()&&(t.dndManager.disable(),t.getFileExplorerView().sort())}})}patchSortOrderMenu(){let t=this.plugin;this.menuUninstaller=u(e.Menu.prototype,{showAtMouseEvent:n=>function(...i){let o=i[0].target;if(o.getAttribute(`aria-label`)===i18next.t(`plugins.file-explorer.action-change-sort`)&&o.classList.contains(`nav-action-button`)){let n=this;if(t.isCustomSortingActive()){let t=n.items.find(t=>t instanceof e.MenuItem&&t.checked===!0);t&&t.setChecked(!1)}let i=a;n.addItem(e=>{e.setTitle(`Manual sorting`).setIcon(`pin`).setChecked(t.isCustomSortingActive()).setSection(i).onClick(()=>{t.isCustomSortingActive()||(t.settings.sortOrder=a,t.orderManager.reconcileOrder(),t.saveSettings(),t.getFileExplorerView().sort(),t.dndManager.enable())})}),n.addItem(e=>{e.setTitle(`Reset order`).setIcon(`trash-2`).setSection(i).onClick(()=>{new r(t.app,()=>{t.orderManager.resetOrder(),t.orderManager.reconcileOrder(),t.saveSettings(),t.getFileExplorerView().sort()}).open()})});let o=n.items,s=o.splice(8,1)[0];o.splice(0,0,s)}return n.apply(this,i)}})}unpatchExplorer(){this.explorerUninstaller&&(this.explorerUninstaller(),this.explorerUninstaller=null,this.log.info(`Explorer unpatched`))}unpatchSortOrderMenu(){this.menuUninstaller&&(this.menuUninstaller(),this.menuUninstaller=null,this.log.info(`Sort order menu unpatched`))}},p=class extends e.Plugin{orderManager=new l(this);patcher=new f(this);explorerManager=new c(this);dndManager=new i(this);log=new t(`CORE`,`#ff4828`);settings;async onload(){await this.loadSettings(),t.logLevel=this.settings.debugMode?`debug`:`silent`,this.addSettingTab(new n(this.app,this)),this.app.workspace.onLayoutReady(()=>this.initialize())}onunload(){this.patcher.unpatchExplorer(),this.patcher.unpatchSortOrderMenu(),this.dndManager.disable(),this.getFileExplorerView().sort(),this.log.info(`Manual Sorting unloaded`)}async initialize(){await this.explorerManager.waitForExplorerElement(),this.patcher.patchExplorer(),this.patcher.patchSortOrderMenu(),this.explorerManager.refreshExplorer(),this.explorerManager.refreshExplorerOnMount(),this.registerVaultHandlers()}registerVaultHandlers(){this.app.vault.on(`rename`,(e,t)=>{(t.substring(0,t.lastIndexOf(`/`))||`/`)===(e.path.substring(0,e.path.lastIndexOf(`/`))||`/`)&&(this.log.info(`Item renamed from '${t}' to '${e.path}'`),this.orderManager.rename(t,e.path))}),this.app.vault.on(`create`,e=>{this.log.info(`Item created: '${e.path}'`),this.orderManager.add(e)}),this.app.vault.on(`delete`,e=>{this.log.info(`Item deleted: '${e.path}'`),this.orderManager.remove(e.path)})}async loadSettings(){let e=await this.loadData()||{};this.settings={...s,...Object.fromEntries(Object.keys(s).filter(t=>t in e).map(t=>[t,e[t]]))},this.log.info(`Settings loaded:`,this.settings)}async saveSettings(){await this.saveData(this.settings),this.log.info(`Settings saved:`,this.settings)}async onExternalSettingsChange(){await this.loadSettings(),this.log.warn(`Settings changed externally`),this.getFileExplorerView().sort()}isCustomSortingActive=()=>this.settings.sortOrder===a;getFileExplorerView=()=>this.app.workspace.getLeavesOfType(`file-explorer`)[0].view};module.exports=p; +let e=require(`obsidian`);var t=class e{static logLevel=`silent`;style;prefix;constructor(e,t){this.scope=e,this.color=t,this.style=`color: ${this.color}; background: #21202a; padding: 1px 5px; border-radius: 5px; font-family: consolas, monospace; font-size: 11px; border: 1px solid ${this.color}50;`,this.prefix=`%cMS|${this.scope}`}info=(...e)=>this.log(`log`,...e);warn=(...e)=>this.log(`warn`,...e);error=(...e)=>this.log(`error`,...e);infoCompact=(t,...n)=>{e.logLevel!==`silent`&&(console.groupCollapsed(this.prefix,this.style,t),console.log(...n),console.groupEnd())};log(t=`log`,...n){e.logLevel!==`silent`&&console[t](this.prefix,this.style,...n)}},n=class extends e.PluginSettingTab{constructor(e,t){super(e,t),this.plugin=t}display(){this.containerEl.empty(),new e.Setting(this.containerEl).setName(`New item placement`).setDesc(`Default new item placement.`).addDropdown(e=>e.addOption(`top`,`Top`).addOption(`bottom`,`Bottom`).setValue(this.plugin.settings.newItemPlacement).onChange(async e=>{this.plugin.settings.newItemPlacement=e,await this.plugin.saveSettings()})),new e.Setting(this.containerEl).setName(`Debug Mode`).setDesc(`Show debug logs in the console.`).addToggle(e=>e.setValue(this.plugin.settings.debugMode).onChange(async e=>{this.plugin.settings.debugMode=e,t.logLevel=e?`debug`:`silent`,await this.plugin.saveSettings()}))}},r=class extends e.Modal{constructor(t,n){super(t),this.setTitle(`Manual Sorting`),this.modalEl.addClass(`manual-sorting-modal`);let r=this.contentEl.createEl(`div`);r.createEl(`p`,{text:`Reset custom order?`});let i=r.createEl(`div`,{cls:`modal-buttons`});new e.ButtonComponent(i).setButtonText(`Yep`).setCta().onClick(()=>{this.close(),n()}),new e.ButtonComponent(i).setButtonText(`Nope`).onClick(()=>{this.close()})}},i=class{log=new t(`DND-MANAGER`,`#a6ff00`);explorerEl;dragStartHandler=null;dragStartEventType=e.Platform.isMobile?`touchstart`:`dragstart`;dragEventType=e.Platform.isMobile?`touchmove`:`drag`;dropEventType=e.Platform.isMobile?`touchend`:`dragend`;rafId=0;folderExpandTimeout=null;pendingExpandFolder=null;scrollRafId=null;scrollZone=50;scrollSpeed=5;dropZonesActivationDelay=250;dropZonesActivationTimeout=null;dragZoneWidth=36;constructor(e){this.plugin=e}async enable(){this.explorerEl=await this.plugin.explorerManager.waitForExplorerElement(!0);let t=null,n=`before`;this.dragStartHandler=r=>{let i=r.target.closest(`.tree-item-self`);if(!i)return;let a=r instanceof DragEvent?r:r.touches[0],o=i.getBoundingClientRect().right-a.clientX;if(e.Platform.isMobile){if(o>this.dragZoneWidth)return;r.preventDefault()}this.log.info(`Drag started`);let s=this.explorerEl.getBoundingClientRect(),c=!1;this.explorerEl.dataset.dragActive=``,i.dataset.isBeingDragged=``;let l=r=>{e.Platform.isMobile&&(r.stopPropagation(),r.preventDefault()),cancelAnimationFrame(this.rafId),this.rafId=requestAnimationFrame(()=>{this.log.info(`Dragging...`);let e=r instanceof DragEvent?r:r.touches[0];if(c=e.clientXs.right||e.clientYs.bottom,c){this.clearDropIndicators();return}this.collapseDraggedFolder(i),{futureSibling:t,dropPosition:n}=this.findDropTarget(e.clientY),this.updateDropIndicators(t,n),this.handleAutoScroll(e.clientY,s)})};i.addEventListener(this.dragEventType,l),i.addEventListener(this.dropEventType,()=>{if(this.log.info(`Item dropped`),cancelAnimationFrame(this.rafId),i.removeEventListener(this.dragEventType,l),this.clearDropIndicators(),this.stopAutoScroll(),delete this.explorerEl.dataset.dragActive,c)return;let e=i.dataset.path,r=this.plugin.getFileExplorerView().fileItems[e];if(!t)return;let a=t.querySelector(`.tree-item-self`)?.dataset.path??``,o=t.classList.contains(`temp-child`);this.plugin.orderManager.reconcileOrder();let s=this.plugin.getFileExplorerView().tree.selectedDoms;s.has(r)?this.moveSelectedItems(s,a,o,n):this.moveItem(r,a,n,o),t=null},{once:!0})},this.explorerEl.addEventListener(`mousedown`,()=>{this.dropZonesActivationTimeout=window.setTimeout(()=>{this.explorerEl.dataset.dragActive===void 0&&(this.explorerEl.dataset.dragActive=``),this.dropZonesActivationTimeout=null},this.dropZonesActivationDelay)}),this.explorerEl.addEventListener(`mouseup`,()=>{delete this.explorerEl.dataset.dragActive,this.dropZonesActivationTimeout&&=(clearTimeout(this.dropZonesActivationTimeout),null)}),this.explorerEl.addEventListener(this.dragStartEventType,this.dragStartHandler),this.log.info(`Drag and drop enabled`)}disable(){this.dragStartHandler&&this.explorerEl.removeEventListener(this.dragStartEventType,this.dragStartHandler),this.log.info(`Drag and drop disabled`)}collapseDraggedFolder(e){if(e.classList.contains(`nav-folder-title`)&&e.dataset.path){let t=this.plugin.getFileExplorerView().fileItems[e.dataset.path];t.collapsed||t.setCollapsed(!0,!0)}}findDropTarget(e){let t=Array.from(this.explorerEl.querySelectorAll(`.tree-item:not(.nav-folder:has(> [data-is-being-dragged]) .tree-item)`));if(!t.length)return{futureSibling:t[0],dropPosition:`before`};let n=t[0],r=t[0].matches(`.tree-item:nth-child(1 of .tree-item)`)?`before`:`after`;return t.forEach(t=>{let i=t.classList.contains(`temp-child`),a=t.getBoundingClientRect(),o=a.top,s=a.bottom;t.matches(`.tree-item-children .tree-item:nth-last-child(1 of .tree-item)`)&&(s-=.01);let c=n.getBoundingClientRect()[r===`before`?`top`:`bottom`],l=Math.abs(c-e),u=Math.abs(s-e);if(ue.removeAttribute(`data-drop-position`)),t.dataset.dropPosition=n;let r=t.querySelector(`:scope > .tree-item-self`),i=r?.dataset.path??``;e.Platform.isMobile&&[`nav-folder`,`is-collapsed`].every(e=>t.classList.contains(e))&&r?.dataset.isBeingDragged===void 0?this.pendingExpandFolder!==i&&(this.folderExpandTimeout!==null&&(clearTimeout(this.folderExpandTimeout),this.folderExpandTimeout=null),this.pendingExpandFolder=i,this.folderExpandTimeout=window.setTimeout(()=>{this.plugin.getFileExplorerView().fileItems[i].setCollapsed(!1,!0),this.folderExpandTimeout=null,this.pendingExpandFolder=null},800)):this.folderExpandTimeout!==null&&(clearTimeout(this.folderExpandTimeout),this.folderExpandTimeout=null,this.pendingExpandFolder=null);let a=t.querySelector(`.tree-item-children`);if(a&&!a.children.length){let e=Object.assign(document.createElement(`div`),{className:`tree-item temp-child`,innerHTML:`
`});a.appendChild(e)}document.querySelectorAll(`.nav-folder.is-drop-target`).forEach(e=>e.classList.remove(`is-drop-target`));let o=t.parentElement.closest(`.nav-folder, [data-type="file-explorer"] > .nav-files-container > div`);o&&o.classList.add(`is-drop-target`)}clearDropIndicators(){this.folderExpandTimeout!==null&&(clearTimeout(this.folderExpandTimeout),this.folderExpandTimeout=null,this.pendingExpandFolder=null),document.querySelectorAll(`[data-is-being-dragged]`).forEach(e=>e.removeAttribute(`data-is-being-dragged`)),document.querySelectorAll(`[data-drop-position]`).forEach(e=>e.removeAttribute(`data-drop-position`)),document.querySelectorAll(`.is-drop-target`).forEach(e=>e.classList.remove(`is-drop-target`)),document.querySelectorAll(`.temp-child`).forEach(e=>e.remove())}moveItem(t,n,r,i){let a=t.file,o=a.path,s=n.substring(0,n.lastIndexOf(`/`)),c=s?s+`/`+a.name:a.name;if(o!==c&&this.plugin.app.vault.getAbstractFileByPath(c)){let t=a instanceof e.TFile?c.slice(0,-(a.extension.length+1)):c;c=this.plugin.app.vault.getAvailablePath(t,a instanceof e.TFile?a.extension:``)}return i&&(n=``),o!==c||c!==n?(this.log.info(`Moving '${o}' to '${c}' (${r} '${n}')`),this.plugin.app.fileManager.renameFile(a,c),this.plugin.orderManager.move(o,c,n,r)):this.log.info(`No move needed: '${o}' is already at the target position`),this.plugin.saveSettings(),this.plugin.getFileExplorerView().lastDropTargetEl=t.el,c}moveSelectedItems(t,n,r,i){let a=Array.from(t);a.some(t=>t.file instanceof e.TFolder)&&(a=a.filter(t=>{if(t.file instanceof e.TFolder)return!0;let n=t.file;return!a.some(t=>t.file instanceof e.TFolder&&n.path.startsWith(t.file.path+`/`))})),a=a.sort((e,t)=>{let n=e.el,r=t.el;return n.compareDocumentPosition(r)&Node.DOCUMENT_POSITION_FOLLOWING?-1:n.compareDocumentPosition(r)&Node.DOCUMENT_POSITION_PRECEDING?1:0}),a.forEach((e,t)=>{t>0&&(i=`after`,r=!1),n=this.moveItem(e,n,i,r)})}handleAutoScroll(e,t){let n=e-t.top,r=t.bottom-e;n{this.explorerEl.scrollTop+=e,this.scrollRafId=requestAnimationFrame(t)};this.scrollRafId=requestAnimationFrame(t)}stopAutoScroll(){this.scrollRafId&&=(cancelAnimationFrame(this.scrollRafId),null)}};const a=`[data-type="file-explorer"] > .nav-files-container`;var o=class{log=new t(`EXPLORER-MANAGER`,`#ffa700`);constructor(e){this.plugin=e}waitForExplorerElement=async(e=!1)=>new Promise(t=>{this.observeExplorerMount(t,!0,!0,e)});refreshExplorerOnMount=()=>this.observeExplorerMount(()=>this.refreshExplorer(),!1,!1);refreshExplorer(){this.log.info(`Refreshing Explorer after mount`),this.plugin.orderManager.reconcileOrder(),this.plugin.getFileExplorerView().setSortOrder(this.plugin.settings.sortOrder),this.plugin.isCustomSortingActive()&&this.plugin.dndManager.enable()}observeExplorerMount(e,t=!1,n=!0,r=!1){if(n){let t=document.querySelector(a);if(t instanceof HTMLElement){r||this.log.info(`Explorer already mounted`,t),console.log(),e(t);return}}new MutationObserver((n,i)=>{for(let o of n)for(let n of o.addedNodes)if(n instanceof HTMLElement&&n.matches(a)){t&&i.disconnect(),r||this.log.info(`Explorer mounted`,n),e(n);return}}).observe(document.querySelector(`.workspace`)??document.body,{childList:!0,subtree:!0})}};const s=`custom`,c={customOrder:{"/":{children:[],sortOrder:`custom`}},sortOrder:`custom`,debugMode:!1,newItemPlacement:`top`};var l=class{log=new t(`ORDER-MANAGER`,`#00ccff`);constructor(e){this.plugin=e}add(t){let n=t.path;this.log.info(`Inserting new item: '${n}'`);let r=this.plugin.settings.customOrder,i=n.substring(0,n.lastIndexOf(`/`))||`/`,a=t instanceof e.TFolder,o=this.plugin.settings.newItemPlacement;a&&(r[n]={children:[],sortOrder:`custom`}),o===`top`?r[i].children.unshift(n):r[i].children.push(n),this.logOrder(`Updated order after adding new item:`)}rename(e,t){this.log.info(`Renaming '${e}' to '${t}'`);let n=this.plugin.settings.customOrder,r=e.substring(0,e.lastIndexOf(`/`))||`/`;n[r].children=n[r].children.map(n=>n===e?t:n),e in n&&this.renameFolder(e,t),this.logOrder(`Updated order after renaming item:`)}move(e,t,n,r){this.log.info(`Moving '${e}' to '${t}' (${r} '${n}')`);let i=this.plugin.settings.customOrder,a=e.substring(0,e.lastIndexOf(`/`))||`/`,o=t.substring(0,t.lastIndexOf(`/`))||`/`,s=e in i,c=a!==o;i[a].children=i[a].children.filter(t=>t!==e);let l=0;if(n){let e=i[o].children.indexOf(n);l=r===`before`?e:e+1}i[o].children.splice(l,0,t),s&&this.renameFolder(e,t),this.logOrder(`Updated order after moving item:`),c||(this.log.info(`Directory did not change, calling sort on File Explorer manually`),this.plugin.getFileExplorerView().sort())}remove(e){this.log.info(`Removing item: '${e}'`);let t=this.plugin.settings.customOrder,n=e.substring(0,e.lastIndexOf(`/`))||`/`,r=e in t;t[n].children=t[n].children.filter(t=>t!==e),r&&delete t[e],this.logOrder(`Updated order after removing item:`)}reconcileOrder(){this.log.info(`Updating order...`);let e=this.getCurrentOrder(),t=this.plugin.settings.customOrder,n=this.matchSavedOrder(e,t);this.plugin.settings.customOrder=n,this.logOrder(`Order updated:`)}resetOrder(){this.plugin.settings.customOrder={"/":{children:[],sortOrder:`custom`}}}logOrder(e){this.log.infoCompact(e,JSON.stringify(this.plugin.settings.customOrder,null,4))}getCurrentOrder(){let t={},n=this.plugin.getFileExplorerView(),r=i=>{let a=n.getSortedFolderItems(i,!0),o=a.map(e=>e.file.path);t[i.path]={children:o,sortOrder:`custom`};for(let t of a){let n=t.file;n instanceof e.TFolder&&r(n)}};return r(this.plugin.app.vault.root),t}matchSavedOrder(e,t){let n={};for(let r in e)if(r in t){let i=t[r],a=e[r],o=i.children.filter(e=>a.children.includes(e)),s=a.children.filter(e=>!i.children.includes(e));this.plugin.settings.newItemPlacement===`top`?n[r]={children:Array.from(new Set([...s,...o])),sortOrder:`custom`}:n[r]={children:Array.from(new Set([...o,...s])),sortOrder:`custom`}}else n[r]={children:Array.from(new Set(e[r].children)),sortOrder:`custom`};return n}removeFolder(e){let t=this.plugin.settings.customOrder;t[e].children.forEach(e=>{e in t&&this.removeFolder(e)}),delete t[e]}renameFolder(e,t){if(e===t)return;let n=this.plugin.settings.customOrder;n[t]=n[e],delete n[e],n[t].children=n[t].children.map(r=>{let i=r.replace(e,t);return r in n&&this.renameFolder(r,i),i})}};function u(e,t){let n=Object.keys(t).map(n=>d(e,n,t[n]));return n.length===1?n[0]:function(){n.forEach(e=>e())}}function d(e,t,n){let r=e[t],i=e.hasOwnProperty(t),a=i?r:function(){return Object.getPrototypeOf(e)[t].apply(this,arguments)},o=n(a);return r&&Object.setPrototypeOf(o,r),Object.setPrototypeOf(s,o),e[t]=s,c;function s(...n){return o===a&&e[t]===s&&c(),o.apply(this,n)}function c(){e[t]===s&&(i?e[t]=a:delete e[t]),o!==a&&(o=a,Object.setPrototypeOf(s,r||Function))}}var f=class{explorerUninstaller=null;menuUninstaller=null;log=new t(`PATCHER`,`#988bff`);constructor(e){this.plugin=e}patchExplorer(){let e=this,t=this.plugin,n=t.getFileExplorerView();this.explorerUninstaller=u(Object.getPrototypeOf(n),{getSortedFolderItems:e=>function(n,r){let i=e.call(this,n);if(r||!t.isCustomSortingActive())return i;let a=n.path,o=t.settings.customOrder[a].children;return i.sort((e,t)=>o.indexOf(e.file.path)-o.indexOf(t.file.path))},setSortOrder:n=>function(r){n.call(this,r),e.log.info(`Sort order changed to: '${r}'`);let i=t.isCustomSortingActive();t.settings.sortOrder=r,t.saveSettings(),i&&!t.isCustomSortingActive()&&(t.dndManager.disable(),t.getFileExplorerView().sort())}})}patchSortOrderMenu(){let t=this.plugin;this.menuUninstaller=u(e.Menu.prototype,{showAtMouseEvent:n=>function(...i){let a=i[0].target;if(a.getAttribute(`aria-label`)===i18next.t(`plugins.file-explorer.action-change-sort`)&&a.classList.contains(`nav-action-button`)){let n=this;if(t.isCustomSortingActive()){let t=n.items.find(t=>t instanceof e.MenuItem&&t.checked===!0);t&&t.setChecked(!1)}let i=s;n.addItem(e=>{e.setTitle(`Manual sorting`).setIcon(`pin`).setChecked(t.isCustomSortingActive()).setSection(i).onClick(()=>{t.isCustomSortingActive()||(t.settings.sortOrder=s,t.orderManager.reconcileOrder(),t.saveSettings(),t.getFileExplorerView().sort(),t.dndManager.enable())})}),n.addItem(e=>{e.setTitle(`Reset order`).setIcon(`trash-2`).setSection(i).onClick(()=>{new r(t.app,()=>{t.orderManager.resetOrder(),t.orderManager.reconcileOrder(),t.saveSettings(),t.getFileExplorerView().sort()}).open()})});let a=n.items,o=a.splice(8,1)[0];a.splice(0,0,o)}return n.apply(this,i)}})}unpatchExplorer(){this.explorerUninstaller&&(this.explorerUninstaller(),this.explorerUninstaller=null,this.log.info(`Explorer unpatched`))}unpatchSortOrderMenu(){this.menuUninstaller&&(this.menuUninstaller(),this.menuUninstaller=null,this.log.info(`Sort order menu unpatched`))}},p=class extends e.Plugin{orderManager=new l(this);patcher=new f(this);explorerManager=new o(this);dndManager=new i(this);log=new t(`CORE`,`#ff4828`);settings;async onload(){await this.loadSettings(),t.logLevel=this.settings.debugMode?`debug`:`silent`,this.addSettingTab(new n(this.app,this)),this.app.workspace.onLayoutReady(()=>this.initialize())}onunload(){this.patcher.unpatchExplorer(),this.patcher.unpatchSortOrderMenu(),this.dndManager.disable(),this.getFileExplorerView().sort(),this.log.info(`Manual Sorting unloaded`)}async initialize(){await this.explorerManager.waitForExplorerElement(),this.patcher.patchExplorer(),this.patcher.patchSortOrderMenu(),this.explorerManager.refreshExplorer(),this.explorerManager.refreshExplorerOnMount(),this.registerVaultHandlers()}registerVaultHandlers(){this.app.vault.on(`rename`,(e,t)=>{(t.substring(0,t.lastIndexOf(`/`))||`/`)===(e.path.substring(0,e.path.lastIndexOf(`/`))||`/`)&&(this.log.info(`Item renamed from '${t}' to '${e.path}'`),this.orderManager.rename(t,e.path))}),this.app.vault.on(`create`,e=>{this.log.info(`Item created: '${e.path}'`),this.orderManager.add(e)}),this.app.vault.on(`delete`,e=>{this.log.info(`Item deleted: '${e.path}'`),this.orderManager.remove(e.path)})}async loadSettings(){let e=await this.loadData()||{},t;e.customOrder?.[`/`]&&Array.isArray(e.customOrder[`/`])?(this.log.info(`Migrating settings to v4 format`),t=this.migrateLegacySettings(e)):t=e,this.settings={...c,...Object.fromEntries(Object.keys(c).filter(e=>e in t).map(e=>[e,t[e]]))},this.log.info(`Settings loaded:`,this.settings)}async saveSettings(){await this.saveData(this.settings),this.log.info(`Settings saved:`,this.settings)}async onExternalSettingsChange(){await this.loadSettings(),this.log.warn(`Settings changed externally`),this.getFileExplorerView().sort()}migrateLegacySettings=e=>({...e,customOrder:Object.fromEntries(Object.entries(e.customOrder).map(([e,t])=>[e,{children:t,sortOrder:`custom`}])),sortOrder:e.sortOrder===`customOrder`?s:e.sortOrder});isCustomSortingActive=()=>this.settings.sortOrder===s;getFileExplorerView=()=>this.app.workspace.getLeavesOfType(`file-explorer`)[0].view};module.exports=p; /* nosourcemap */ \ No newline at end of file diff --git a/content/.obsidian/plugins/manual-sorting/manifest.json b/content/.obsidian/plugins/manual-sorting/manifest.json index 503ab20..04ddeb9 100644 --- a/content/.obsidian/plugins/manual-sorting/manifest.json +++ b/content/.obsidian/plugins/manual-sorting/manifest.json @@ -1,7 +1,7 @@ { "id": "manual-sorting", "name": "Manual Sorting", - "version": "3.1.0", + "version": "3.2.1", "minAppVersion": "0.15.0", "description": "Drag'n'Drop sorting within file explorer.", "author": "kh4f", diff --git a/content/.obsidian/plugins/manual-sorting/styles.css b/content/.obsidian/plugins/manual-sorting/styles.css index 1af040e..b95e6c2 100644 --- a/content/.obsidian/plugins/manual-sorting/styles.css +++ b/content/.obsidian/plugins/manual-sorting/styles.css @@ -46,11 +46,12 @@ @media (pointer: coarse) { .tree-item-self:not(.temp)::after { - content: "⋮⋮⋮"; + content: "⋮⋮"; position: absolute; + rotate: 90deg; right: 12px; align-self: center; - font-size: calc(var(--nav-item-size)+2px); + font-size: calc(var(--nav-item-size) + 2px); opacity: 0.4; } } @@ -61,7 +62,7 @@ to { background-position: 8px 0; } } -.menu-item[data-section="customOrder"] { +.menu-item[data-section="custom"] { .menu-item-icon:first-child { display: flex; } .dragging-enabled-checkbox { diff --git a/content/.obsidian/plugins/obsidian-git/data.json b/content/.obsidian/plugins/obsidian-git/data.json index 6bce248..340b985 100644 --- a/content/.obsidian/plugins/obsidian-git/data.json +++ b/content/.obsidian/plugins/obsidian-git/data.json @@ -19,7 +19,7 @@ "syncMethod": "rebase", "customMessageOnAutoBackup": false, "autoBackupAfterFileChange": true, - "treeStructure": true, + "treeStructure": false, "refreshSourceControl": true, "basePath": "", "differentIntervalCommitAndPush": false, diff --git a/content/.obsidian/workspace.json b/content/.obsidian/workspace.json index 41c2771..7dca349 100644 --- a/content/.obsidian/workspace.json +++ b/content/.obsidian/workspace.json @@ -4,41 +4,57 @@ "type": "split", "children": [ { - "id": "3138dc1364a3ebb8", - "type": "tabs", + "id": "acedf4d1b378e12a", + "type": "split", "children": [ { - "id": "c5854120d39261cd", - "type": "leaf", - "state": { - "type": "markdown", - "state": { - "file": "Anatomi & Histologi 2/Demokompendium.md", - "mode": "source", - "source": false, - "backlinks": false - }, - "icon": "lucide-file", - "title": "Demokompendium" - } + "id": "3138dc1364a3ebb8", + "type": "tabs", + "dimension": 52.5, + "children": [ + { + "id": "c5854120d39261cd", + "type": "leaf", + "pinned": true, + "state": { + "type": "markdown", + "state": { + "file": "Anatomi & Histologi 2/Gamla tentor/Statistik.md", + "mode": "source", + "source": false, + "backlinks": false + }, + "pinned": true, + "icon": "lucide-file", + "title": "Statistik" + } + } + ] }, { - "id": "32fb0c4180f73dab", - "type": "leaf", - "state": { - "type": "markdown", - "state": { - "file": "Anatomi & Histologi 2/Schema.md", - "mode": "preview", - "source": false, - "backlinks": false - }, - "icon": "lucide-file", - "title": "Schema" - } + "id": "25f93f29fda008a5", + "type": "tabs", + "dimension": 47.5, + "children": [ + { + "id": "9729a5dcefd4cee4", + "type": "leaf", + "state": { + "type": "markdown", + "state": { + "file": "Anatomi & Histologi 2/Schema.md", + "mode": "source", + "source": false, + "backlinks": false + }, + "icon": "lucide-file", + "title": "Schema" + } + } + ] } ], - "currentTab": 1 + "direction": "horizontal" } ], "direction": "vertical" @@ -57,7 +73,7 @@ "state": { "type": "file-explorer", "state": { - "sortOrder": "customOrder", + "sortOrder": "custom", "autoReveal": false }, "icon": "lucide-folder-closed", @@ -85,7 +101,7 @@ } ], "direction": "horizontal", - "width": 344.50390243530273 + "width": 304.50390243530273 }, "right": { "id": "0948c66181b40af9", @@ -169,18 +185,28 @@ "state": { "type": "file-properties", "state": { - "file": "Anatomi & Histologi 2/Schema.md" + "file": "Anatomi & Histologi 2/Gamla tentor/Statistik.md" }, "icon": "lucide-info", - "title": "File properties for Schema" + "title": "File properties for Statistik" + } + }, + { + "id": "03afb117002fcdff", + "type": "leaf", + "state": { + "type": "agent-client-chat-view", + "state": {}, + "icon": "bot-message-square", + "title": "Agent client" } } ], - "currentTab": 5 + "currentTab": 4 } ], "direction": "horizontal", - "width": 200 + "width": 455.5 }, "left-ribbon": { "hiddenItems": { @@ -192,26 +218,41 @@ "bases:Create new base": false, "canvas:Create new canvas": false, "graph:Open graph view": false, - "templates:Insert template": false + "templates:Insert template": false, + "agent-client:Open agent client": false } }, - "active": "32fb0c4180f73dab", + "active": "41f1a2a8dc1c3ad7", "lastOpenFiles": [ + "Anatomi & Histologi 2/TBL CNS", + "Anatomi & Histologi 2/TBL Öga & öra", + "Anatomi & Histologi 2/ANS", + "Anatomi & Histologi 2/PNS", "Anatomi & Histologi 2/Schema.md", - "Anatomi & Histologi 2/Instuderingsfrågor.pdf.pdf", - "Anatomi & Histologi 2/Instuderingsfrågor.md", - "Anatomi & Histologi 2/! Översikt.md", + "Anatomi & Histologi 2/CNS hinnor, hålrum och kärl", + "Anatomi & Histologi 2/CNS medulla spinalis", + "Anatomi & Histologi 2/CNS truncus encephali", + "Anatomi & Histologi 2/CNS diencephalon", + "Anatomi & Histologi 2/CNS cerebrum", + "Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.pdf", + "Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.md", "Anatomi & Histologi 2/Demokompendium.md", + "Anatomi & Histologi 2/Öga histologi/Slides.md", + "Anatomi & Histologi 2/Öga histologi/Slides.pdf.pdf", + "Anatomi & Histologi 2/Öga histologi/Målbeskrivning.md", + "Anatomi & Histologi 2/Öga histologi/Instuderingsfrågor.md", + "Anatomi & Histologi 2/Öga histologi/24 Eye.md", + "Anatomi & Histologi 2/Öga anatomi/Slides.md", + "Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.md", + "Anatomi & Histologi 2/Öra histologi/25 Ear.md", + "Anatomi & Histologi 2/Öga anatomi/Målbeskrivning.md", + "Anatomi & Histologi 2/Gamla tentor/Statistik.md", + "Anatomi & Histologi 2/! Översikt.md", + "Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.md", + "Anatomi & Histologi 2/Öga anatomi/Instuderingsfrågor.md", + "Anatomi & Histologi 2/Instuderingsfrågor.md", "Anatomi & Histologi 2/Målbeskrivning.md", - "Anatomi & Histologi 2/~$ Detaljerad målbeskrivning.docx", - "Anatomi & Histologi 2/~$MOkompedium T1 .docx", - "Anatomi & Histologi 2/Unconfirmed 949902.crdownload", - "Anatomi & Histologi 2/DEMOkompedium T1 .docx", - "Anatomi & Histologi 2/Unconfirmed 958983.crdownload", - "Anatomi & Histologi 2/F. Detaljerad målbeskrivning.docx", - "Anatomi & Histologi 2/Unconfirmed 774494.crdownload", - "Biokemi/Gamla tentor/2024-12-20/2024-12-20-0036-OWN.pdf", - "Anatomi & Histologi 2", + "Anatomi & Histologi 2/Untitled.md", "Biokemi/Metabolism/🩸 Heme/Stoff.md", "Biokemi/Gamla tentor/2024-12-20/3.md", "Biokemi/Gamla tentor/2023-05-15/16.md", @@ -220,19 +261,6 @@ "Biokemi/Makromolekyler/Lipider/Instuderingsuppgifter.md", "Biokemi/Makromolekyler/Lipider/Lärandemål.md", "Biokemi/Metabolism/🩸 Heme/Studera.md", - "Biokemi/Gamla tentor/2024-12-20/30.md", - "Biokemi/Gamla tentor/2024-01-27/33.md", - "Biokemi/Metabolism/Pentosfosfatvägen/📚 Instuderingsuppgifter.md", - "Biokemi/Metabolism/🩸 Heme/Provfrågor.md", - "Biokemi/Gamla tentor/2024-01-27/2024-01-27-0096-APG.md", - "Biokemi/Gamla tentor/2024-01-27/30.md", - "Biokemi/Cellulära processer/Utforska proteiner/Lärandemål.md", - "Biokemi/Plasmidlabb/Anteckningar I.md", - "Biokemi/Behöver göra.md", - "conflict-files-obsidian-git.md", - "Biokemi/Cellulära processer/RNA syntes/RNA syntes Kurslitteratur.md", - "Biokemi/Cellulära processer/RNA syntes/Instuderingsfrågor.md", - "Biokemi/Frågestund.md", "attachments/Pasted image 20251129235131.png", "attachments/Pasted image 20251128085625.png", "attachments/Pasted image 20251128085603.png", diff --git a/content/Anatomi & Histologi 2/! Översikt.md b/content/Anatomi & Histologi 2/! Översikt.md index a60ea95..15da22a 100644 --- a/content/Anatomi & Histologi 2/! Översikt.md +++ b/content/Anatomi & Histologi 2/! Översikt.md @@ -11,7 +11,7 @@ Välkomna till denna del av kursen, där ni under de två terminsavslutande veck Den detaljerade målbeskrivningen tar upp allt kursen innehåller och således vad som tenteras. Föreläsningar, litteratur, gruppövningar, instuderingsfrågor erbjuds av oss lärare för att ni ska nå dessa mål, men ni ansvarar för att läsa målen och nå dem, så ha koll på detta dokument och mitt (Magnus) tips är att ni inför varje föreläsning samt när ni i efterhand sammanfattar respektive föreläsning hela tiden stämmer av (och checkar av) på den detaljerade målbeskrivningen, då vet ni att ni inget missar men samtidigt inte heller försvinner iväg på ett för kursen ovidkommande stickspår. -[[Målbeskrivning]] +[[Anatomi & Histologi 2/Målbeskrivning]] För att nå dessa mål erbjuder vi följande: diff --git a/content/Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.md b/content/Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.md new file mode 100644 index 0000000..a9592c3 --- /dev/null +++ b/content/Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.md @@ -0,0 +1,4177 @@ +# NERVE TISSUE + + + +**OVERVIEW OF THE NERVOUS SYSTEM** + +**COMPOSITION OF NERVE TISSUE** + +**THE NEURON** + + +Cell Body + +Dendrites and Axons + +Neuronal Transport Systems +Synapses + +**SUPPORTING CELLS OF THE NERVOUS SYSTEM: THE** + +**NEUROGLIA** + + +Peripheral Neuroglia +Schwann Cell Development and Synthesis of Myelin Sheath + +Satellite Cells + +Enteric Neuroglial Cells +Central Neuroglia +Impulse Conduction + +**ORIGIN OF NERVE TISSUE CELLS** + +**ORGANIZATION OF THE PERIPHERAL NERVOUS SYSTEM** + + +Peripheral Nerves +Connective Tissue Components of a Peripheral Nerve +Afferent (Sensory) Receptors + +**ORGANIZATION OF THE AUTONOMIC NERVOUS SYSTEM** + + +Sympathetic and Parasympathetic Divisions of the Autonomic + +Nervous System +Enteric Division of the Autonomic Nervous System + +A Summarized View of Autonomic Distribution + +**ORGANIZATION OF THE CENTRAL NERVOUS SYSTEM** + + +Cells of the Gray Matter +Organization of the Spinal Cord +Connective Tissue of the Central Nervous System + +Blood–Brain Barrier + +**RESPONSE OF NEURONS TO INJURY** + + +Degeneration +Regeneration + +**Folder 12.1** Clinical Correlation: Parkinson Disease + +**Folder 12.2** Clinical Correlation: Demyelinating Diseases + +**Folder 12.3** Clinical Correlation: Reactive Gliosis: Scar Formation + +in the Central Nervous System +**Folder 12.4** Clinical Correlation: Cognitive Impairments After + +COVID-19 Infections + + +**HISTOLOGY** + +### **OVERVIEW OF THE NERVOUS SYSTEM** + + +The **nervous system** enables the body to respond to continuous changes in +its external and internal environment. It controls and integrates the +functional activities of organs and organ systems. Anatomically, the nervous +system is divided into the following: + + +The **central nervous system (CNS)** consists of the brain and the spinal +cord, which are located in the cranial cavity and spinal canal, respectively. +The **peripheral nervous system (PNS)** consists of cranial, spinal, and +peripheral **nerves** that conduct impulses from (efferent or motor nerves) +and to (the afferent or sensory nerves of) the CNS; collections of nerve +cell bodies outside the CNS called **ganglia** ; and specialized nerve +endings (both motor and sensory). Interactions between sensory (afferent) +nerves that receive stimuli, the CNS that interprets them, and motor +(efferent) nerves that initiate responses create **neural pathways** . These +pathways mediate reflex actions called **reflex arcs** . In humans, most +sensory neurons do not pass directly into the brain but instead +communicate by specialized terminals (synapses) with motor neurons in +the spinal cord. + + +Functionally, the nervous system is divided into the following: + + +The **somatic nervous system (SNS)** consists of somatic _[Gr. soma,_ +_body]_ parts of the CNS and PNS. The SNS controls functions that are +under conscious voluntary control, with the exception of reflex arcs. It +provides sensory and motor innervation to all parts of the body except +viscera, smooth and cardiac muscle, and glands. +The **autonomic nervous system (ANS)** consists of autonomic parts of +the CNS and PNS. The ANS provides efferent involuntary motor +innervation to smooth muscle, the conducting system of the heart, and +glands. It also provides afferent sensory innervation from the viscera +(pain and autonomic reflexes). The ANS is further subdivided into a +**sympathetic division** and a **parasympathetic division** . A third +division of ANS, the **enteric division**, serves the alimentary canal. It + + +communicates with the CNS through the parasympathetic and +sympathetic nerve fibers; however, it can also function independently of +the other two divisions of the ANS (see page 418). + +### **COMPOSITION OF NERVE TISSUE** + + +**Nerve tissue consists of two principal types of cells: neurons and** +**supporting cells.** + + +The **neuron** or **nerve cell** is the functional unit of the nervous system. It +consists of a cell body, containing the nucleus, and several processes of +varying length. Nerve cells are specialized to receive stimuli from other +cells and to conduct electrical impulses to other parts of the system via their +processes. Several neurons are typically involved in sending impulses from +one part of the system to another. These neurons are arranged in a chain-like +manner as an integrated communications network. Specialized contacts +between neurons that provide for transmission of information from one +neuron to the next are called **synapses** . + +**Supporting cells** are nonconducting cells that are located close to the +neurons. They are referred to as **neuroglial cells** or simply **glia** . The CNS +contains four types of glial cells: oligodendrocytes, astrocytes, microglia, +and ependymal cells (see page 409). Collectively, these cells are called the +**central neuroglia** . In the PNS, supporting cells are called **peripheral** +**neuroglia** and include Schwann cells, satellite cells, and a variety of other +cells associated with specific structures. Schwann cells surround the +processes of nerve cells and isolate them from adjacent cells and +extracellular matrix. Within the ganglia of the PNS, peripheral neuroglial +cells are called **satellite cells** . They surround the nerve cell bodies, the part +of the cell that contains the nucleus, and are analogous to nonmyelinating +Remak Schwann cells. The supporting cells of the ganglia in the wall of the +alimentary canal are called **enteric neuroglial cells** . They are +morphologically and functionally similar to central neuroglia (see page +409). + +Functions of the various neuroglial cell types include the following: + + +Physical support (protection) for neurons +Insulation for nerve cell bodies and processes, which facilitates rapid +transmission of nerve impulses +Repair of neuronal injury +Regulation of the internal fluid environment of the CNS +Clearance of neurotransmitters from synaptic clefts + + +Metabolic exchange between the vascular system and the neurons of the +nervous system + + +In addition to neurons and supporting cells, an extensive vasculature is +present in both the CNS and the PNS. The **blood vessels** are separated +from the nerve tissue by the basal laminae and variable amounts of +connective tissue, depending on vessel size. The boundary between blood +vessels and nerve tissue in the CNS excludes many substances that normally +leave blood vessels to enter other tissues. This selective restriction of blood +borne substances in the CNS is called the **blood–brain barrier**, which is +discussed on page 424. + + +**The nervous system allows rapid response to external stimuli.** + + +The nervous system evolved from the simple neuroeffector system of +invertebrate animals. In primitive nervous systems, only simple receptor– +effector reflex loops exist to respond to external stimuli. In higher level +animals and humans, the SNS retains the ability to respond to stimuli from +the external environment through the action of effector cells (such as +skeletal muscle), but the neuronal responses are infinitely more varied. They +range from simple reflexes that require only the spinal cord to complex +operations of the brain, including memory and learning. + + +**The autonomic part of the nervous system regulates the function of** +**internal organs.** + + +The specific effectors in the internal organs that respond to the information +carried by autonomic neurons include the following: + + +**Smooth muscle** . Contraction of smooth muscle modifies the diameter or +shape of tubular or hollow viscera, such as the blood vessels, gut, +gallbladder, and urinary bladder. +**Cardiac-conducting cells (Purkinje fibers)** . These cells are located +within the conductive system of the heart. The inherent frequency of +Purkinje fiber depolarization regulates the rate of cardiac muscle +contraction and can be modified by autonomic impulses. +**Glandular epithelium** . The ANS regulates the synthesis, composition, +and release of secretions. + + +The regulation of the function of internal organs involves close +cooperation between the nervous system and the endocrine system. Neurons +in several parts of the brain and other sites behave as secretory cells and are +referred to as **neuroendocrine tissue** . The varied roles of neurosecretions + + +in regulating the functions of the endocrine, digestive, respiratory, urinary, +and reproductive systems are described in subsequent chapters. + +### **THE NEURON** + + +**The neuron is the structural and functional unit of the nervous** + +**system.** + + +The human nervous system contains more than 10 billion neurons. Although +neurons show the greatest variation in size and shape of any group of cells +in the body, they can be grouped into three general categories. + + +**Sensory neurons** convey impulses from receptors to the CNS. +Processes of these neurons are included in somatic afferent and visceral +afferent nerve fibers. **Somatic afferent fibers** convey sensations of pain, +temperature, touch, and pressure from the body surface. In addition, these +fibers convey pain and proprioception (nonconscious sensation) from +organs within the body (e.g., muscles, tendons, and joints) to provide the +brain with information related to the orientation of the body and limbs. +**Visceral afferent fibers** transmit pain impulses and other sensations +from internal organs, mucous membranes, glands, and blood vessels. +**Motor neurons** convey impulses from the CNS or ganglia to effector +cells. Processes of these neurons are included in somatic efferent and +visceral efferent nerve fibers. **Somatic efferent neurons** send voluntary +impulses to skeletal muscles. **Visceral efferent neurons** transmit +involuntary impulses to smooth muscle, cardiac-conducting cells +(Purkinje fibers), and glands (Fig. 12.1). + + +**FIGURE 12.1.** **Diagram of a motor neuron.** The nerve cell body, +dendrites, and proximal part of the axon are within the central nervous +system (CNS). The axon leaves the CNS and, while in the peripheral +nervous system (PNS), is part of a nerve (not shown) as it courses to its +effectors (striated muscle). In the CNS, the myelin for the axon is + + +produced by, and is part of, an oligodendrocyte; in the PNS, the myelin is +produced by, and is part of, a Schwann cell. + + +**Interneurons**, also called **intercalated** **neurons**, form a +communicating and integrative network between the sensory and motor +neurons. It is estimated that more than 99.9% of all neurons belong to this +integrative network. + + +**The functional components of a neuron include the cell body, axon,** +**dendrites, and synaptic junctions.** + + +The **cell body (perikaryon)** of a neuron contains the nucleus and the +organelles that maintain the cell. The processes extending from the cell body +constitute the single common structural characteristic of all neurons. Most +neurons have only one **axon**, usually the longest process extending from the +cell, which transmits impulses away from the cell body to a specialized +terminal (synapse). The synapse makes contact with another neuron or an +effector cell (e.g., a muscle cell or glandular epithelial cell). A neuron +usually has many **dendrites**, shorter processes that transmit impulses from +the periphery (i.e., other neurons) toward the cell body. + + +**Neurons are classified on the basis of the number of processes** +**extending from the cell body.** + + +Most neurons can be anatomically characterized as the following: + + +**Multipolar** neurons have one axon and two or more dendrites (Fig. 12.2). +The direction of impulses is from dendrite to cell body to axon or from +cell body to axon. Functionally, the dendrites and cell body of multipolar +neurons are the receptor portions of the cell, and their plasma membrane +is specialized for impulse generation. The axon is the conducting portion +of the cell, and its plasma membrane is specialized for impulse +conduction. The terminal portion of the axon, the synaptic ending, +contains various neurotransmitters—that is, small molecules released at +the synapse that affect other neurons as well as muscle cells and glandular +epithelium. **Motor neurons** and **interneurons** constitute most of the +multipolar neurons in the nervous system. + + +**FIGURE 12.2.** **Diagram illustrating different types of neurons.** The cell +bodies of pseudounipolar (unipolar), bipolar, and postsynaptic autonomic +neurons are located outside the central nervous system (CNS). Purkinje +and pyramidal cells are restricted to the CNS; many of them have +elaborate dendritic arborizations that facilitate their identification. The +central axonal branch and all axons are indicated in _green_ . + + +**Bipolar** neurons have one axon and one dendrite (see Fig. 12.2). Bipolar +neurons are rare. They are most often associated with the receptors for the +**special senses** (taste, smell, hearing, sight, and equilibrium). They are +generally found within the retina of the eye and the ganglia of the + + +vestibulocochlear nerve (cranial nerve VIII) of the ear. Some neurons in +this group do not fit the abovementioned generalizations. For example, +amacrine cells of the retina have no axons, and olfactory receptors +resemble neurons of primitive neural systems in that they retain a surface +location and regenerate at a much slower rate than other neurons. +**Pseudounipolar** (unipolar) neurons have one process, the axon that +divides close to the cell body into two long axonal branches. One branch +extends to the periphery ( **peripheral dendritic branch** ), and the other +extends to the CNS ( **central axonal branch** ; see Fig. 12.2). The two +axonal branches are the conducting units. Impulses are generated in the +peripheral arborizations (branches) of the neuron that are the receptor +portions of the cell. Each pseudounipolar neuron develops from a bipolar +neuron as its axon and dendrite migrate around the cell body and fuse into +a single process. The majority of pseudounipolar neurons are **sensory** +**neurons** located close to the CNS (Fig. 12.3). Cell bodies of sensory +neurons are situated in the **dorsal root ganglia** and **cranial nerve** +**ganglia** . + + +**FIGURE 12.3.** **Schematic diagram showing arrangement of motor and** +**sensory neurons.** The cell body of a motor neuron is located in the +ventral (anterior) horn of the gray matter of the spinal cord. Its axon, +surrounded by myelin, leaves the spinal cord via a ventral (anterior) root + + +and becomes part of a spinal nerve that carries it to its destination on +striated (skeletal) muscle fibers. The sensory neuron originates in the skin +within a receptor (here, a Pacinian corpuscle) and continues as a +component of a spinal nerve, entering the spinal cord via the dorsal +(posterior) root. Note the location of its cell body in the dorsal root ganglion +(sensory ganglion). A segment of the spinal nerve is enlarged to show the +relationship of the nerve fibers to the surrounding connective tissue +(endoneurium, perineurium, and epineurium). In addition, segments of the +sensory, motor, and autonomic unmyelinated neurons have been enlarged +to show the relationship of the axons to the Schwann cells. _ANS_, +autonomic nervous system. + +### **Cell Body** + + +**The cell body of a neuron has characteristics of a protein-** +**producing cell.** + + +The **cell body** is the dilated region of the neuron that contains a large, +euchromatic **nucleus** with a prominent nucleolus and surrounding +**perinuclear cytoplasm** (Fig.12.4a and Plate 12.1, page 432). The +perinuclear cytoplasm reveals abundant rough-surfaced endoplasmic +reticulum (rER) and free ribosomes when observed with the transmission +electron microscope (TEM), a feature consistent with its protein synthetic +activity. In the light microscope (LM), the ribosomal content appears as +small bodies called **Nissl bodies** that stain intensely with basic dyes and +metachromatically with thionine dyes (see Fig. 12.4a). Each Nissl body +corresponds to a stack of rER. + + +**FIGURE 12.4.** **Nerve cell bodies. a.** This photomicrograph shows a region +of the ventral (anterior) horn of a human spinal cord stained with toluidine +blue. Typical features of the nerve cell bodies visible in this image include +large, spherical, pale-stained nuclei with a single prominent nucleolus and +abundant Nissl bodies within the cytoplasm of the nerve cell body. Most of +the small nuclei belong to neuroglial cells. The remainder of the field consists +of nerve fibers and cytoplasm of central neuroglial cells. ×640. **b.** Electron +micrograph of a nerve cell body. The cytoplasm is occupied by aggregates of + + +free ribosomes and profiles of rough-surfaced endoplasmic reticulum ( _rER_ ) +that constitute the Nissl bodies of light microscopy. The Golgi apparatus ( _G_ ) +appears as isolated areas containing profiles of flattened sacs and vesicles. +Other characteristic organelles include mitochondria ( _M_ ) and lysosomes ( _L_ ). +The neurofilaments and neurotubules are difficult to discern at this relatively +low magnification. ×15,000. + + +The perinuclear cytoplasm also contains numerous mitochondria, a large +perinuclear Golgi apparatus, lysosomes, microtubules, microtubuleorganizing center (MTOC) (centrosome), neurofilaments (intermediate +filaments), transport vesicles, and inclusions (Fig. 12.4b). Nissl bodies, free +ribosomes, and, occasionally, the Golgi apparatus extend into the dendrites, +but not into the axon. The euchromatic nucleus, large nucleolus, prominent +Golgi apparatus, and Nissl bodies indicate the high level of anabolic activity +needed to maintain these large cells. + +Location of the MTOC in the perinuclear cytoplasm usually corresponds +to the site of the axon origin. This area of the cell body, called the **axon** +**hillock**, lacks large cytoplasmic organelles and serves as a landmark to +distinguish between axons and dendrites in both LM and TEM preparations. + + +**Neurons do not divide; however, in some areas of the brain, neural** +**stem cells are present and are able to differentiate and replace** +**damaged nerve cells.** + + +Although neurons do not replicate, the subcellular components of the +neurons are regularly renewed and have life spans measured in hours, days, +and weeks. The constant need to replace enzymes, neurotransmitter +substances, membrane components, and other complex molecules is +consistent with the morphologic features characteristic of a high level of +synthetic activity. Newly synthesized protein molecules are transported to +distant locations within a neuron in a process referred to as **neuronal** +**transport** (pages 396-397). + +It is generally accepted that nerve cells do not divide. However, recently, +it has been shown that the adult brain retains some cells that exhibit the +potential to regenerate. In certain regions of the brain, such as the olfactory +bulb and dentate gyrus of the hippocampus, these **neural stem cells** are +able to divide and generate new neurons. They are characterized by +continuous expression of a 240-kDa intermediate filament protein **nestin**, +which is used to identify these cells by histochemical methods. **Neural** +**stem cells** are also able to migrate to the sites of injury and +differentiate into new nerve cells. Research studies on animal models +demonstrate that newly generated cells mature into functional +neurons in the adult mammalian brain. These findings may lead to + + +therapeutic strategies that use neural cells to replace nerve cells lost +or damaged by neurodegenerative disorders, such as Alzheimer and +Parkinson diseases. + +### **Dendrites and Axons** + + +As mentioned earlier, neurons extend two distinct types of nerve processes: +dendrites and axons, which contain different types of proteins and organelles +and thus differ in both structure and function. + + +**Dendrites are receptor processes that receive stimuli from other** +**neurons or the external environment.** + + +The main function of **dendrites** is to receive information from other +neurons or the external environment and carry that information to the cell +body. Generally, dendrites are located in the vicinity of the cell body. They +have a greater diameter than axons and are usually unmyelinated and +tapered. Dendrites form extensive arborizations called **dendritic trees** . +Dendritic trees significantly increase the receptor surface area of a neuron. +Many neuron types are characterized by the extent and shape of their +dendritic trees (see Fig. 12.2). In most of the excitatory neurons, they +possess **dendritic spines** . + +In general, the contents of the perinuclear cytoplasm of the cell body and +cytoplasm of dendrites are quite similar. Other organelles characteristic of +the cell body, including **ribosomes** and **rER**, are found in the dendrites, +especially in the base of the dendrites. In addition, small **Golgi outposts**, +which are discrete functional Golgi structures not connected with the Golgi +apparatus in the cell body, are present in the cytoplasm of dendrites and may +serve as nucleation centers for microtubules. + + +**Dendrites are characterized by the presence of dendritic spines that** +**are involved in synaptic plasticity, learning, and memory formation.** + + +Many neurons in the CNS have dendrites that can be identified by the +presence of **dendritic spines** (Fig. 12.5). They represent small protrusions +of the dendritic plasma membrane containing actin filaments and +postsynaptic density. Their shape varies considerably from short projections, +resembling thin filopodia–like structures to mushroom-shaped structures. +The mushroom-shaped spines are regarded as mature spines and account for +the majority (~70%–80%) of spines found on dendrites. + + +**FIGURE 12.5.** **Three-dimensional (3D) computer reconstructions of** +**nerve cell processes from the mouse somatosensory cerebral cortex** . +These images represent computer-generated 3D renderings of nerve cells +and their processes extracted from a high-resolution stack of 1,850 scanning +electron microscope (SEM) images of serially sectioned brain tissue. The +automated tape-collecting ultramicrotome (ATUM) was used to cut 29-nmthick sections that were stained with osmium and carbon coated for imaging +with the SEM at sufficient resolution to detect individual synaptic vesicles. A +multiscale digital volume image set was then processed for automated +annotation and segmentation of nerve cell processes and organelles. +Segmented structures were manually painted with a computer-assisted +program and combined in a 3D data set. **a.** This image shows the 3D +rendering of a single dendrite containing spines. Note the branching pattern +of the dendrite. **b.** Semitransparent rendering of synaptic interactions +between dendrite ( _red_ ) and axon ( _green_ ). In this image, dendritic spines form +five synapses (arrows) with the same axon; the postsynaptic densities are +indicated in _yellow_ . ×13,000. (Courtesy of Drs. Daniel Berger and Jeff W. +Lichtman, Harvard University, Cambridge, MA.) + + +Electron micrographs of mature dendritic spines reveal the presence of a +**postsynaptic density** that contains clusters of neurotransmitter receptors +as well as voltage-gated Na [+] and K [+] channels similar to those found in nerve +synapses. The spines also appear to have a well-developed actin +cytoskeleton associated with a variety of actin-binding proteins, occasional +microtubules, and vesicles with elongated profiles of endoplasmic reticulum. +The postsynaptic density is apposed by a plasma membrane of the +neighboring axon containing an active zone with round synaptic vesicles +(Fig. 12.6) that forms a fully functional synapse. Most of the synapses +formed between dendritic spines and axons contain the neurotransmitter +**glutamate** **(GLU)**, which mediates fast **excitatory** **synaptic** +**transmission** in the CNS (see pages 401-403). + + +**FIGURE 12.6.** **Electron micrograph of dendritic spines in proximal** +**dendrites of pyramidal nerve cells in the mouse hippocampus.** Thin +slices (300 μm) of brain tissue were cultured for a period of 1–2 weeks, +allowing for damaged tissue to recover and reorganize in vitro by removing +cell debris from the tissue slices. After incubation, slices were prepared for +electron microscopy (EM) using high-pressure freezing followed by +cryosubstitution of tissue water with acetone, stained with osmium, and +embedded in an EM-suitable medium. This preparation provides exceptional +quality of EM images by avoiding that distortion of the tissue by protein +denaturation that occurs in conventional fixation in aldehydes. Note that +dendritic spines are surrounded by a large synaptic button ( _SB_ ) containing + + +synaptic vesicles. _Arrowheads_ indicate postsynaptic densities. In these +areas, synaptic clefts are visible separating active zones of presynaptic +elements from postsynaptic densities. Spine cytoplasm contains an actin +cytoskeleton with occasional profiles of smooth-surfaced endoplasmic +reticulum ( _sER_ ) and transport vesicles visible in the narrow part of the spine. +Note an electron-dense organelle, which most likely represents +mitochondrion ( _M_ ). Several profiles of dendrites ( _D_ ) are also visible. The +large profile on the _left_ most likely represents an oblique section of the +unmyelinated axon with visible profiles of microtubules. ×95,000. (Courtesy +of Prof. Michael Frotscher, Institute for Structural Neurobiology, Center for +Molecular Neurobiology Hamburg, Germany.) + + +Dendritic spines are dynamic and can quickly be formed and dismantled; +however, some remain stable and persist for months and years. In +experimental animal models, acquisition of new memories is associated with +increased spine density in pyramidal cells in the CNS. The learning process +induces the formation of stable spines that are able to persist for months +after training. These experimental findings provide evidence that dendritic +spines are involved in **synaptic plasticity and learning** and mediate the +long-term encoding for **memory** in the brain cortex. + + +**Axons are effector processes that transmit stimuli to other neurons** +**or effector cells.** + + +The main function of the **axon** is to convey information away from the cell +body to another neuron or to an effector cell, such as a muscle cell. _Each_ +_neuron has only one axon_, and it may be extremely long. Axons that +originate from neurons in the motor nuclei of the CNS **(Golgi type I** +**neurons)** may travel more than a meter to reach their effector targets, +skeletal muscle. In contrast, interneurons of the CNS **(Golgi type II** +**neurons)** have very short axons. Although an axon may give rise to a +recurrent branch near the cell body (i.e., one that turns back toward the cell +body) and to other collateral branches, the branching of the axon is most +extensive in the vicinity of its targets. + +The axon originates from the **axon hillock** . The axon hillock usually +lacks large cytoplasmic organelles, such as Nissl bodies and Golgi cisternae. +Microtubules, neurofilaments, mitochondria, and vesicles, however, pass +through the axon hillock into the axon (Fig. 12.7). The surface region of the +axon between the apex of the axon hillock and the beginning of the myelin +sheath (see later in this chapter) is called the **axon initial segment (AIS)** . +The molecular composition of the plasma membrane of the AIS acts as a +diffusion barrier or “picket fence” to exclude passage of proteins and lipids +that do not belong to the axonal plasma membrane. The underlying actin + + +cytoskeleton also acts as a selective filter for organelles and transport +vesicles that attempt to enter the axonal cytoplasm. This function can be +likened to that of a border crossing checkpoint, where travelers are inspected +for proper authorization required to enter the country. + + +**FIGURE 12.7.** **Organization of microtubules in axons and dendrites.** +Organization of the microtubule network in the neuron differs between +dendrites and axons. All microtubules in axons originate from the +microtubule-organizing center ( _MTOC_ ), and they are uniformly oriented with +their plus (+) ends directed distally. In contrast, microtubules in dendrites +display a mixed polar orientation. The majority of microtubules in dendrites +have reversed polarity with their minus (−) ends directed distally away from +the cell body. Microtubules of normal polarity (with plus [+] ends directed +distally) in dendrites are in the minority. In the central nervous system (CNS), +some of them terminate in the cytoplasm of dendritic spines. Note the +location of the axon hillock, an area where cargo materials destined for +axonal transport are loaded on microtubule-associated motor proteins known +as _kinesins_ . Also, the axon initial segment ( _AIS_ ) separates proteins and lipids +of the axonal plasma membrane from the plasma membrane of the rest of +the axon. Note also that dendritic spines form axodendritic synapses with +neighboring presynaptic axons. A Golgi apparatus is positioned within the +nerve cell body; however, a more characteristic feature of dendrites is the +inclusion of small Golgi outposts. These are functional Golgi structures not +connected with the main Golgi apparatus that can be found within dendrites + + +and at their junctions with the nerve cell body. Reversed polarity +microtubules are not anchored in the _MTOC_, and the Golgi outpost may +serve as their nucleation centers. + + +The AIS is the site at which an **action potential** is generated in the +axon. The action potential (described in more detail later) is stimulated by +impulses carried to the axon hillock on the membrane of the cell body after +other impulses are received on the dendrites or the cell body itself. + + +**Organization of microtubules and their arrangement in axons and** +**dendrites are unique and critical to the functional polarity of** + +**neurons.** + + +Microtubules are important regulators of cell polarity. As discussed in +Chapter 2, Cell Cytoplasm (pages 65-69), microtubules are part of the cell’s +cytoskeleton. They are composed of tubulin heterodimers and consist of two +distinct ends: a plus (+) end and a minus (−) end. At the plus (+) end, +microtubules elongate via tubulin polymerization and extend into the cell’s +periphery. The minus ends are often anchored to an MTOC. + +The microtubule network within neurons has certain unique +characteristics. In general, microtubules are more stable in axons than in +dendrites owing to post-translational modification of tubulin and the +protective role of microtubule-associated proteins (MAPs). **Microtubules** +**in axons** are uniformly **oriented with their plus (+) ends directed** +**distally** (see Fig 12.7). These microtubules originate from the area of the +MTOC located in the perinuclear cytoplasm. In contrast, **microtubules in** +**dendrites** display a **mixed polar orientation** : Both plus (+) and minus (−) +ends are directed distally away from the cell body, although microtubules +with reverse polarity (those with their minus [−] ends directed distally) +comprise most of the microtubules within dendrites (see Fig. 12.7). These +microtubules are generally more stable and are comparable to the plus (+) +end–oriented microtubules in axons. These findings suggest that +microtubules of reverse polarity are not anchored in the MTOC and that +their nucleation occurs independently from the MTOC in the cytoplasm of +dendrites. This arrangement is a critical regulator of cell polarity and thus +has implications for dendritic transport. + + +**Some large axon terminals are capable of local protein synthesis,** +**which may be involved in memory processes.** + + +Almost all of the structural and functional protein molecules are synthesized +in the nerve cell body. These molecules are distributed to the axons and +dendrites via **neuronal transport systems** (described on pages 396-397). +However, contrary to the common view that the nerve cell body is the only + + +site of protein synthesis, recent studies indicate that limited local synthesis +of axonal proteins takes place in some large nerve terminals. Some vertebral +axon terminals (i.e., from the retina) contain polyribosomes with complete +translational machinery for protein synthesis. These discrete areas within the +axon terminals, called **periaxoplasmic plaques**, possess biochemical and +molecular characteristics of active protein synthesis. Protein synthesis +within the periaxoplasmic plaques is modulated by neuronal activity. These +proteins may be involved in the processes of **neuronal cell memory** . + +### **Neuronal Transport Systems** + + +**Substances needed in the axons and dendrites are synthesized in** +**the cell body and require transport to those sites.** + + +Because the synthetic activity of the neuron is concentrated in the nerve cell +body, microtubule-based **neuronal transport** is required to convey newly +synthesized material to the correct neuronal compartment. Transport often +takes place over long distances from the site of synthesis to its target +destination in the axons or dendrites. Neuronal transport serves as a mode of +intracellular communication, carrying molecules and information along the +microtubules. Neuronal transport is bidirectional and occurs in both neurons +and axons. Neurons are especially vulnerable to defects in neuronal +transport because of the extreme length of the neuronal processes. +Mutations in α-or β-tubulin and microtubule-based molecular motors +have been directly linked to several neurologic disorders in both the +CNS and the PNS. Disruption of neuronal transport is most likely +responsible for abnormal accumulations of cytoskeletal proteins and +organelles in axons in **Alzheimer disease**, **Parkinson disease**, +**Huntington disease**, and **amyotrophic lateral sclerosis (ALS)** . + + +**Kinesin and dynein motors drive axonal transport by directing the** +**movement of cargo vesicles and organelles between the nerve cell** +**body and the axon terminal.** + + +**Axonal transport** is essential for supplying the distal part of the axon and +its terminal with newly synthesized proteins, lipids, and neurotransmitters +required to maintain synaptic transmission. In addition, aging proteins and +organelles from the distal axon are transported for degradation and recycling +to the nerve cell body. Molecular motors drive axonal transport along tracks +formed by a uniform arrangement of microtubules with their plus (+) ends +extending distally toward the axon terminal. Axonal transport is described +as follows: + + +**Anterograde transport** carries material from the nerve cell body to the +axon periphery. Because all microtubules in axons are polarized in the +same directions with their plus (+) ends directed toward the axon +terminal, **kinesins**, microtubule-associated motor proteins, are involved +in anterograde transport. Kinesins move the transport vesicles destined for +axons along the microtubules toward their plus (+) ends. They utilize +energy from adenosine triphosphate (ATP) hydrolysis to power their + +movement. + +**Retrograde transport** carries material from the axon terminal to the +nerve cell body. This transport is mediated by the microtubule-associated +motor proteins called **dyneins** that travel along the microtubules toward +their minus (−) ends (see page 69). + + +The **motor properties** of both **kinesin** and **dynein** are regulated by +external signals to allow transported cargo vesicles to slow down or speed +up their movement. This is most likely achieved by alternate use of active +and inactive conformations of these motor proteins that are attached to the +same cargo vesicle. The presence of several motor proteins on the same +cargo vesicle allows them to step around obstacles to resolve “road blocks” +or “traffic jams” by switching to different microtubule tracks without +exchanging the motors attached to the cargo vesicle. + +Transport systems may also be distinguished by the rate at which +substances are transported. + + +A **slow anterograde transport system** conveys substances from the +cell body to the axon terminal at the speed of 0.2–4 mm/d. Structural +elements, such as tubulin molecules (microtubule precursors), actin +molecules, and the proteins that form neurofilaments, are carried from the +nerve cell body by this transport system. Cytoplasmic matrix proteins +such as actin, calmodulin, and various metabolic enzymes are also +transported this way. +A **fast transport system** conveys substances in both directions at a rate +of 20–400 mm/d. Thus, it is both an anterograde and a retrograde system. +The **fast anterograde** transport system carries different membranelimited organelles, such as smooth-surfaced endoplasmic reticulum (sER) +components, synaptic vesicles, and mitochondria, and low-molecularweight materials, such as sugars, amino acids, nucleotides, some +neurotransmitters, and calcium to the axon terminal. The **fast retrograde** +transport system carries many of the same materials as well as proteins +and other molecules endocytosed at the axon terminal to the nerve cell +body. Fast transport in either direction requires ATP, which is used by +microtubule-associated motor proteins, and depends on the microtubule + + +arrangement that extends from the nerve cell body to the termination of +the axon. Retrograde transport is the pathway followed by toxins and +viruses that enter the CNS at nerve endings. Retrograde transport of +exogenous enzymes, such as horseradish peroxidase, and radiolabeled or +immunolabeled tracer materials is now used to trace neuronal pathways +and to identify the nerve cell bodies related to specific nerve endings. + + +**Dynein molecular motors are preferentially involved in dendritic** +**transport, which is more complex than axonal transport owing to** +**the antiparallel organization of microtubules.** + + +**Dendritic transport** progresses along bundles of **mixed polarity** +**microtubules**, which contain both “normal” microtubules’ plus (+) ends +and “reversed” microtubules’ minus (−) ends oriented away from the nerve +cell body. Therefore, a single unidirectional type of motor protein carrying +transport vesicle could mediate bidirectional (anterograde and retrograde) +transport by switching between normal and reverse polarity microtubule +tracts. Recent studies indicate that **dyneins** play an important role in the +initial sorting of vesicles that are destined for dendritic transport. Dyneins, +which travel along the microtubules toward their minus (−) ends, are also +**exclusively involved in anterograde transport** of cargo vesicles into +dendrites utilizing microtubules with reversed polarity. Dyneins are also +responsible for retrograde transport of vesicles from the dendritic processes +into the body of the neuron. Kinesins play only a supporting role and +providing assistance in dendritic transport once the transport vesicle is +inside the dendrite. + +### **Synapses** + + +**Neurons communicate with other neurons and effector cells by** + +**synapses.** + + +**Synapses** are specialized junctions between neurons that facilitate the +transmission of impulses from one (presynaptic) neuron to another +(postsynaptic) neuron. Synapses also occur between axons and effector +(target) cells, such as muscle and gland cells. Synapses between neurons +may be classified morphologically as follows: + + +**Axodendritic** . These synapses occur between axons and dendrites. In the +CNS, some axodendritic synapses are found between axons and dendritic +spines (Fig. 12.8). + + +**FIGURE 12.8.** **Schematic diagram of different types of synapses.** +Axodendritic synapses represent the most common type of connection +between the presynaptic axon terminal and the dendrites of the +postsynaptic neuron. Note that some axodendritic synapses possess +dendritic spines, which are linked to learning and memory. Axosomatic +synapses are formed between a presynaptic axon terminal and the +postsynaptic nerve cell body; axoaxonic synapses are formed between the +axon terminal of a presynaptic neuron and the axon of a postsynaptic +neuron. The axoaxonic synapse may enhance or inhibit axodendritic (or +axosomatic) synaptic transmission. + + +**Axosomatic** . These synapses occur between axons and the cell body. +**Axoaxonic** . These synapses occur between axons and axons (see Fig. +12.8). + + +Synapses are not resolvable in routine hematoxylin and eosin (H&E) +preparations. However, silver precipitation staining methods (e.g., Golgi +method) not only demonstrate the overall shape of some neurons but also +show synapses as oval bodies on the surface of the receptor neuron. +Typically, a presynaptic axon makes several of these button-like contacts +with the receptor portion of the postsynaptic neuron. Often, the axon of the +presynaptic neuron travels along the surface of the postsynaptic neuron, +making several synaptic contacts along the way that are called **boutons en** +**passant** _[Fr. buttons in passing]_ . The axon then continues, ending finally as + + +a terminal branch with an enlarged tip, a **bouton terminal** _[Fr. terminal_ +_button]_, or end bulb. The number of synapses on a neuron or its processes +vary from a few to tens of thousands per neuron (Fig. 12.9); this number +appears to be directly related to the number of impulses that a neuron is +receiving and processing. + + +**FIGURE 12.9.** **Scanning electron micrograph of the nerve cell body.** This +micrograph shows the cell body of a neuron. Axon endings forming +axosomatic synapses are visible, as are numerous oval bodies with tail-like +appendages. Each oval body represents a presynaptic axon terminal from +different neurons making contact with the large postsynaptic nerve cell body. +×76,000. (Courtesy of Dr. George Johnson.) + + +**Parkinson disease** is a slowly progressive neurologic disorder caused +by the loss of dopamine (DA)-secreting cells in the substantia nigra and +basal ganglia of the brain. DA is a neurotransmitter responsible for +synaptic transmission in the nerve pathways coordinating smooth and + + +focused activity of skeletal muscles. Loss of DA-secreting cells is +associated with a classic pattern of symptoms, including the following: + + +Resting tremor in the limb, especially of the hand when in a relaxed +position; tremor usually increases during stress and is often more +severe on one side of the body +Rigidity or increased tone (stiffness) in all muscles +Slowness of movement (bradykinesia) and inability to initiate +movement (akinesia) +Lack of spontaneous movements +Loss of postural reflexes, which leads to poor balance and abnormal +walking (festinating gait) +Slurred speech, slowness of thought, and small, cramped handwriting + + +The cause of **idiopathic Parkinson disease**, in which DAsecreting neurons in the substantia nigra are damaged and lost by +degeneration or apoptosis, is not known. However, some evidence +suggests a hereditary predisposition; about 20% of Parkinson patients +have a family member with similar symptoms. + +Symptoms that resemble idiopathic Parkinson disease may also +result from infections (e.g., encephalitis), toxins (e.g., MPTP), drugs +used in the treatment of neurologic disorders (e.g., neuroleptics used to +treat schizophrenia), and repetitive trauma. Symptoms with these +causes are called **secondary parkinsonism** . + +On the microscopic level, degeneration of neurons in the substantia +nigra is very evident. This region loses its typical pigmentation, and an +increase in the number of glial cells is noticeable ( **gliosis** ). In addition, +nerve cells in this region display characteristic intracellular inclusions +called **Lewy bodies**, which represent accumulation of intermediate +neurofilaments in association with proteins α-synuclein and ubiquitin. + +Treatment of Parkinson disease is primarily symptomatic and must +strike a balance between relieving symptoms and minimizing psychotic +side effects. L -Dopa is a precursor of DA that can cross the blood–brain +barrier and is then converted to DA. It is often the primary agent used to +treat Parkinson disease. Other drugs that are used include a group of +cholinergic receptor blockers and amantadine, a drug that stimulates the +release of DA from neurons. + +Some patients may benefit from a therapeutic approach called _deep_ +_brain stimulation_ . In this procedure, electrodes attached to a pulsegenerating electrical stimulator are implanted into the subthalamic +nucleus of the brain. The electrical pulses act on neurons to modulate +nerve impulses. This therapy has been shown to reduce tremor, +slowness of movement, and rigidity associated with Parkinson disease. +It also reduces the need for L -Dopa to control signs and symptoms, +which helps mitigate the debilitating side effects of this medication. + + +**Synapses are classified as chemical or electrical.** + + +Classification of synapses depends on the mechanism of conduction of the +nerve impulses and the way the action potential is generated in the target +cells. Thus, synapses may also be classified as follows: + + +**Chemical synapses** . Conduction of impulses is achieved by the release +of chemical substances (neurotransmitters) from the presynaptic neuron. +Neurotransmitters then diffuse across the narrow intercellular space that +separates the presynaptic neuron from the postsynaptic neuron or target +cell. A specialized type of chemical synapse called a **ribbon synapse** is +found in the receptor hair cells of the internal ear and photoreceptor cells +of the retina (see Chapter 25, Ear, pages 1028-1029). +**Electrical synapses** . Common in invertebrates, these synapses contain +gap junctions that permit the movement of ions between cells and +consequently permit the direct spread of electrical current from one cell to +another. These synapses do not require neurotransmitters for their +function. Mammalian equivalents of electrical synapses include **gap** +**junctions** in smooth muscle and cardiac muscle cells. + + +**A typical chemical synapse contains a presynaptic element,** +**synaptic cleft, and postsynaptic membrane.** + + +Components of a typical chemical synapse include the following: + + +A **presynaptic element** (presynaptic knob, presynaptic component, or +synaptic bouton) is the end of the neuronal process from which +neurotransmitters are released. The presynaptic element is characterized +by the presence of **synaptic vesicles**, membrane-bound structures that +range from 30 to 100 nm in diameter and contain neurotransmitters (Fig. +12.10). The binding and fusion of synaptic vesicles to the presynaptic +plasma membrane are mediated by a family of transmembrane proteins +called **SNAREs** (which stands for “ **S** oluble **N** SF **A** ttachment **RE** ceptors”; +see pages 42-43). The specific SNARE proteins involved in this activity +include **synaptobrevin**, a vesicle-bound v-SNARE, and **syntaxin** and +**SNAP-25**, which are target membrane-bound t-SNARE proteins found in +specialized areas of the presynaptic membrane. Another vesicle-bound +protein called **synaptotagmin 1** then displaces the SNARE complex, +which is subsequently dismantled and recycled by NSF/SNAP25 protein +complexes. Dense accumulations of proteins are present on the +cytoplasmic side of the presynaptic plasma membrane. These presynaptic +densities represent specialized areas called **active zones** where synaptic +vesicles are docked and where neurotransmitters are released. Active + + +zones are rich in **Rab-GTPase docking complexes** (see pages 42-43), +**t-SNAREs**, and **synaptotagmin-binding proteins** . The vesicle +membrane that is added to the presynaptic membrane is retrieved by +endocytosis and reprocessed into synaptic vesicles by the sER located in +the nerve ending. Numerous small mitochondria are also present in the +presynaptic element. + + +**FIGURE 12.10.** **Diagram of a chemical axodendritic synapse.** This +diagram illustrates three components of a typical synapse. The +presynaptic knob is located at the distal end of the axon from which +neurotransmitters are released. The presynaptic element of the axon is +characterized by the presence of numerous neurotransmitter-containing +synaptic vesicles. The plasma membrane of the presynaptic knob is +recycled by the formation of clathrin-coated endocytotic vesicles. The +synaptic cleft separates the presynaptic knob of the axon from the +postsynaptic membrane of the dendrite. The postsynaptic membrane of +the dendrite is frequently characterized by a postsynaptic density and +contains receptors with an affinity for the neurotransmitters. Note two +types of receptors: _Green_ -colored molecules represent transmitter-gated +channels, and the _purple_ -colored structure represents a G-protein– +coupled receptor that, when bound to a neurotransmitter, may act on Gprotein–gated ion channels or on enzymes producing a second +messenger. **a.** Diagram showing neurotransmitter release from a +presynaptic knob by fusion of the synaptic vesicles with the presynaptic +membrane. The fusion mechanism that involves SNARE proteins is + + +described in Chapter 2, Cell Cytoplasm **(pages 42-44)** . Note the _cis-_ +SNARE complex, which is formed after the vesicle fuses to the +presynaptic membrane. **b.** Diagram showing a proposed model of +neurotransmitter release via porocytosis. In this model, the synaptic +vesicle is anchored and juxtaposed to calcium-selective channels in the +presynaptic membrane. In the presence of Ca [2+], the bilayers of the vesicle +and presynaptic membranes are reorganized to create a 1-nm transient +fusion pore connecting the lumen of the vesicle, with the synaptic cleft +allowing the release of a neurotransmitter. Note the presence of the _trans-_ +SNARE complex and the synaptotagmin that anchor the vesicle to the +active zones within the plasma membrane of the presynaptic element. + + +The **synaptic cleft** is the 20-to 30-nm space that separates the +presynaptic neuron from the postsynaptic neuron or target cell, which the +neurotransmitter must cross. +The **postsynaptic membrane** (postsynaptic component) contains +receptor sites with which the neurotransmitter interacts. This component +is formed from a portion of the plasma membrane of the postsynaptic +neuron (Fig. 12.11) and is characterized by an underlying layer of dense +material. This **postsynaptic density** represents an elaborate complex of +interlinked proteins that serve numerous functions, such as translation of +the neurotransmitter–receptor interaction into an intracellular signal, +anchoring of and trafficking neurotransmitter receptors to the plasma +membrane, and anchoring various proteins that modulate receptor +activity. + + +**FIGURE 12.11.** **Electron micrograph of nerve processes in the** +**cerebral cortex.** A synapse can be seen in the _center_ of the micrograph, +where an axon ending is in apposition to a dendrite. The ending of the +axon exhibits numerous neurotransmitter-containing synaptic vesicles that +appear as circular profiles. The postsynaptic membrane of the dendrite +shows a postsynaptic density. A substance of similar density is also + + +present in the synaptic cleft (intercellular space) at the synapse. ×76,000. +(Courtesy of Drs. George D. Pappas and Virginia Kriho.) + +###### **Synaptic Transmission** + + +**Voltage-gated Ca** **[2+]** **channels in the presynaptic membrane regulate** +**transmitter release.** + + +When a nerve impulse reaches the synaptic bouton, the voltage reversal +across the membrane produced by the impulse (called **depolarization** ) +causes **voltage-gated Ca** **[2+]** **channels** to open in the plasma membrane of +the bouton. The influx of Ca [2+] from the extracellular space causes the +synaptic vesicles to migrate, anchor, and fuse with the presynaptic +membrane, thereby releasing the neurotransmitter into the synaptic cleft by +exocytosis. Vesicle docking and fusion are mainly driven by the actions of +SNARE and synaptotagmin proteins. An alternative process that releases +neurotransmitter following vesicle fusion is called **porocytosis**, in which +vesicles anchored at the active zones release neurotransmitters through a +transient fusion pore connecting the lumen of the vesicle with the synaptic +cleft. At the same time, the presynaptic membrane of the synaptic bouton +that released the neurotransmitter quickly forms endocytotic vesicles that +return to the endosomal compartment of the bouton for recycling or +reloading with neurotransmitter. + + +**The neurotransmitter binds to either transmitter-gated channels or** +**G-protein–coupled receptors on the postsynaptic membrane.** + + +The released neurotransmitter molecules bind to the extracellular part of +postsynaptic membrane receptors called **transmitter-gated channels** . +Binding of neurotransmitter induces a conformational change in these +channel proteins that causes their pores to open. The response that is +ultimately generated depends on the identity of the ion that enters the cell. +For instance, influx of Na [+] causes local depolarization in the postsynaptic +membrane, which, under favorable conditions (sufficient amount and +duration of neurotransmitter release), prompts the opening of **voltage-** +**gated Na** **[+]** **channels**, thereby generating a nerve impulse. + +Some amino acid and amine neurotransmitters may bind to **G-protein–** +**coupled receptors** to produce longer lasting and more diverse +postsynaptic responses. The neurotransmitter binds to a transmembrane +receptor protein on the postsynaptic membrane. Receptor binding activates +G-proteins, which move along the intracellular surface of the postsynaptic +membrane and eventually activate effector proteins. These effector proteins +may include transmembrane **G-protein–gated ion channels** or **enzymes** + + +that synthesize second messenger molecules (page 401). Several +neurotransmitters (e.g., acetylcholine [ACh]) can generate different +postsynaptic actions, depending on which receptor system they act (see later +in this chapter). + + +**Porocytosis describes the secretion of neurotransmitter that does** +**not involve the fusion of synaptic vesicles with the presynaptic** +**membrane.** + + +Based on evaluation of physiologic data and the structural organization of +nerve synapses, an alternate model of neurotransmitter secretion called +**porocytosis** has recently been proposed to explain the regulated release of +neurotransmitters. In this model, secretion from the vesicles occurs without +the fusion of the vesicle membrane with the presynaptic membrane. Instead, + + the synaptic vesicle is anchored to the presynaptic membrane next to Ca [2+] +selective channels by SNARE and synaptotagmin proteins. In the presence +of Ca [2+], the vesicle and presynaptic membranes are reorganized to create a +1-nm transient **fusion pore** that connects the lumen of the vesicle with the +synaptic cleft. Neurotransmitters can then be released in a controlled manner +through these transient membrane pores (see Fig. 12.10). + + +**The chemical nature of the neurotransmitter determines the type of** +**response at that synapse in the generation of neuronal impulses.** + + +The release of neurotransmitter by the presynaptic component can cause +either **excitation** or **inhibition** at the postsynaptic membrane. + + +In **excitatory synapses**, the release of neurotransmitters such as +**acetylcholine**, **glutamine**, or **serotonin** opens **transmitter-gated Na** **[+]** + +**channels** (or other cation channels), prompting an influx of Na [+] that +causes local reversal of voltage of the postsynaptic membrane to a +threshold level (depolarization). This leads to initiation of an action +potential and generation of a nerve impulse. +In **inhibitory synapses**, the release of neurotransmitters such as **γ-** +**aminobutyric acid (GABA)** or **glycine** opens **transmitter-gated Cl** **[–]** + +**channels** (or other anion channels), causing Cl [−] to enter the cell and +hyperpolarize the postsynaptic membrane, making it even more negative. +In these synapses, the generation of an action potential then becomes +more difficult. + + +The ultimate generation of a nerve impulse in a postsynaptic neuron +(firing) depends on the summation of excitatory and inhibitory impulses +reaching that neuron. This allows precise regulation of the reaction of a +postsynaptic neuron (or muscle fiber or gland cell). The function of synapses + + +is not simply to transmit impulses in an unchanged manner from one neuron +to another. Rather, synapses allow for the processing of neuronal input. +Typically, the impulse passing from the presynaptic to the postsynaptic +neuron is modified at the synapse by other neurons that, although not in the +direct pathway, nevertheless have access to the synapse (see Fig. 12.8). +These other neurons may influence the membrane of the presynaptic neuron +or the postsynaptic neuron and facilitate or inhibit the transmission of +impulses. The firing of impulses in the postsynaptic neuron is caused by the +summation of the actions of hundreds of synapses. + +###### **Neurotransmitters** + + +Many molecules that serve as **neurotransmitters** have been identified in +various parts of the nervous system. A neurotransmitter that is released from +the presynaptic element diffuses through the synaptic cleft to the +postsynaptic membrane, where it interacts with a specific receptor. Action of +the neurotransmitter depends on its chemical nature and the characteristics +of the receptor present on the postsynaptic plate of the effector cell. + + +**Neurotransmitters act on either ionotropic receptors to open** +**membrane ion channels or metabotropic receptors to activate G-** +**protein signaling cascade.** + + +Almost all known neurotransmitters act on multiple receptors, which are +integral membrane proteins. These receptors can be divided into two major +classes: ionotropic and metabotropic receptors. **Ionotropic receptors** +contain integral transmembrane ion channels, also referred to as +**transmitter-gated channels** or **ligand-gated channels** . Binding of +neurotransmitter to ionotropic receptors triggers a conformational change of +the receptor proteins that leads to the opening of the channel and subsequent +movement of selective ions into or out of the cell. This generates an action +potential in the effector cell. In general, signaling using ionotropic channels +is very rapid and occurs in the major neuronal pathways of the brain and +somatic motor pathways in the PNS. **Metabotropic channels** are +responsible not only for binding a specific neurotransmitter but also for +interacting with **G-protein** at their intracellular domain. G-protein is an +important protein that is involved in intracellular signaling. It conveys +signals from the outside to the inside of the cell by altering the activities of +enzymes involved in the synthesis of a second messenger. Activation of +metabotropic receptors is mostly involved in the modulation of neuronal +activity. + +The most common neurotransmitters are described as follows. A +summary of selected neurotransmitters and their characteristics in both the +PNS and the CNS is provided in Table 12.1. + + +**Characterizations of the Most Common** +**TABLE 12.1** +**Neurotransmitters** + + +_5-HT_, 5-hydroxytryptamine; _ACh_, acetylcholine; _AMPA_, α-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid; _cGMP_, cyclic guanosine monophosphate; _CNS_, central +nervous system; _GABA_, γ-aminobutyric acid; _mGluR_, metabotropic glutamate +receptor; _NA_, not applicable; _NMDA_, N-methyl D -aspartate receptor; _NO_, nitric oxide; +_PNS_, peripheral nervous system. + + +**Acetylcholine (ACh)** . ACh is the neurotransmitter between axons and +striated muscle at the neuromuscular junction (see page 357) and serves +as a neurotransmitter in the ANS. ACh is released by the presynaptic +sympathetic and parasympathetic neurons and their effectors. ACh is also +secreted by postsynaptic parasympathetic neurons as well as by a specific +type of postsynaptic sympathetic neuron that innervates sweat glands. +Neurons that use ACh as their neurotransmitter are called **cholinergic** + + +**neurons** . The receptors for ACh in the postsynaptic membrane are +known as **cholinergic receptors** and are divided into two classes. +Metabotropic receptors interact with muscarine, a substance isolated from +poisonous mushrooms **(muscarinic ACh receptors)**, and ionotropic +receptors interact with nicotine isolated from tobacco plants **(nicotinic** +**ACh receptors)** . The muscarinic ACh receptor in the heart is an example +of a G-protein–coupled receptor that is linked to K [+] channels. +Parasympathetic stimulation of the heart releases ACh, which, in turn, +opens K [+] channels, causing hyperpolarization of cardiac muscle fibers. +This hyperpolarization slows rhythmic contraction of the heart. In +contrast, the nicotinic ACh receptor in skeletal muscles is an ionotropic +ligand–gated Na [+] channel. Opening of this channel causes rapid +depolarization of skeletal muscle fibers and initiation of contraction. +Various drugs affect the release of ACh into the synaptic cleft as well as +its binding to its receptors. For instance, **curare**, the South American +arrow-tip poison, binds to nicotinic ACh receptors, blocking their +integral Na [+] channels and causing muscle paralysis. **Atropine**, an +alkaloid extracted from the belladonna plant _(Atropa belladonna)_, +blocks the action of muscarinic ACh receptors. +**Catecholamines** such as **norepinephrine (NE)**, **epinephrine (EPI,** +**adrenaline)**, and **dopamine (DA)** . These neurotransmitters are +synthesized in a series of enzymatic reactions from the amino acid +tyrosine. Neurons that use catecholamines as their neurotransmitter are +called **catecholaminergic neurons** . Catecholamines are secreted by +cells in the CNS that are involved in the regulation of movement, mood, +and attention. Neurons that utilize EPI (adrenaline) as their +neurotransmitter are called **adrenergic neurons** . They all contain an +enzyme that converts NE to adrenaline (EPI), which serves as a +transmitter between postsynaptic sympathetic axons and effectors in the +ANS. EPI is also released into the bloodstream by the endocrine +cells (chromaffin cells) of the adrenal medulla during the **fight-or-** + +. +**flight response** +**Serotonin** or **5-hydroxytryptamine (5-HT)** . Serotonin is formed by the +hydroxylation and decarboxylation of tryptophan. It functions as a +neurotransmitter in the neurons of the CNS and enteric nervous system. +Neurons that use serotonin as their neurotransmitter are called +**serotonergic** . After the release of serotonin, a portion is recycled by +reuptake into presynaptic serotonergic neurons. Serotonin has been +found to be an important molecule that helps establish +**asymmetrical right–left development** in embryos. +**Amino acids** such as GABA, GLU, aspartate (ASP), and glycine (GLY) +act as neurotransmitters, mainly in the CNS. + + +**Nitric oxide (NO)**, a simple gas with free radical properties, also has +been identified as a neurotransmitter. At low concentrations, NO carries +nerve impulses from one neuron to another. Unlike other +neurotransmitters, which are synthesized in the nerve cell body and stored +in synaptic vesicles, NO is synthesized within the synapse and used +immediately. It is postulated that excitatory neurotransmitter GLU +induces a chain reaction in which **NO synthase** is activated to produce +NO, which, in turn, diffuses from the presynaptic knob via the synaptic +cleft and postsynaptic membrane to the adjacent cell. Biological actions +of NO are due to the activation of guanylyl cyclase, which then produces +cyclic guanosine monophosphate (cGMP) in target cells. cGMP, in turn, +acts on G-protein synthesis, ultimately resulting in generation/modulation +of neuronal action potentials. +**Small peptides** have been shown to act as synaptic transmitters. Among +these are **substance P** (so named because it was originally found in a +powder of acetone extracts of brain and intestinal tissue), **hypothalamic-** +**releasing hormones**, **endogenous opioid peptides** (e.g., **β-** +**endorphin**, **enkephalins**, **dynorphins** ), **vasoactive** **intestinal** +**peptide (VIP)**, **cholecystokinin (CCK)**, and **neurotensin** . Many of +these same substances are synthesized and released by **enteroendocrine** +**cells** of the intestinal tract. They may act immediately on neighboring +cells (paracrine secretion) or be carried in the bloodstream as hormones to +act on distant target cells (endocrine secretion). They are also synthesized +and released by endocrine organs and the neurosecretory neurons of the +hypothalamus. + + +**Neurotransmitters released into the synaptic cleft may be degraded** +**or recaptured.** + + +The degradation or recapture of neurotransmitters is necessary to limit the +duration of stimulation or inhibition of the postsynaptic membrane. The +most common process of neurotransmitter removal after its release into the +synaptic cleft is called **high-affinity reuptake** . About 80% of released +neurotransmitters are removed by this mechanism, in which they are bound +into **specific neurotransmitter transport proteins** located in the +presynaptic membrane. Neurotransmitters that were transported into the +cytoplasm of the presynaptic bouton are either enzymatically destroyed or +reloaded into empty synaptic vesicles. For example, the action of +**catecholamines** on postsynaptic receptors is terminated by the reuptake of +neurotransmitters into the presynaptic bouton utilizing **Na** **[+]** **-dependent** +**transporters** . The efficiency of this uptake can be regulated by +several pharmacologic agents such as amphetamine and cocaine, + + +which block catecholamine reuptake and prolong the actions of +neurotransmitters on the postsynaptic neurons. Once inside the +presynaptic bouton, catecholamines are reloaded into synaptic vesicles for +future use. The excess of catecholamines is inactivated by the enzyme +**catechol** _**O**_ **-methyltransferase (COMT)** or is destroyed by another +enzyme found on the outer mitochondrial membrane, **monoamine oxidase** +**(MAO)** . Therapeutic substances that inhibit the action of MAO are +frequently used in the treatment of **clinical depression** ; selective +COMT inhibitors have been also developed. + +Enzymes associated with the postsynaptic membrane degrade the +remaining 20% of neurotransmitters. For example, **acetylcholinesterase** +**(AChE)**, which is secreted by the muscle cell into the synaptic cleft, rapidly +degrades ACh into acetic acid and choline. Choline is then taken up by the +cholinergic presynaptic bouton and reused for ACh synthesis. The **AChE** +**action** at the **neuromuscular junction** can be inhibited by various +pharmacologic compounds, nerve agents, and pesticides, resulting in +prolonged muscle contraction. Clinically, **AChE inhibitors** have been +used in the treatment of **myasthenia gravis** (see Folder 11.3 in +Chapter 11, Muscle Tissue, page 358), an autoimmune +neuromuscular disorder, and **glaucoma** . AChE inhibitors also +improve many of the symptoms of **Alzheimer disease** and are +considered the first-line therapeutic agents for these patients. + +### **SUPPORTING CELLS OF THE NERVOUS** **SYSTEM: THE NEUROGLIA** + + +In the PNS, supporting cells are called **peripheral neuroglia** ; in the CNS, +they are called **central neuroglia** . + +### **Peripheral Neuroglia** + + +Peripheral neuroglia include **Schwann cells**, **satellite cells**, and a variety +of other cells associated with specific organs or tissues. Examples of the +latter include **terminal neuroglia (terminal Schwann cells, teloglia)**, +which are associated with the motor end plate; **enteric neuroglia** +associated with the ganglia located in the wall of the alimentary canal; and +**Müller cells** in the retina. + +### **Schwann Cell Development and Synthesis of** **Myelin Sheath** + + +In mature peripheral nerves, **Schwann cells** adopt one of the three distinct +phenotypes: (1) a **myelinating phenotype** that is responsible for +myelinating large-diameter axons in the PNS; (2) a **nonmyelinating** +**phenotype** (also known as a **Remak Schwann cell)**, which is +characterized by the enclosure of multiple small-diameter axons within +grooves of the plasma membrane that invaginate deep into the cell +cytoplasm; and (3) a **repair cell** phenotype that plays a major role during +nerve injury, repair, and regeneration. Although Remak Schwann cells do +not produce myelin, they are essential for the proper development and +function of the peripheral nerves. During nerve injury, both myelinating +Schwann cells and Remak Schwann cells undergo reprogramming and +dedifferentiation into repair cells. For the purpose of this discussion, the +term “Schwann cell” is used to describe myelin-producing cells, and +“Remak Schwann cells” refers to the nonmyelin-producing cells that +provide support for unmyelinated nerve fibers in the PNS. + + +**Myelinating Schwann cells** are the major glial cell type in PNS. They +produce the myelin that surrounds all large-diameter peripheral nerve +processes and play essential roles in the development, maintenance, +function, and regeneration of peripheral nerves. A detailed description of +Schwann cell development, structure, and function is explained. + +**Nonmyelinating Remak Schwann cells** are the second major +phenotype of Schwann cells. In the PNS, Remak Schwann cells do not +produce myelin; instead, they envelope multiple small-diameter axons to +form **unmyelinated fibers** called _Remak bundles_ . Most unmyelinated +fibers are composed of postsynaptic sympathetic and parasympathetic +axons. Some nonmyelinating Schwann cells migrate toward the +neuromuscular junction and cover the axon terminals, where they become +**perisynaptic/terminal Schwann cells (teloglia)** . These cells are found +at the distal ends of motor nerve terminals at neuromuscular junctions +(see Fig. 11.14). +**Repair Schwann cells** are the third phenotype of Schwan cells and are +specialized to promote the repair of injured nerves in the PNS. Repair +Schwann cells are derived from the conversion of myelinating Schwann +cells and nonmyelinating Remak Schwann cells in response to nerve +injury (Fig 12.12). This injury-induced conversion of Schwann and +Remak Schwann cells is driven by the dedifferentiation of mature cells +and cell reprogramming that involves the downregulation of myelin genes +combined with activation of specific features used in nerve repair. These +features include upregulation of trophic factors, increased synthesis of +cytokines (i.e., for macrophage recruitment), activation of myelin +autophagy (myelin clearance), and the formation of **regeneration tracks** + + +called **bands of Büngner** that direct growing axonal sprouts to their +targets. A detailed description of nerve regeneration is found in the +section on response of neurons to injury (see pages 426-429). + + +**Schwann cell precursors originate from neural crest cells and** +**further** **differentiate** **into** **myelinating** **Schwann** **cells** **or** +**nonmyelinating Remak Schwan cells according to axon-derived** +**signals.** + + +During nerve development in the PNS, some **neural crest cells** give rise to +**Schwann cell precursors** under the influence of transcription factor +SOX10 (see Fig 12.12). Schwann cell precursors migrate along developing +axons to their final destination. Once this migration is complete, the +Schwann cell precursors transition into **immature Schwann cells** and +perform **radial sorting**, which sorts the axons based on their diameter. This +process determines the final phenotype of the Schwann cell and the +designation of the nerve fiber as myelinated or unmyelinated. + + +**FIGURE 12.12.** **Schwann cell development and transformation after** +**peripheral nerve injury.** Schwann cell precursors originate from neural crest +cells under the influence of transcription factor Sox-10. They further transition +into immature Schwann cells and perform radial sorting of the axons based +on their diameter. Immature Schwann cells, which have a one-to-one +relationship with large-diameter axons, under influence of NF-κB, Oct-6, and +Brn2 transcription factors, become promyelinating Schwan cells. Under +further influence of Krox-20 transcription factor, these cells develop into + + +myelinating Schwann cells. The remaining small-diameter fibers are engulfed +in the cytoplasm of the remaining immature Schwan cells and eventually, +under the influence of Krox-24 and Ncam1, differentiate into nonmyelinated +Remak Schwann cells. Some immature Schwann cells near the +neuromuscular junctions develop into perisynaptic/terminal Schwann cells, +which also do not produce myelin. Radial sorting determines the final +phenotype of the Schwann cell and the designation of the nerve fiber as +myelinated or unmyelinated. Following peripheral nerve injury, c-Jun +transcription factor is rapidly upregulated, downregulating the expression of +Krox-20 and causing dedifferentiation of Schwann cells into repair Schwann +cells. Similar processes occur in the Remak Schwan cells, leading to their +differentiation during nerve injury. + + +**Radial sorting** begins by secluding a cohort of axons of mixed +diameters into small bundles. These bundles are surrounded by three to eight +immature Schwann cells that organize a common external lamina around +them. Next, the immature Schwan cells extend their cytoplasmic processes +between axons to progressively choose, segregate, and reposition larger +axons (>6–7 μm in diameter) toward their own cell body at the periphery of +the bundle. As immature Schwann cells continue to proliferate, largediameter axons are sorted into a one-to-one relationship with immature +Schwann cells. This close interaction with a single large axon allows +immature Schwann cells to receive axonal signals from a transmembrane +protein expressed on the axolemma of the axon called **neuregulin-1** +**(Nrg1)** . The Nrg1 signal upregulates the expression of **promyelinating** +**transcription factors**, including nuclear factor κB (NF-κB), octamerbinding transcription factor 6 (Oct-6), and brain 2 class III POU-domain +protein (Brn2) (see Fig 12.12). These transcription factors promote +promyelination, in which **promyelinating Schwann cells** express early +myelin markers. Further upregulation of KROX20 is required for maturation +to **myelinated Schwann cells**, which express myelin-specific proteins and +produce myelin sheaths. + +As myelinating Schwann cell development progresses, large axons are +pooled out from the initial axonal bundles. The bundles become smaller and +smaller until they contain only the remaining small-diameter axons (<1 μm +in diameter). They are subsequently engulfed by the cytoplasm of the +remaining immature Schwan cells and eventually differentiate into +**nonmyelinated Remak Schwann cells** (see Fig 12.12). + + +**In the PNS, myelinating Schwann cells produce the myelin sheath.** + + +The main function of Schwann cells is to support myelinated and +unmyelinated nerve cell fibers. In the PNS, **Schwann cells** produce a lipid + +rich layer called the **myelin sheath** that surrounds the axons (Fig. 12.13). +The myelin sheath isolates the axon from the surrounding extracellular +compartment of endoneurium. Its presence ensures the rapid conduction of +nerve impulses. The axon hillock and the terminal arborizations where the +axon synapses with its target cells are not covered by myelin. Unmyelinated +fibers are also enveloped and nurtured by Remak Schwann cell’s cytoplasm. +In addition, Schwann cells aid in removing PNS debris and guide the +regrowth of PNS axons (see pages 426-429). + + +**FIGURE 12.13.** **Photomicrographs of a peripheral nerve in cross and** +**longitudinal sections. a.** Photomicrograph of an osmium-fixed, toluidine +blue–stained peripheral nerve cut in cross section. The axons ( _A_ ) appear +clear. The myelin is represented by the _dark ring_ surrounding the _A_ . Note the +variation in diameter of the individual _A_ . In some of the nerves, the myelin +appears to consist of two separate rings ( _asterisks_ ). This is caused by the +section passing through a Schmidt–Lanterman cleft. _Epi_, epineurium. ×640. +**b.** Photomicrograph showing longitudinally sectioned myelinated nerve _A_ in +the same preparation as earlier. A node of Ranvier ( _NR_ ) is seen _near the_ +_center_ of the micrograph. In the same _A_, a Schmidt–Lanterman cleft ( _SL_ ) is +seen on each side of the node. In addition, a number of _SL_ clefts can be +seen in the adjacent _A_ . The perinodal cytoplasm of the Schwann cell at the +_NR_ and the Schwann cell cytoplasm at the _SL_ cleft appear virtually +unstained. ×640. + + +**Myelination begins when a Schwann cell surrounds the axon and** +**its cell membrane becomes polarized.** + + +During formation of the myelin sheath (also called **myelination** ), the axon +initially lies in a groove on the surface of the Schwann cell (Fig. 12.14a). A +0.08-to 0.1-mm segment of the axon then becomes enclosed within each +Schwann cell that lies along the axon. The Schwann cell surface becomes +polarized into two functionally distinct membrane domains. The part of the +Schwann cell membrane that is exposed to the external environment or +endoneurium, the **abaxonal plasma membrane**, represents one domain. +The other domain is represented by the **adaxonal** or **periaxonal plasma** +**membrane**, which is in direct contact with the axon. When the axon is +completely enclosed by the Schwann cell membrane, a third domain, the +**mesaxon**, is created (Fig. 12.14b). This third domain is a double membrane +that connects the abaxonal and adaxonal membranes and encloses the +narrow extracellular space. + + +**FIGURE 12.14.** **Diagram showing successive stages in the formation of** +**myelin sheath by a Schwann cell. a.** The axon initially lies in a groove on +the surface of the immature Schwann cell. **b.** The axon is surrounded by a +promyelinating Schwann cell. Note the two domains of the Schwann cell, the +adaxonal plasma membrane domain and abaxonal plasma membrane +domain. The mesaxon plasma membrane links these domains. The mesaxon +membrane initiates myelination by surrounding the embedded axon. **c.** A +sheet-like extension of the mesaxon membrane then wraps around the axon, +forming multiple membrane layers. **d.** During the wrapping process, the +cytoplasm is extruded from between the two apposing plasma membranes of +the Schwann cell, which then become compacted to form myelin. The outer +mesaxon represents the invaginated plasma membrane extending from the +abaxonal surface of the Schwann cell to the myelin sheath. The inner +mesaxon extends from the adaxonal surface of the Schwann cell (the part + + +facing the axon) to the innermost layer of the myelin sheath. The _inset_ shows +the major proteins responsible for compaction of the myelin sheath. _MBP_, +myelin basic protein; _Nrg1_, neuregulin; _P0_, protein 0; _PMP22_, peripheral +myelin protein of 22 kDa. + + +**The myelin sheath develops from compacted layers of Schwann** +**cell mesaxon wrapped concentrically around the axon.** + + +**Myelin sheath** formation is initiated when the Schwann cell mesaxon +surrounds the axon. A sheet-like extension of the mesaxon then wraps +around the axon in a spiraling motion. The first few layers or **lamellae** of +the spiral are not compactly arranged—that is, some cytoplasm is left in the +first few concentric layers (Fig. 12.14c). The TEM reveals the presence of a +12-to 14-nm gap between the outer (extracellular) leaflets and the Schwann +cell’s cytoplasm that separates the inner (cytoplasmic) leaflets. As the +wrapping progresses, cytoplasm is squeezed out from between the +membrane of the concentric layers of the Schwann cell. + +External to, and contiguous with, the developing myelin sheath is a thin +**outer collar of perinuclear cytoplasm** called the **sheath of Schwann** . +This part of the cell is enclosed by an abaxonal plasma membrane and +contains the nucleus and most of the organelles of the Schwann cell. +Surrounding the Schwann cell is a basal or external lamina. The apposition +of the mesaxon of the last layer to itself as it closes the ring of the spiral +produces the **outer mesaxon**, the narrow intercellular space adjacent to the +external lamina. Internal to the concentric layers of the developing myelin +sheath is a narrow **inner collar of Schwann cell cytoplasm** surrounded +by the adaxonal plasma membrane. The narrow intercellular space between +mesaxon membranes communicates with the adaxonal plasma membrane to +produce the **inner mesaxon** (Fig. 12.14d). + +Once the mesaxon spirals on itself, the 12-to 14-nm gaps disappear and +the membranes form the compact **myelin sheath** . Compaction of the sheath +corresponds with the expression of transmembrane **myelin-specific** +**proteins**, such as **protein 0 (P0)**, a **peripheral myelin protein of 22 kDa** +**(PMP22)**, and **myelin basic protein (MBP)** . The inner (cytoplasmic) +leaflets of the plasma membrane come close together as a result of the +positively charged cytoplasmic domains of P0 and MBP. With the TEM, +these closely aligned inner leaflets are electron opaque, appearing as the +**major dense lines** in the TEM image of myelin (see Fig. 12.14d). The +concentric dense lamellae alternate with the slightly less dense **intraperiod** +**lines** that are formed by closely apposed, but not fused, outer (extracellular) +membrane leaflets. The narrow 2.5-nm gap corresponds to the remaining +extracellular space containing the extracellular domains of P0 protein (see + + +Fig. 12.14d). P0 is a 30-kDa cell adhesion molecule expressed within the +mesoaxial plasma membrane during myelination. This transmembrane +glycoprotein mediates strong adhesions between the two opposite membrane +layers and represents a key structural component of peripheral nerve myelin. +Structural and genetic studies indicate that mutations in human +genes encoding P0 produce unstable myelin and may contribute to +the development of **demyelinating diseases** (see Folder 12.2). + + + + +immune cells. For more severe, progressive forms, immunosuppressive +drugs may be used. + + +**The thickness of the myelin sheath at myelination is determined by** +**axon diameter and not by the Schwann cell.** + + +Myelination is an example of cell-to-cell communication in which the axon +interacts with the Schwann cell. Experimental studies show that the number +of layers of myelin is determined by the axon and not by the Schwann cell. +Myelin sheath thickness is regulated by a glial growth factor (GGF) called +**neuregulin (Ngr1)** that induces growth, differentiation, and migration of +Schwann cells throughout their development. Ngr1 is a transmembrane +protein expressed on the axolemma (cell membrane) of the axon. + + +**The node of Ranvier represents the junction between two adjacent** +**Schwann cells.** + + +The myelin sheath is segmented because it is formed by numerous Schwann +cells arrayed sequentially along the axon. The junction where two adjacent +Schwann cells meet is devoid of myelin. This site is called the **node of** +**Ranvier** . Therefore, the myelin between two sequential nodes of Ranvier is +called an **internodal segment** (Plate 12.2, page 434). The node of Ranvier +constitutes a region where the electrical impulse is regenerated for highspeed propagation down the axon. The highest density of voltage-gated Na [+] + +channels in the nervous system occurs at the node of Ranvier; their +expression is regulated by interactions with the perinodal cytoplasm of +Schwann cells. + +Myelin is composed of about 80% lipids because, as the Schwann cell +membrane winds around the axon, the cytoplasm of the Schwann cell, as +noted, is extruded from between the opposing layers of the plasma +membranes. Electron micrographs, however, typically show small amounts +of cytoplasm in several locations (Figs. 12.15 and 12.16): the inner collar of +Schwann cell cytoplasm, between the axon and the myelin; the **Schmidt–** +**Lanterman clefts**, small islands within successive lamellae of the myelin; +**perinodal cytoplasm**, at the node of Ranvier; and the outer collar of +perinuclear cytoplasm, around the myelin (Fig. 12.17). These areas of +cytoplasm are what light microscopists identified as the Schwann sheath. + + +**FIGURE 12.15.** **Electron micrograph of an axon in the process of** +**myelination.** At this stage of development, the myelin ( _M_ ) sheath consists of +about six membrane layers. The inner mesaxon ( _IM_ ) and outer mesaxon +( _OM_ ) of the Schwann cell ( _SC_ ) represent parts of the mesaxon membrane. +Another axon (see _upper left A_ ) is present that has not yet been embedded +within an _SC_ mesaxon. Other notable features include the _SC_ basal +(external) lamina ( _BL_ ) and the considerable amount of Schwann cell +cytoplasm associated with the myelination process. ×50,000. (Courtesy of +Dr. Stephen G. Waxman.) + + +**FIGURE 12.16.** **Electron micrograph of a mature myelinated axon.** The +myelin sheath ( _M_ ) shown here consists of 19 paired layers of Schwann cell +membrane. The pairing of membranes in each layer is caused by the +extrusion of the Schwann cell’s cytoplasm. The axon displays an abundance +of neurofilaments, most of which have been cross-sectioned, giving the axon +a stippled appearance. Also evident in the axon are microtubules ( _MT_ ) and +several mitochondria ( _Mit_ ). The outer collar of Schwann cell’s cytoplasm +( _OCS_ ) is relatively abundant compared with the inner collar of Schwann cell’s +cytoplasm ( _ICS_ ). The collagen fibrils ( _C_ ) constitute the fibrillar component of +the endoneurium. _BL_, basal (external) lamina. ×70,000. **Inset.** Higher +magnification of the myelin. The _arrow_ points to cytoplasm within the myelin +that would contribute to the appearance of the Schmidt–Lanterman cleft as +seen in the light microscope. It appears as an isolated region here because +of the thinness of the section. The intercellular space between the axon and +Schwann cell is indicated by the _arrowhead_ . A coated vesicle ( _CV_ ) in an +early stage of formation appears in the outer collar of the Schwann cell +cytoplasm. ×130,000. (Courtesy of Dr. George D. Pappas.) + + +**FIGURE 12.17.** **Diagram of the node of Ranvier and associated Schwann** +**cells.** This diagram shows a longitudinal section of the axon and its +relationships to the myelin, cytoplasm of the Schwann cell, and node of +Ranvier. Schwann cell’s cytoplasm is present at four locations: the inner and +the outer cytoplasmic collar of the Schwann cell, the nodes of Ranvier, and +the Schmidt–Lanterman clefts. Note that the cytoplasm throughout the +Schwann cell is continuous (see Fig. 12.18); it is not a series of cytoplasmic +islands as it appears on the longitudinal section of the myelin sheath. The +node of Ranvier is the site at which successive Schwann cells meet. The +adjacent plasma membranes of the Schwann cells are not tightly apposed at +the node, and extracellular fluid has free access to the neuronal plasma +membrane. The node of Ranvier is also the site of depolarization of the +neuronal plasma membrane during nerve impulse transmission and contains +clusters of high-density, voltage-gated Na [+] channels. + + +However, if one conceptually unrolls the Schwann cell process, as +shown in Fig. 12.18, its full extent can be appreciated, and the inner collar +of Schwann cell cytoplasm can be seen to be continuous with the body of +the Schwann cell through the Schmidt–Lanterman clefts and the perinodal +cytoplasm. Cytoplasm of the clefts contains lysosomes and occasional +mitochondria and microtubules, as well as cytoplasmic inclusions, or dense + + +bodies. The number of Schmidt–Lanterman clefts correlates with the +diameter of the axon; larger axons have more clefts. + + +**FIGURE** **12.18.** **Three-dimensional** **diagram** **conceptualizing** **the** +**relationship of myelin and cytoplasm of a Schwann cell.** This diagram +shows a hypothetically uncoiled Schwann cell. Note how the inner collar of +the Schwann cell’s cytoplasm is continuous with the outer collar of Schwann +cell’s cytoplasm via Schmidt–Lanterman clefts. + + +**Unmyelinated axons in the peripheral nervous system are** +**enveloped by nonmyelinating Remak Schwan cells and their** +**external lamina.** + + +The nerves in the PNS described as **unmyelinated** are nevertheless +enveloped by **nonmyelinating Remak Schwann cell’s** cytoplasm, as +shown in Fig. 12.19, and can accommodate multiple small-diameter axons. +The Remak Schwann cells are elongated in parallel to the long axis of the +axons, and the axons fit into grooves on the cell surface. The lips of the +groove may be open, exposing a portion of the axolemma of the axon to the +adjacent external lamina of the Remak Schwann cell, or the lips may be +closed, forming a mesaxon. + + +**FIGURE 12.19.** **Electron micrograph of unmyelinated nerve fibers.** The +individual fibers or axons ( _A_ ) are engulfed by the cytoplasm of a +nonmyelinating Remak Schwann cell. The _arrows_ indicate the site of +mesaxons. In effect, each _A_ is enclosed by the Remak Schwann cell’s +cytoplasm, except for the intercellular space of the mesaxon. Other features +evident in the Remak Schwann cell are its nucleus ( _N_ ), the Golgi apparatus +( _G_ ), and the surrounding basal (external) lamina ( _BL_ ). In the _upper part_ of the +micrograph, myelin ( _M_ ) of two myelinated nerves is also evident. ×27,000. +**Inset.** Schematic diagram showing the relationship of _A_ engulfed by the +Remak Schwann cell. + + +A single axon or a group of axons may be enclosed in a single +invagination of the Remak Schwann cell surface. Large Remak Schwann +cells in the PNS may have 20 or more grooves, each containing either one +completely isolated axon (in the distal part of the nerve) or multiple axons +(in the proximal part of the nerve close to ganglia). In the ANS, it is +common for bundles of unmyelinated axons to occupy a single groove. +Because they form bundles within the Remak Schwann cell’s cytoplasm, + + +unmyelinated nerves are often called **Remak bundles** . An interesting +feature of unmyelinated nerve fibers has been observed in which axons may +switch their position between neighboring Remak bundles along the nerve. + +### **Satellite Cells** + + +The neuronal cell bodies of ganglia are surrounded by a layer of small +cuboidal cells called **satellite cells** . Although they form a complete layer +around the cell body, only their nuclei are typically visible in routine H&E +preparations (Fig. 12.20a and b). In paravertebral and peripheral ganglia, +neural cell processes must penetrate between the satellite cells to establish a +synapse (there are no synapses in sensory ganglia). They help to establish +and maintain a controlled microenvironment around the neuronal body in +the ganglion, providing electrical insulation as well as a pathway for +metabolic exchanges. Thus, the functional role of the satellite cell is +analogous to that of the Schwann cell, except that it does not make myelin. + + +**FIGURE** **12.20.** **Photomicrograph** **of** **a** **nerve** **ganglion.** **a.** +Photomicrograph showing a ganglion stained by the Mallory–Azan method. +Note the large nerve cell bodies ( _arrows_ ) and nerve fibers ( _NF_ ) in the +ganglion. Satellite cells are represented by the very small nuclei at the +periphery of the neuronal cell bodies. The ganglion is surrounded by a dense +irregular connective tissue capsule ( _CT_ ) that is comparable to, and +continuous with, the epineurium of the nerve. ×200. **b.** Higher magnification +of the ganglion showing individual axons and a few neuronal cell bodies with + + +their satellite cells ( _arrows_ ). The nuclei in the region of the axons are mostly +Schwann cell’s nuclei. ×640. + +### **Enteric Neuroglial Cells** + + +Neurons and their processes located within ganglia of the enteric division of +the ANS are associated with **enteric neuroglial cells** . These cells are +morphologically and functionally similar to **astrocytes** in the CNS (see +later). Enteric neuroglial cells share common functions with astrocytes, such +as structural, metabolic, and protective support of neurons. However, recent +studies indicate that enteric glial cells may also participate in enteric +neurotransmission and help coordinate activities of the nervous and immune +systems of the gut. + +### **Central Neuroglia** + + +There are four types of central neuroglia: + + +**Astrocytes** are morphologically heterogeneous cells that provide +physical and metabolic support for neurons of the CNS. +**Oligodendrocytes** are small cells that are active in the formation and +maintenance of myelin in the CNS. +**Microglia** are inconspicuous cells with small, dark, elongated nuclei that +possess phagocytotic properties. +**Ependymal cells** are columnar cells that line the ventricles of the brain +and the central canal of the spinal cord. + + +Only the nuclei of glial cells are seen in routine histologic preparations +of the CNS. Heavy metal staining or immunocytochemical methods are +necessary to demonstrate the shape of the entire glial cell. + +Although **glial cells** have long been described as supporting cells of +nerve tissue in the purely physical sense, current concepts emphasize the +**functional interdependence** of neuroglial cells and **neurons** . The most +obvious example of physical support occurs during development. The brain +and spinal cord develop from the **embryonic neural tube** . In the head +region, the neural tube undergoes remarkable thickening and folding, +leading ultimately to the final structure, the brain. During the early stages of +the process, embryonic glial cells extend through the entire thickness of the +neural tube in a radial manner. These **radial glial** cells serve as the physical +scaffolding that directs the migration of neurons to their appropriate position +in the brain. + + +**Astrocytes are closely associated with neurons to support and** +**modulate their activities.** + + +**Astrocytes** are the largest of the neuroglial cells. They form a network of +cells within the CNS and communicate with neurons to support and +modulate many of their activities. Some astrocytes span the entire thickness +of the brain, providing a scaffold for migrating neurons during brain +development. Other astrocytes stretch their processes from blood vessels to +neurons. The ends of the processes expand, forming end-feet that cover +large areas of the outer surface of the vessel or axolemma. Recently, it has +been shown that **reactive astrocytes** possess **phagocytic ability** and are +involved in eliminating parts of live neurons such as synapses, nerve cell +processes, as well as neuronal debris in the developing and injured brain. +During brain development, neurons generate excess synapses. Astrocytic +phagocytosis selectively eliminates these unnecessary synapses to achieve +precise neural connectivity. Although astrocytes do not form myelin, they +provide a compensatory mechanism to clear myelin debris after nerve cell +injury if microglia (the primary phagocytic cells in the brain) are unable to +execute phagocytosis (see page 413). + +Two kinds of astrocytes are identified: + + +**Protoplasmic astrocytes** are more prevalent in the outermost covering +of the brain called _gray matter_ . These astrocytes have numerous short, +branching cytoplasmic processes (Fig. 12.21). Fine processes of a single +protoplasmic astrocyte form an extensive network interacting with up to +two million synapses in humans, allowing the gray matter to relay +information at neuronal synapses. They also contribute to +neurotransmitter, ion, and energy homeostasis. + + +**FIGURE 12.21.** **Protoplasmic astrocyte in the gray matter of the brain.** +**a.** This schematic drawing shows the foot processes of a protoplasmic +astrocyte terminating on a blood vessel and the axonal process of a nerve +cell. The foot processes terminating on the blood vessel contribute to the +blood–brain barrier. The bare regions of the vessel as shown in the +drawing would be covered by processes of neighboring astrocytes, thus +forming the overall barrier. **b.** This laser scanning confocal image of a +protoplasmic astrocyte in the gray matter of the dentate gyrus was +visualized by intracellular labeling method. In lightly fixed tissue slices, +selected astrocytes were impaled and iontophoretically injected with +fluorescent dye (Alexa Fluor 568) using pulses of negative current. Note +the density and spatial distribution of cell processes. ×480. (Reprinted with +permission from Bushong EA, Martone ME, Ellisman MH. Examination of +the relationship between astrocyte morphology and laminar boundaries in +the molecular layer of adult dentate gyrus. _J Comp Neurol_ . 2003;462:241– +251.) + + +**Fibrous astrocytes** are more common in the inner core of the brain +called _white matter_ . These astrocytes have fewer, longer, relatively +straight, and less branched processes (Fig. 12.22). In the white matter, +electrical impulses are mainly propagated along the axons (most often +myelinated), with little information processing. The processes of fibrous +astrocytes run along axons throughout the white matter and make contact +with axons only at the node of Ranvier. + + +**FIGURE 12.22.** **Fibrous astrocytes in the white matter of the brain. a.** +Schematic drawing of a fibrous astrocyte in the white mater of the brain. **b.** +Photomicrograph of the white matter of the brain showing the extensive +radiating cytoplasmic processes for which astrocytes are named. They are +best visualized, as shown here, with immunostaining methods that use +antibodies against glial fibrillary acidic protein (GFAP). ×220. (Reprinted +with permission from Fuller GN, Burger PC. Central nervous system. In: +Sternberg SS, ed. _Histology for Pathologists_ . Lippincott-Raven; 1997.) + + +Both types of astrocytes contain prominent bundles of intermediate +filaments composed of **glial fibrillary acidic protein (GFAP)** . The +filaments are much more numerous in the fibrous astrocytes, however, hence +the name. Antibodies to GFAP are used as specific stains to identify +astrocytes in sections and tissue cultures (see Fig. 12.22b). Tumors arising +from fibrous astrocytes, **fibrous astrocytomas**, account for about +80% of adult primary brain tumors. They can be identified + +. +microscopically and by their **GFAP specificity** + +Astrocytes play important roles in the movement of metabolites and +wastes to and from neurons. They help maintain the tight junctions of the +capillaries that form the **blood–brain barrier** (see pages 424-425). In +addition, astrocytes provide a covering for the “bare areas” of myelinated +axons—for example, at the nodes of Ranvier and synapses. They may +confine neurotransmitters to the synaptic cleft and remove excess +neurotransmitters by pinocytosis. **Protoplasmic astrocytes** on the brain +and spinal cord surfaces extend their processes (subpial feet) to the basal +lamina of the pia mater to form the **glia limitans**, a relatively impermeable +barrier surrounding the CNS (Fig. 12.23). + + +**FIGURE 12.23.** **Distribution of glial cells in the brain.** This diagram shows +the four types of glial cells—astrocytes, oligodendrocytes, microglial cells, +and ependymal cells—interacting with several structures and cells found in +the brain tissue. Note that the astrocytes and their processes interact with +the blood vessels as well as with axons and dendrites. Astrocytes also send +their processes toward the brain surface, where they contact the basement +membrane of the pia mater, forming the glia limitans. In addition, processes +of astrocytes extend toward the fluid-filled spaces in the central nervous +system (CNS), where they contact the ependymal lining cells. +Oligodendrocytes are involved in myelination of the nerve fibers in the CNS. +Microglia exhibit phagocytotic functions. + + +**Astrocytes modulate neuronal activities by buffering the K** **[+]** + +**concentration in the extracellular space of the brain.** + + +It is now generally accepted that astrocytes **regulate K** **[+]** **concentrations** in +the brain’s extracellular compartment, thus maintaining the +microenvironment and modulating the activities of the neurons. The +astrocyte plasma membrane contains an abundance of K [+] pumps and K [+] + +channels that mediate the transfer of K [+] ions from areas of high to low +concentration. Accumulation of large amounts of intracellular K [+] in +astrocytes decreases local extracellular K [+] gradients. The astrocyte +membrane becomes depolarized, and the charge is dissipated over a large + + +area by the extensive network of astrocyte processes. The maintenance of +the K [+] concentration in the brain’s extracellular space by astrocytes is called +**potassium spatial buffering** . + + +**Oligodendrocytes produce and maintain the myelin sheath in the** +**CNS.** + + +The **oligodendrocyte** is the cell responsible for producing CNS myelin. +The myelin sheath in the CNS is formed by concentric layers of +oligodendrocyte plasma membrane. The formation of the sheath in the CNS +is more complex, however, than the simple wrapping of Schwann cell’s +mesaxon membranes that occurs in the PNS (pages 405-407). + +Oligodendrocytes appear in specially stained LM preparations as small +cells with relatively few processes compared with astrocytes. They are often +aligned in rows between the axons. Each oligodendrocyte gives off several +tongue-like processes that make contact with nearby axons. Each process +wraps itself around a portion of an axon, forming an **internodal segment** +**of myelin** . The multiple processes of a single oligodendrocyte may +myelinate one axon or several nearby axons (Fig. 12.24). The nucleuscontaining region of the oligodendrocyte may be at some distance from the +axons it myelinates. + + +**FIGURE 12.24.** **Three-dimensional view of an oligodendrocyte as it** +**relates to several axons.** Cytoplasmic processes from the oligodendrocyte +cell body form flattened cytoplasmic sheaths that wrap around each of the +axons. The relationship of cytoplasm and myelin is essentially the same as +that of Schwann cells. + + +Because a single oligodendrocyte may myelinate several nearby axons +simultaneously, the cell cannot embed multiple axons in its cytoplasm and +allow the mesaxon membrane to spiral around each axon. Instead, each +tongue-like process appears to spiral around the axon, always staying in +proximity to it, until the myelin sheath is formed. + + +**The myelin sheath in the CNS differs from that in the PNS.** + + +There are several other important differences between the myelin sheaths in +the CNS and those in the PNS. Oligodendrocytes in the CNS express +different myelin-specific proteins during myelination than those expressed +by Schwann cells in the PNS. Instead of P0 and PMP22, which are + + +expressed only in myelin of the PNS, other proteins, including **proteolipid** +**protein (PLP)**, **myelin oligodendrocyte glycoprotein (MOG)**, and +**oligodendrocyte myelin glycoprotein (OMgp)**, perform similar +functions in CNS myelin. Deficiencies in the expression of these +proteins appear to be important in the pathogenesis of several +autoimmune **demyelinating diseases** of the CNS. + +On the microscopic level, myelin in the CNS exhibits fewer Schmidt– +Lanterman clefts because the astrocytes provide metabolic support for CNS +neurons. Unlike Schwann cells of the PNS, oligodendrocytes do not have an +external lamina. Furthermore, because of the manner in which +oligodendrocytes form CNS myelin, little or no cytoplasm may be present in +the outermost layer of the myelin sheath, and with the absence of external +lamina, the myelin of adjacent axons may come into contact. Thus, where +myelin sheaths of adjacent axons touch, they may share an intraperiod line. +Finally, the nodes of Ranvier in the CNS are larger than those in the PNS. +The larger areas of exposed axolemma thus make **saltatory conduction** +(see later) even more efficient in the CNS. + +Another difference between the CNS and the PNS in regard to the +relationships between supporting cells and neurons is that unmyelinated +neurons in the CNS are often found to be bare—that is, they are not +embedded in glial cell processes. The lack of supporting cells around +unmyelinated axons as well as the absence of basal lamina material and +connective tissue within the substance of the CNS helps to distinguish the +CNS from the PNS in histologic sections and TEM specimens. + + +**Microglia possess phagocytotic properties.** + + +**Microglia** are phagocytotic cells. They normally account for about 5% of all +glial cells in the adult CNS but proliferate and become actively phagocytotic +( **reactive microglial cells** ) in regions of injury and disease. Microglial +cells are considered part of the mononuclear phagocyte system (see Folder +6.4, page 203) and originate from erythro-myeloid progenitor cells in the +yolk sac. Microglia precursor cells migrate to developing CNS during the +embryonic and perinatal stages of development (see page 415). In the past, +microglia have been regarded as the primary phagocytic cells in the brain. +However, recent evidence shows that astrocytic phagocytosis provides a +compensatory mechanism for microglial dysfunction. Similar to astrocytes, +microglial cells are involved in synaptic pruning, a process that forms the +cellular basis for learning and memory, especially during brain development +and brain injury (see page 410). Recent evidence suggests that +microglia play a critical role in **defense against invading** +**microorganisms** and neoplastic cells. They remove bacteria, injured +cells, and the debris of cells that undergo apoptosis. They also + + +mediate neuroimmune reactions, such as those occurring in chronic +pain conditions. + +Microglia are the smallest of the neuroglial cells and have relatively +small, elongated nuclei (Fig. 12.25). When stained with heavy metals, +microglia exhibit short, twisted processes. Both the processes and the cell +body are covered with numerous spikes. The spikes may be the equivalent +of the ruffled border seen on other phagocytotic cells. The TEM reveals +numerous lysosomes, inclusions, and vesicles. However, microglia contain +little rER and few microtubules or actin filaments. + + +**FIGURE 12.25.** **Microglial cell in the gray matter of the brain. a.** This +diagram shows the shape and characteristics of a microglial cell. Note the +elongated nucleus and relatively few processes emanating from the body. **b.** +Photomicrograph of microglial cells ( _arrows_ ) showing their characteristic +elongated nuclei. The specimen was obtained from an individual with diffuse +microgliosis. In this condition, the microglial cells are present in large +numbers and are readily visible in a routine hematoxylin and eosin (H&E) +preparation. ×420. (Reprinted with permission from Fuller GN, Burger PC. +Central nervous system. In: Sternberg SS, ed. _Histology for Pathologists_ . +Lippincott-Raven; 1997.) + + +**Ependymal cells form the epithelial-like lining of the ventricles of** +**the brain and spinal canal.** + + +**Ependymal cells** form the epithelium-like lining of the fluid-filled cavities +of the CNS. They form a single layer of cuboidal-to-columnar cells that +have the morphologic and physiologic characteristics of fluid-transporting +cells (Fig. 12.26). They are tightly bound by junctional complexes located at +the apical surfaces. Unlike a typical epithelium, ependymal cells lack an +external lamina. At the TEM level, the basal cell surface exhibits numerous +infoldings that interdigitate with adjacent astrocyte processes. The apical + + +surface of the cell possesses cilia and microvilli. The latter are involved in +absorbing cerebrospinal fluid (CSF). + + +**FIGURE 12.26.** **Ependymal lining of the spinal canal. a.** Photomicrograph +of the central region of the spinal cord stained with toluidine blue. The _arrow_ +points to the central canal. ×20. **b.** At higher magnification, ependymal cells, +which line the central canal, can be seen to consist of a single layer of +columnar cells. ×340. (Courtesy of Dr. George D. Pappas.) **c.** Transmission +electron micrograph showing a portion of the apical region of two columnar +ependymal cells. They are joined by a junctional complex ( _JC_ ) that separates +the lumen of the canal from the lateral intercellular space. The apical surface +of the ependymal cells has both cilia ( _C_ ) and microvilli ( _M_ ). Basal bodies ( _BB_ ) +and a Golgi apparatus ( _G_ ) within the apical cytoplasm are also visible. +×20,000. (Courtesy of Dr. Paul Reier.) + + +**Tanycytes** are specialized types of ependymal cells. They are most +numerous in the floor of the third ventricle. The free surface of tanycytes is +in direct contact with CSF, but in contrast to the ependymal cells, they do +not possess cilia. The cell body of tanycytes gives rise to a long process that +projects into the brain parenchyma. Their role remains unclear; however, +they are involved in the transport of substances from the CSF to the blood +within the portal circulation of the hypothalamus. Tanycytes are sensitive to +glucose concentration; therefore, they may be involved in detecting and +responding to changes in energy balance as well as in monitoring other +circulating metabolites in the CSF. + +Within the **system of brain ventricles**, the epithelium-like lining is +further modified to produce the CSF by transport and secretion of materials +derived from adjacent capillary loops. The modified ependymal cells and +associated capillaries are called the **choroid plexus** . + + +### **Impulse Conduction** + +**An action potential is an electrochemical process triggered by** +**impulses carried to the axon hillock after other impulses are** +**received on the dendrites or the cell body itself.** + + +A **nerve impulse** is conducted along an axon much as a flame travels along +the fuse of a firecracker. This electrochemical process involves the +generation of an **action potential**, a wave of membrane depolarization that +is initiated at the initial segment of the axon hillock. Its membrane contains +a large number of **voltage-gated Na** **[+]** **and K** **[+]** **channels** . In response to a +stimulus, voltage-gated Na [+] channels in the initial segment of the axon +membrane open, causing an influx of Na [+] into the axoplasm. This influx of +Na [+] briefly reverses (depolarizes) the negative membrane potential of the +resting membrane (−70 mV) to positive (+30 mV). After depolarization, the +voltage-gated Na [+] channels close and voltage-gated K [+] channels open. K [+] + +rapidly exits the axon, returning the membrane to its resting potential. +Depolarization of one part of the membrane sends electrical current to +neighboring portions of unstimulated membrane, which is still positively +charged. This local current stimulates adjacent portions of the axon’s +membrane and repeats depolarization along the membrane. The entire +process takes less than 1,000th of a second. After a very brief (refractory) +period, the neuron can repeat the process of generating an action potential +once again. + + +**Rapid conduction of the action potential is attributable to the nodes** +**of Ranvier.** + + +**Myelinated axons** conduct impulses more rapidly than unmyelinated +axons. Physiologists describe the nerve impulse as “jumping” from node to +node along the myelinated axon. This process is called **saltatory** _[L. saltus,_ +_to jump]_ or **discontinuous conduction** . In myelinated nerves, the myelin +sheath around the nerve does not conduct an electric current and forms an +insulating layer around the axon. However, the voltage reversal can _only_ +occur at the nodes of Ranvier, where the axolemma lacks a myelin sheath. +Here, the axolemma is exposed to extracellular fluids and possesses a high +concentration of voltage-gated Na [+] and K [+] channels (see Figs. 12.17 and +12.24). Thus, the voltage reversal (and thus the impulse) jumps as current +flows from one node of Ranvier to the next. The speed of saltatory +conduction is related not only to the thickness of the myelin but also to the +diameter of the axon. Conduction is more rapid along axons of greater +diameter. + + +In **unmyelinated axons**, Na [+] and K [+] channels are distributed +uniformly along the length of the fiber. The nerve impulse is conducted +more slowly and moves as a continuous wave of voltage reversal along the + +axon. + +### **ORIGIN OF NERVE TISSUE CELLS** + + +**CNS neurons and central glia, except microglial cells, are derived** +**from neuroectodermal cells of the neural tube.** + + +Neurons, oligodendrocytes, astrocytes, and ependymal cells are derived +from cells of the **neural tube** . After developing neurons have migrated to +their predestined locations in the neural tube and have differentiated into +mature neurons, they no longer divide. However, in the adult mammalian +brain, a very small number of **neural stem cells** retain the ability to divide. +These cells migrate into the sites of injury and differentiate into fully +functional nerve cells. + +**Oligodendrocyte** precursors are highly migratory cells. They appear to +share a developmental lineage with motor neurons migrating from their site +of origin to developing axonal projections (tracts) in the white matter of the +brain or spinal cord. The precursors then proliferate in response to the local +expression of mitogenic signals. The matching of oligodendrocytes to axons +is accomplished through a combination of local regulation of cell +proliferation, differentiation, and apoptosis. + +**Astrocytes** are also derived from cells of the neural tube. During the +embryonic and early postnatal stages, immature astrocytes migrate into the +cortex, where they differentiate and become mature astrocytes. **Ependymal** +**cells** are derived from the proliferation of neuroepithelial cells that +immediately surround the canal of the developing neural tube. + +In contrast to other central neuroglia, **microglia cells** are derived from +mesodermal macrophage precursors, specifically from **erythro-myeloid** +**progenitor cells** in the yolk sac. They infiltrate the neural tube in the early +stages of its development and under the influence of growth factors such as +colony-stimulating factor 1 (CSF-1) produced by developing neural cells as +they undergo proliferation and differentiation into motile amoeboid cells. +These motile cells are commonly observed in the developing brain. As the +only glial cells of mesenchymal origin, microglia possess the **vimentin** +**class of intermediate filaments**, which can be useful in identifying these +cells with immunocytochemical methods. + + +**PNS ganglion cells and peripheral glia are derived from the neural** +**crest.** + + +The development of the **ganglion cells** of the PNS involves the +proliferation and migration of ganglion precursor cells from the **neural** +**crest** to their future ganglionic sites, where they undergo further +proliferation. Here, the cells develop processes that reach the cells’ target +tissues (e.g., glandular tissue or smooth muscle cells) and sensory territories. +Initially, more cells are produced than are needed. Those that do not make +functional contact with a target tissue undergo apoptosis. + +**Schwann cells** also arise from migrating neural crest cells that become +associated with the axons of early embryonic nerves. Several genes have +been implicated in Schwann cell development. Sex-determining region Y +(SRY) box 10 ( _Sox10_ ) is required for the generation of all peripheral glia +from neural crest cells. Axon-derived neuregulin-1 ( _Nrg-1_ ) sustains the +**Schwann cell precursors** that undergo differentiation and divide along +the growing nerve processes. The fate of all immature Schwann cells is +determined by the nerve processes with which they have immediate contact. +Immature Schwann cells that associate with large-diameter axons mature +into myelinating Schwann cells, whereas those that associate with smalldiameter axons mature into nonmyelinating cells. + +### **ORGANIZATION OF THE PERIPHERAL NERVOUS** **SYSTEM** + + +The **peripheral nervous system (PNS)** consists of peripheral nerves with +specialized nerve endings and ganglia-containing nerve cell bodies that +reside outside the CNS. + +### **Peripheral Nerves** + + +**A peripheral nerve is a bundle of nerve fibers held together by** +**connective tissue.** + + +The nerves of the PNS are made up of many nerve fibers that carry sensory +and motor (effector) information between the organs and tissues of the body +and between the brain and spinal cord. The term **nerve fiber** is used in +different ways that can be confusing. It can connote the axon with all of its +coverings (myelin and Schwann cell), as used earlier, or it can connote the +axon alone. It is also used to refer to any process of a nerve cell, either +dendrite or axon, especially if insufficient information is available to +identify the process as either an axon or a dendrite. + +The cell bodies of peripheral nerves may be located either within the +CNS or outside the CNS in **peripheral ganglia** . Ganglia contain clusters of + + +neuronal cell bodies and the nerve fibers leading to and from them (see Fig. +12.20). The cell bodies in the dorsal root ganglia as well as ganglia of +cranial nerves belong to sensory neurons ( **somatic afferents** and **visceral** +**afferents** that belong to the ANS discussed earlier), whose distribution is +restricted to specific locations (Table 12.2 and Fig. 12.3). The cell bodies in +the paravertebral, prevertebral, and terminal ganglia belong to postsynaptic +“motor” neurons ( **visceral efferents** ) of the ANS (see Table 12.1 and Fig. +12.20). + + + + + + + + + +**Dorsal root ganglia of all spinal nerves** +**Sensory ganglia of cranial nerves** + +Trigeminal (semilunar, Gasserian) ganglion of the trigeminal (V) nerve +Geniculate ganglion of the facial (VII) nerve +Spiral ganglion (contains bipolar neurons) of the cochlear division of +the vestibulocochlear (VIII) nerve +Vestibular ganglion (contains bipolar neurons) of the vestibular +division of the vestibulocochlear (VIII) nerve +Superior and inferior ganglia of the glossopharyngeal (IX) nerve +Superior and inferior ganglia of the vagus (X) nerve + + +**Ganglia that contain cell bodies of autonomic (postsynaptic)** +**neurons; these are synaptic stations** + + +**Sympathetic ganglia** + +Sympathetic trunk (paravertebral) ganglia (the highest of these is the +superior cervical ganglion) +Prevertebral ganglia (adjacent to origins of large unpaired branches +of abdominal aorta), including celiac, superior mesenteric, inferior +mesenteric, and aorticorenal ganglia +Adrenal medulla, which may be considered a modified sympathetic +ganglion (each of the secretory cells of the medulla, as well as the +recognizable ganglion cells, is innervated by cholinergic presynaptic +sympathetic nerve fibers) +**Parasympathetic ganglia** + +Head ganglia + +Ciliary ganglion associated with the oculomotor (III) nerve +Submandibular ganglion associated with the facial (VII) nerve +Pterygopalatine (sphenopalatine) ganglion of the facial (VII) nerve +Otic ganglion associated with the glossopharyngeal (IX) nerve + + +Terminal ganglia (near or in wall of organs), including ganglia of the +submucosal (Meissner) and myenteric (Auerbach) plexuses of the +gastrointestinal tract (these are also ganglia of the enteric division of +the ANS) and isolated ganglion cells in a variety of organs + + +_a_ Practical note: Neuron cell bodies seen in tissue sections such as tongue, pancreas, +urinary bladder, and heart are invariably terminal ganglia or “ganglion cells” of the +parasympathetic nervous system. + + +To understand the PNS, it is also necessary to describe some parts of the +CNS. + + +**Motor neuron cell bodies of the PNS lie in the CNS.** + + +The cell bodies of motor neurons that innervate skeletal muscle ( **somatic** +**efferents** ) are located in the brain, brainstem, and spinal cord. The axons +leave the CNS and travel in peripheral nerves to the skeletal muscles that +they innervate. A single neuron conveys impulses from the CNS to the +effector organ. + + +**Sensory neuron cell bodies are located in ganglia outside, but close** +**to, the CNS.** + + +In the sensory system (both the **somatic afferent** and the **visceral** +**afferent** components), a single neuron connects the receptor, through a +sensory ganglion, to the spinal cord or brainstem. **Sensory ganglia** are +located in the dorsal roots of the spinal nerves and in association with +sensory components of cranial nerves V, VII, VIII, IX, and X (see Table +12.2). + +### **Connective Tissue Components of a Peripheral** **Nerve** + + +The bulk of a **peripheral nerve** consists of nerve fibers and their +supporting Schwann cells. The individual nerve fibers and their associated +Schwann cells are held together by connective tissue organized into three +distinctive components, each with specific morphologic and functional +characteristics (Fig. 12.27; see also Fig. 12.3). + + +**FIGURE 12.27.** **Electron micrograph of a peripheral nerve and its** +**surrounding perineurium. a.** Electron micrograph of unmyelinated nerve +fibers and a single myelinated fiber ( _MF_ ). The perineurium ( _P_ ), consisting of +several cell layers, is seen on the _left_ of the micrograph. Perineurial cell +processes ( _arrowheads_ ) have also extended into the nerve to surround a +group of axons ( _A_ ) and their Remak Schwann cell as well as a small blood +vessel ( _BV_ ). The enclosure of this group of _A_ represents the root of a small +nerve branch that is joining or leaving the larger fascicle. ×10,000. The area +within the _circle_ encompassing the endothelium of the vessel and the +adjacent perineurial cytoplasm is shown in the _inset_ at higher magnification. +Note the basal (external) laminae of the vessel and the perineurial cell +( _arrows_ ). The junction between endothelial cells of the blood vessel is also +apparent ( _arrowheads_ ). ×46,000. **b.** Electron micrograph showing the +perineurium of a nerve. Four cellular layers of the perineurium are present. +Each layer has a basal (external) lamina ( _BL_ ) associated with it on both +surfaces. Other features of the perineurial cell include an extensive +population of actin microfilaments ( _MF_ ), pinocytotic vesicles ( _arrows_ ), and +cytoplasmic densities ( _CD_ ). These features are characteristic of smooth +muscle cells. The innermost perineurial cell layer ( _right_ ) exhibits tight +junctions ( _asterisks_ ) where one cell is overlapping a second cell in forming +the sheath. Other features seen in the cytoplasm are mitochondria ( _M_ ), + + +rough-surfaced endoplasmic reticulum ( _rER_ ), and free ribosomes ( _R_ ). +×27,000. + + +The **endoneurium** includes loose connective tissue surrounding each +individual nerve fiber. +The **perineurium** includes specialized connective tissue surrounding +each nerve fascicle. +The **epineurium** includes dense irregular connective tissue that +surrounds a peripheral nerve and fills the spaces between nerve fascicles. + + +**Endoneurium constitutes the loose connective tissue associated** +**with individual nerve fibers.** + + +The **endoneurium** is not conspicuous in routine LM preparations, but +special connective tissue stains permit its demonstration. At the electron +microscope level, collagen fibrils that constitute the endoneurium are readily +apparent (see Figs. 12.15 and 12.16). The fibrils run both parallel to and +around the nerve fibers, binding them together into a fascicle or bundle. +Because **fibroblasts** are relatively sparse in the interstices of the nerve +fibers, it is likely that most of the collagen fibrils are secreted by the +Schwann cells. This conclusion is supported by tissue culture studies in +which collagen fibrils are formed in pure cultures of Schwann cells and +dorsal root neurons. + +Other than occasional fibroblasts, the only other connective tissue cells +normally found within the endoneurium are **mast cells** and **macrophages** . +Macrophages mediate immunologic surveillance and also participate in +nerve tissue repair. Following nerve injury, they proliferate and actively +phagocytose myelin debris. In general, most of the nuclei (90%) found in +cross sections of peripheral nerves belong to Schwann cells; the remaining +10% is equally distributed between the occasional fibroblasts and other +cells, such as **endothelial cells** of capillaries, macrophages, and mast cells. + + +**Perineurium is the specialized connective tissue surrounding a** +**nerve fascicle that contributes to the formation of the blood–nerve** + +**barrier.** + + +Surrounding the nerve bundle is a sheath of unique connective tissue cells +that constitutes the **perineurium** . The perineurium serves as a metabolically +active diffusion barrier that contributes to the formation of a **blood–nerve** + +**barrier** . This barrier maintains the ionic milieu of the ensheathed nerve +fibers. In a manner similar to the properties exhibited by the endothelial +cells of brain capillaries forming the blood–brain barrier (see pages 424 + +425), **perineurial cells** possess receptors, transporters, and enzymes that +provide for the active transport of substances. + +The perineurium may be one or more cell layers thick, depending on the +nerve diameter. The cells that compose this layer are squamous; each layer +exhibits an external (basal) lamina on both surfaces (Fig. 12.27b and Plate +12.1, page 432). The cells are contractile and contain an appreciable number +of actin filaments, a characteristic of smooth muscle cells and other +contractile cells. Moreover, when there are two or more perineurial cell +layers (as many as five or six layers may be present in larger nerves), +collagen fibrils are present between the perineurial cell layers, but +fibroblasts are absent. **Tight junctions** provide the basis for the **blood–** +**nerve barrier** and are present between the cells located within the same +layer of the perineurium. In effect, the arrangement of these cells as a barrier +—the presence of tight junctions and external (basal) lamina material— +likens them to an epithelioid tissue. On the other hand, their contractile +nature and their apparent ability to produce collagen fibrils also liken them +to smooth muscle cells and fibroblasts. + +The limited number of connective tissue cell types within the +endoneurium (page 416) undoubtedly reflects the protective role that the +perineurium plays. Typical immune system cells (i.e., lymphocytes, plasma +cells) are not found within the endoneurial and perineurial compartments. +This absence of immune cells (other than the mast cells and macrophages) is +accounted for by the protective barrier created by the perineurial cells. +Typically, only fibroblasts, a small number of resident macrophages, and +occasional mast cells are present within the nerve compartment. + + +**Epineurium consists of dense irregular connective tissue that** +**surrounds and binds nerve fascicles into a common bundle.** + + +The **epineurium** forms the outermost tissue of the peripheral nerve. It is a +typical **dense irregular connective tissue** that surrounds the fascicles +formed by the perineurium (Plate 12.2, page 434). Adipose tissue is often +associated with the epineurium in larger nerves. + +The blood vessels that supply the nerves travel in the epineurium, and +their branches penetrate into the nerve and travel within the perineurium. +Tissue at the level of the endoneurium is poorly vascularized; metabolic +exchange of substrates and wastes in this tissue depends on diffusion from +and to the blood vessels through the perineurial sheath (see Fig. 12.27). + +### **Afferent (Sensory) Receptors** + + +**Afferent receptors are specialized structures located at the distal** +**tips of the peripheral processes of sensory neurons.** + + +Although **receptors** may have many different structures, they have one +basic characteristic in common: They can initiate a nerve impulse in +response to a stimulus. Receptors may be classified as follows: + + +**Exteroceptors** react to stimuli from the external environment—for +example, temperature, touch, smell, sound, and vision. +**Enteroceptors** react to stimuli from within the body—for example, the +degree of filling or stretch of the alimentary canal, bladder, and blood +vessels. +**Proprioceptors**, which also react to stimuli from within the body, +provide sensation of body position and muscle tone and movement. + + +The simplest receptor is a bare axon called a **nonencapsulated (free)** +**nerve ending** . This ending is found in epithelia, connective tissue, and in +close association with hair follicles. + + +**Most sensory nerve endings acquire connective tissue capsules or** +**sheaths of varying complexity.** + + +Sensory nerve endings with connective tissue sheaths are called +**encapsulated endings** . Many encapsulated endings are mechanoreceptors +located in the skin and joint capsules (Krause end bulb, Ruffini corpuscles, +Meissner corpuscles, and Pacinian corpuscles) and are described in Chapter +15, Integumentary System (pages 555-559). **Muscle spindles** are +encapsulated sensory endings located in skeletal muscle; they are described +in Chapter 11, Muscle Tissue (pages 359-360). Functionally, related Golgi +tendon organs are encapsulated tension receptors found at musculotendinous +junctions. + +### **ORGANIZATION OF THE AUTONOMIC NERVOUS** **SYSTEM** + + +Although the ANS was introduced early in this chapter (see page 389), it is +useful here to describe some of the salient features of its organization and +distribution. The ANS is classified into three divisions: + + +**Sympathetic division** +**Parasympathetic division** +**Enteric division** + + +**The ANS controls and regulates the body’s internal environment.** + + +The **ANS** is the portion of the PNS that conducts involuntary impulses to +smooth muscle, cardiac muscle, and glandular epithelium. These effectors +are the functional units in the organs that respond to regulation by nerve +tissue. The term _visceral_ is sometimes used to characterize the ANS and its +neurons, which are referred to as **visceral motor (efferent) neurons** . +However, visceral motor neurons are frequently accompanied by **visceral** +**sensory (afferent) neurons** that transmit pain and reflexes from visceral +effectors (i.e., blood vessels, mucous membrane, and glands) to the CNS. +These pseudounipolar neurons have the same arrangement as other sensory +neurons—that is, their cell bodies are located in sensory ganglia, and they +possess long peripheral and central axons, as described earlier. + +The main organizational difference between the efferent flow of +impulses to skeletal muscle (somatic effectors) and the efferent flow to +smooth muscle, cardiac muscle, and glandular epithelium (visceral +effectors) is that one neuron conveys the impulses from the CNS to the +somatic effector, whereas a chain of two neurons conveys the impulses from +the CNS to the visceral effectors (Fig. 12.28). Thus, there is a synaptic +station in an autonomic ganglion outside the CNS where a presynaptic +neuron makes contact with postsynaptic neurons. Each presynaptic neuron +synapses with several postsynaptic neurons. + + +**FIGURE 12.28.** **Schematic diagram of somatic efferent and visceral** +**efferent neurons.** In the somatic efferent (motor) system, one neuron +conducts the impulses from the central nervous system (CNS) to the effector +(skeletal muscle). In the visceral (autonomic) efferent system (represented in +this drawing by the sympathetic division of the autonomic nervous system + +[ANS]), a chain of two neurons conducts the impulses: a presynaptic neuron +located within the CNS and a postsynaptic neuron located in the +paravertebral or prevertebral ganglia. Moreover, each presynaptic neuron +makes synaptic contact with more than one postsynaptic neuron. +Postsynaptic sympathetic fibers supply smooth muscles (as in blood vessels) +or glandular epithelium (as in sweat glands). Neurons of the ANS that supply +organs of the abdomen reach these organs by way of the splanchnic nerves. +In this example, the splanchnic nerve joins with the celiac ganglion, where +most of the synapses of the two-neuron chain occur. + +### **Sympathetic and Parasympathetic Divisions of the** **Autonomic Nervous System** + + +**The presynaptic neurons of the sympathetic division are located in** +**the thoracic and upper lumbar portions of the spinal cord.** + + +The **presynaptic neurons** send axons from the thoracic and upper lumbar +spinal cord to the vertebral and paravertebral ganglia. The **paravertebral** +**ganglia** in the **sympathetic trunk** contain the cell bodies of the +postsynaptic effector neurons of the **sympathetic division** (see Figs. 12.28 +and 12.29). + + +**FIGURE 12.29.** **Schematic diagram showing the general arrangement of** +**sympathetic and parasympathetic neurons of the autonomic nervous** +**system (ANS).** The sympathetic outflow is shown on the _left_, the +parasympathetic on the _right_ . The sympathetic (thoracolumbar) outflow +leaves the central nervous system (CNS) from the thoracic and upper lumbar +segments (T1–L2) of the spinal cord. These presynaptic fibers communicate +with postsynaptic neurons in two locations: the paravertebral and + + +prevertebral ganglia. Paravertebral ganglia are linked together and form two +sympathetic trunks on each side of the vertebral column ( _drawn as a single_ +_column on the side of the spinal cord_ ). Prevertebral ganglia are associated +with the main branches of the abdominal aorta ( _yellow ovals_ ). Note the +distribution of postsynaptic sympathetic nerve fibers to the viscera. The +parasympathetic (craniosacral) outflow leaves the CNS from the gray matter +of the brainstem within cranial nerve (CN) III, CN VII, CN IX, and CN X and +the gray matter of sacral segments (S2–S4) of the spinal cord and is +distributed to the viscera. The presynaptic fibers traveling with CN III, CN VII, +and CN IX communicate with postsynaptic neurons in various ganglia +located in the head and neck region ( _yellow ovals in front of the head_ ). The +presynaptic fibers traveling with CN X and those from sacral segments (S2– +S4) have their synapses with postsynaptic neurons in the wall of visceral +organs (terminal ganglia). The viscera thus contains both sympathetic and +parasympathetic innervation. Note that a two-neuron chain carries impulses +to all viscera, except the adrenal medulla. + + +**The presynaptic neurons of the parasympathetic division are** +**located in the brainstem and sacral spinal cord.** + + +The **presynaptic parasympathetic neurons** send axons from the +brainstem—that is, the midbrain, pons, medulla, and the sacral segments of +the spinal cord (S2–S4)—to **visceral ganglia** . The ganglia in or near the +wall of abdominal and pelvic organs and the visceral motor ganglia of +cranial nerves III, VII, IX, and X contain cell bodies of the postsynaptic +effector neurons of the **parasympathetic division** (see Figs. 12.28 and +12.29). + +The sympathetic and parasympathetic divisions of the ANS often supply +the same organs. In these cases, the actions of the two are usually +antagonistic. For example, sympathetic stimulation increases the rate of +cardiac muscle contractions, whereas parasympathetic stimulation reduces +the rate. + + +Many functions of the SNS are similar to those of the adrenal medulla, +an endocrine gland. This functional similarity is partly explained by the +developmental relationships between the cells of the adrenal medulla and +the postsynaptic sympathetic neurons. Both are derived from the neural +crest, are innervated by presynaptic sympathetic neurons, and produce +closely related physiologically active agents, EPI and NE. A major +difference is that the sympathetic neurons deliver the agent directly to the +effector, whereas the cells of the adrenal medulla deliver the agent indirectly +through the bloodstream. The innervation of the adrenal medulla may +constitute an exception to the rule that autonomic innervation consists of a +two-neuron chain from the CNS to an effector unless the adrenal medullary + + +cell is considered the functional equivalent of the second neuron (in effect, a +neurosecretory neuron). + +### **Enteric Division of the Autonomic Nervous System** + + +**The enteric division of the ANS consists of the ganglia and their** +**processes that innervate the alimentary canal.** + + +The **enteric division of the ANS** represents a collection of neurons and +their processes within the walls of the alimentary canal. It controls motility +(contractions of the gut wall), exocrine and endocrine secretions, and blood +flow through the gastrointestinal tract; it also regulates immunologic and +inflammatory processes. + +The enteric nervous system can function independently from the CNS +and is regarded as the “ **brain of the gut** .” However, digestion requires +communication between enteric neurons and the CNS, which is provided by +parasympathetic and sympathetic nerve fibers. Enteroceptors located in the +alimentary tract provide sensory information to the CNS regarding the state +of digestive functions. The CNS then coordinates sympathetic stimulation, +which inhibits gastrointestinal secretion, motor activity, and contraction of +gastrointestinal sphincters and blood vessels as well as parasympathetic +stimuli that produce opposite actions. **Interneurons** integrate information +from sensory neurons and relay this information to enteric motor neurons in +the form of reflexes. For instance, the gastrocolic reflex is elicited when +distention of the stomach stimulates contraction of musculature of the colon, +triggering defecation. + +Ganglia and postsynaptic neurons of the enteric division are located in +the lamina propria, muscularis mucosae, submucosa, muscularis externa, +and subserosa of the alimentary canal from the esophagus to the anus (Fig. +12.30). Because the enteric division does not require presynaptic input from +the vagus nerve and sacral outflow, the intestine will continue peristaltic +movements, even after the vagus nerve or pelvic splanchnic nerves are +severed. + + +**FIGURE 12.30.** **Enteric nervous system.** This diagram shows the +organization of the enteric system in the wall of the small intestine. Note the +location of two nerve plexuses containing ganglion cells. The more +superficial plexus, the myenteric plexus (Auerbach plexus), lies between two +muscle layers. Deeper in the region of the submucosa is a network of +unmyelinated nerve fibers and ganglion cells, forming the submucosal plexus +(Meissner plexus). Parasympathetic fibers originating from the vagus nerve +enter the mesentery of the small intestine and synapse with the ganglion +cells of both plexuses. Postsynaptic sympathetic nerve fibers also contribute +to the enteric nervous system. + + +Neurons of the enteric division are not supported by Schwann or satellite +cells; instead, they are supported by **enteric neuroglial cells** that resemble +astrocytes (see pages 410-411). Cells of the **enteric division** are also +affected by the same pathologic changes that can occur in neurons +of the brain. Lewy bodies associated with **Parkinson disease** (see +Folder 12.1) as well as amyloid plaques and neurofibrillary tangles +associated with **Alzheimer disease** have been found in the walls of + + +the large intestine. This finding may lead to the development of +routine gastrointestinal biopsies for early diagnosis of these +conditions rather than the more complex and risk-associated biopsy +of the brain for Alzheimer disease and postmortem identification of +Parkinson disease. + +### **A Summarized View of Autonomic Distribution** + + +Figures 12.28 and 12.29 summarize the origins and distribution of the ANS. +Refer to these figures as you read the descriptive sections. Note that the +diagrams indicate both the paired innervation (parasympathetic and +sympathetic) common to the ANS and the important exceptions to this +general characteristic. + +###### **Head** + + +**Parasympathetic presynaptic outflow** to the head leaves the brain +with the cranial nerves, as indicated in Figure 12.29, but the routes are +quite complex. Cell bodies may also be found in structures other than +head ganglia listed in Table 12.1 and Figure 12.28 (e.g., in the tongue). +These are “terminal ganglia” that contain nerve cell bodies of the +parasympathetic system. +**Sympathetic presynaptic outflow** to the head comes from the thoracic +region of the spinal cord. The _postsynaptic neurons_ have their cell bodies +in the superior cervical ganglion; the axons leave the ganglion in a nerve +network that hugs the wall of the internal and external carotid arteries to +form the periarterial plexus of nerves. The internal carotid plexus and +external carotid plexus follow the branches of the carotid arteries to reach +their destination. + +###### **Thorax** + + +**Parasympathetic presynaptic outflow** to the thoracic viscera is via +the vagus nerve (X). The _postsynaptic neurons_ have their cell bodies in +the walls or in the parenchyma of the organs of the thorax. +**Sympathetic presynaptic outflow** to the thoracic organs is from the +upper thoracic segments of the spinal cord. _Sympathetic postsynaptic_ +_neurons_ for the heart are mostly in the cervical ganglia; their axons make +up the cardiac nerves. _Postsynaptic neurons_ for the other thoracic viscera +are in ganglia of the thoracic part of the sympathetic trunk. The axons +travel via small splanchnic nerves from the sympathetic trunk to organs +within the thorax and form the pulmonary and esophageal plexuses. + + +###### **Abdomen and pelvis** + +**Parasympathetic presynaptic outflow** to the abdominal viscera is via +the vagus (X) and pelvic splanchnic nerves. _Postsynaptic neurons_ of the +parasympathetic system to abdominopelvic organs are in terminal ganglia +that generally are in the walls of the organs, such as the ganglia of the +submucosal (Meissner) plexus and the myenteric (Auerbach) plexus in +the alimentary canal. These ganglia are part of the enteric division of the +ANS. +**Sympathetic presynaptic outflow** to the abdominopelvic organs is +from the lower thoracic and upper lumbar segments of the spinal cord. +These fibers travel to the prevertebral ganglia through abdominopelvic +splanchnic nerves consisting of the greater, lesser, and least thoracic +splanchnic and lumbar splanchnic nerves. _Postsynaptic neurons_ have their +cell bodies mostly in the prevertebral ganglia (see Fig. 12.28). Only +presynaptic fibers terminating on cells in the medulla of the suprarenal +(adrenal) gland originate from paravertebral ganglia of the sympathetic +trunk. The adrenal medullary cells function as a special type of +postsynaptic neuron that releases neurotransmitter directly into the +bloodstream instead of into the synaptic cleft. + +###### **Extremities and body wall** + + +There is no parasympathetic outflow to the body wall and extremities. +Anatomically, the autonomic innervation in the body wall is only +sympathetic (see Fig. 12.28). Each spinal nerve contains postsynaptic +sympathetic fibers—that is, unmyelinated visceral efferents of neurons +whose cell bodies are in paravertebral ganglia of the sympathetic trunk. For +sweat glands, the neurotransmitter released by the “sympathetic” neurons is +ACh instead of NE. + +### **ORGANIZATION OF THE CENTRAL NERVOUS** **SYSTEM** + + +The **central nervous system** consists of the **brain** located in the cranial +cavity and the **spinal cord** located in the vertebral canal. The CNS is +protected by the skull and vertebrae and is surrounded by three connective +tissue membranes called **meninges** . The brain and spinal cord essentially +float in the CSF that occupies the space between the two inner meningeal +layers. The brain is further subdivided into the **cerebrum**, **cerebellum**, and +**brainstem**, which connects with the spinal cord. + + +**In the brain, the gray matter forms an outer covering or cortex; the** +**white matter forms an inner core or medulla.** + + +The **cerebral cortex** that forms the outermost layer of the brain contains +nerve cell bodies, axons, dendrites, and central glial cells, and it is the site of +synapses. In a freshly dissected brain, the cerebral cortex has a gray color, +hence the name **gray matter** . In addition to the cortex, islands of gray +matter called **nuclei** are found in the deep portions of the cerebrum and +cerebellum. + +The **white matter** contains only axons of nerve cells plus the associated +glial cells and blood vessels (axons in fresh preparations appear white). +These axons travel from one part of the nervous system to another. Whereas +many of the axons going to, or coming from, a specific location are grouped +into functionally related bundles called **tracts**, the tracts themselves do not +stand out as delineated bundles. The demonstration of a tract in the white +matter of the CNS requires a special procedure, such as the destruction of +cell bodies that contribute fibers to the tract. The damaged fibers can be +displayed by the use of appropriate staining or labeling methods and then +traced. Even in the spinal cord, where the grouping of tracts is most +pronounced, there are no sharp boundaries between adjacent tracts. + +### **Cells of the Gray Matter** + + +The types of cell bodies found in the gray matter vary according to which +part of the brain or spinal cord is being examined. + + +**Each functional region of the gray matter has a characteristic** +**variety of cell bodies associated with a meshwork of axonal,** +**dendritic, and glial processes.** + + +The meshwork of axonal, dendritic, and glial processes associated with the +gray matter is called the **neuropil** . The organization of the neuropil is not +demonstrable in H&E-stained sections. It is necessary to use methods other +than H&E histology to decipher the cytoarchitecture of the gray matter +(Plate 12.3, page 436). + +Although general histology programs usually do not deal with the actual +arrangements of the neurons in the CNS, the presentation of two examples +will add to the appreciation of H&E sections that students usually examine. +These examples present a region of the cerebral cortex (Fig. 12.31 and Plate +12.3, page 436) and the cerebellar cortex (Fig. 12.32 and Plate 12.4, page +438). + + +**FIGURE 12.31.** **Nerve cells in intracortical cerebral circuits.** This +simplified diagram shows the organization and connections between cells in +different layers of the cortex contributing to cortical afferent fibers ( _arrows_ +_pointing up_ ) and cortical efferent fibers ( _arrows pointing down_ ). The small +interneurons are indicated in _yellow_ . + + +**FIGURE 12.32.** **Cytoarchitecture of the cerebellar cortex. a.** This diagram +shows a section of the folium, a narrow, leaf-like gyrus of the cerebellar +cortex. The longer cut edge is parallel to the folium. Note that the cerebellar +cortex contains white matter and gray matter. Three distinct layers of gray +matter are identified on this diagram: the superficially located molecular +layer, the middle Purkinje cell layer, and the granule cell layer adjacent to the +white matter. Mossy fibers and ascending fibers are major afferent fibers of +the cerebellum. **b.** Purkinje cell layer from rat cerebellum visualized using +double-fluorescent–labeling methods. Red DNA staining indicates the nuclei +of cells in molecular and granule cell layer thin section. Note that each +Purkinje cell exhibits an abundance of dendrites. ×380. (Courtesy of Thomas +J. Deerinck.) + + +Notable in the cerebellar cortex (see Fig. 12.32) is the Purkinje +cell layer. Individuals infected by **rabies virus (RABV)** have +characteristic inclusions in the cytoplasm of affected neurons called +**Negri bodies** . These eosinophilic, sharply outlined, 2–10 μm in +diameter inclusions visible in LM represent intracellular **viral** +**replication compartments** formed during viral infection. They are +easily observed in the cytoplasm of the Purkinje cells and pyramidal +cells of the hippocampus. Negri bodies have been used for decades +as primary histologic proof of RABV infection. The current approach +for postmortem diagnosis of human and animal rabies is based on +the direct fluorescent antibody (DFA) test. Recently, an LN34 panlyssavirus real-time reverse transcription-polymerase chain reaction +(RT-PCR) assay has been introduced and has improved rabies +diagnostics and surveillance. + +The **brainstem** is not clearly separated into regions of gray matter and +white matter. The nuclei of the cranial nerves located in the brainstem, + + +however, appear as islands surrounded by more or less distinct tracts of +white matter. The nuclei contain the cell bodies of the motor neurons of the +cranial nerves and are both the morphologic and functional counterparts of +the anterior horns of the spinal cord. In other sites in the brainstem, as in the +**reticular formation**, the distinction between white matter and gray matter +is even less evident. + +### **Organization of the Spinal Cord** + + +The **spinal cord** is a flattened cylindrical structure that is directly +continuous with the brainstem. It is divided into 31 segments (8 cervical, 12 +thoracic, 5 lumbar, 5 sacral, and 1 coccygeal), and each segment is +connected to a pair of **spinal nerves** . Each spinal nerve is joined to its +segment of the cord by a number of rootlets grouped as dorsal (posterior) or +ventral (anterior) roots (Fig. 12.33; see also Fig. 12.3). + + +**FIGURE 12.33.** **Posterior view of the spinal cord with surrounding** +**meninges.** Each spinal nerve arises from the spinal cord by rootlets, which + + +merge to form dorsal (posterior) and ventral (anterior) nerve roots. These +roots unite to form a spinal nerve that, after a short course, divides into larger +ventral (anterior) and smaller dorsal (posterior) primary rami. Note the dura +mater (the outer layer of the meninges) that surrounds the spinal cord and +emerging spinal nerves. The denticulate ligament of the pia mater that +anchors the spinal cord to the wall of the spinal canal is also visible. + + +In cross section, the spinal cord exhibits a butterfly-shaped grayish-tan +inner substance surrounding the **central canal**, the **gray matter**, and a +whitish peripheral substance, the **white matter** (Fig. 12.34). White matter +(see Fig. 12.3) contains only tracks of myelinated and unmyelinated axons +traveling to and from other parts of the spinal cord and to and from the +brain. + + +**FIGURE 12.34.** **Cross section of the human spinal cord.** This +photomicrograph shows a cross section through the lower lumbar (most +likely L4–L5) level of the spinal cord stained by the Bielschowsky silver +method. The spinal cord is organized into an outer part, the white matter, and +an inner part, the gray matter, which contains nerve cell bodies and + + +associated nerve fibers. The gray matter of the spinal cord appears roughly +in the form of a butterfly. The anterior and posterior prongs are referred to as +_ventral horns_ ( _VH_ ) and _dorsal horns_ ( _DH_ ), respectively. They are connected +by the gray commissure ( _GC_ ). The white matter contains nerve fibers that +form ascending and descending tracts. The outer surface of the spinal cord +is surrounded by the pia mater. Blood vessels of the pia mater, the ventral +fissure ( _VF_ ), and some dorsal roots of the spinal nerves are visible in the +section. ×5. + + +**Gray matter** contains neuronal cell bodies and their dendrites, along +with axons and central neuroglia (Plate 12.5, page 440). Functionally related +groups of nerve cell bodies in the gray matter are called **nuclei** . In this +context, the term _nucleus_ means a cluster or group of neuronal cell bodies +plus fibers and neuroglia. Nuclei of the CNS are the morphologic and +functional equivalents of the ganglia of the PNS. Synapses occur only in the +gray matter. + + +**The cell bodies of motor neurons that innervate striated muscle are** +**located in the ventral (anterior) horn of the gray matter.** + + +**Ventral motor neurons**, also called **anterior horn cells**, are large +basophilic cells easily recognized in routine histologic preparations (see Fig. +12.34 and Plate 12.5, page 440). Because the motor neuron conducts +impulses away from the CNS, it is an efferent neuron. + +The axon of a motor neuron leaves the spinal cord, passes through the +ventral (anterior) root, becomes a component of the spinal nerve of that +segment, and, as such, is conveyed to the muscle. The axon is myelinated, +except at its origin and termination. Near the muscle cell, the axon divides +into numerous terminal branches that form neuromuscular junctions with the +muscle cell (see page 357). + + +**The cell bodies of sensory neurons are located in ganglia that lie on** +**the dorsal root of the spinal nerve.** + + +Sensory neurons in the dorsal root ganglia are pseudounipolar (Plate 12.1, +page 432). They have a single process that divides into a peripheral segment +that brings information from the periphery to the cell body and a central +segment that carries information from the cell body into the gray matter of +the spinal cord. Because the sensory neuron conducts impulses to the CNS, +it is an _afferent neuron_ . Impulses are generated in the terminal receptor +arborization of the peripheral segment. + +### **Connective Tissue of the Central Nervous System** + + +Three sequential connective tissue membranes, the **meninges**, cover the +brain and spinal cord. + + +The **dura mater** is the outermost layer. +The **arachnoid** layer lies beneath the dura. +The **pia mater** is a delicate layer resting directly on the surface of the +brain and spinal cord. + + +Meninges develop from a single layer of mesenchyme surrounding the +developing brain. This layer, called the **primary meninx**, is the primordium +for the developing meninges, bones of the skull, and dermal layer of the +skin. The primary meninx further differentiates into an outer dense layer +(that gives rise to the dermal layer of the skin and bones of the skull) and an +inner reticular layer, which is considered the **meningeal mesenchyme** . +This layer is separated into the **pachymeninx** (which develops into the dura +mater) and **leptomeninx** (which develops into the arachnoid and pia mater). +The pachymeninx contains longitudinally arranged fibroblasts that produce +collagen fibers, whereas the leptomeninx represents a meshwork of loosely +organized leptomeningeal cells. The cavitation of the leptomeninx generates +arachnoid trabeculae and the subarachnoid space. In adults, the pia mater +represents the visceral portion, and the arachnoid represents the parietal +portion of the leptomeninx. The common origin of both meninges is evident +in adults in which numerous delicate arachnoid trabeculae composed of +leptomeningeal cells and fine collagen bundles pass between the pia mater +and the arachnoid. + + +**The dura mater is a relatively thick sheet of dense irregular** +**connective tissue.** + + +In the cranial cavity, the thick layer of connective tissue that attaches to the +inner surface of the skull forms the **dura mater** _[L. tough mother]_ . It +consists of two layers: + + +The **periosteal (outer) layer** that serves as the periosteum of the internal +surface of the skull bones +The **meningeal (inner) layer** that is fused to the periosteal layer in most +regions + + +These two layers are separated only at the sites of **venous (dural)** +**sinuses**, which are lined by endothelium. Venous (dural) sinuses serve as +the principal channels for blood returning from the brain; they receive blood +from the cerebral veins and carry it to the internal jugular veins. + + +Sheet-like extensions of the inner (meningeal) layer of the dura mater +are called **dural reflections** . They form partitions between parts of the +brain, supporting those parts within the cranial cavity and carrying the +arachnoid to deeper parts of the brain. For example, the **falx cerebri** +separates the two cerebral hemispheres along the midline, and the +**tentorium cerebelli** separates the cerebral hemispheres posteriorly from +the cerebellum. + + +In the spinal canal, the periosteal layer becomes the periosteum of the +vertebrae and is separated from the inner meningeal layer by the epidural +space, which contains adipose tissue and venous plexuses. The meningeal +layer of the dura mater forms a separate tube surrounding the spinal cord +(see Fig. 12.33). + + +**The arachnoid is a delicate sheet of connective tissue adjacent to** +**the inner surface of the dura.** + + +The **arachnoid** forms a water-proof layer that abuts the inner surface of the +dura and extends delicate **arachnoid trabeculae** to the pia mater on the +surface of the brain and spinal cord. The web-like trabeculae of the +arachnoid give this tissue its name _[Gr. arachne—resembling a spider’s_ +_web]_ . Trabeculae are composed of loose connective tissue fibers containing +elongated fibroblasts. The space bridged by these trabeculae is the +**subarachnoid space** ; it contains the **cerebrospinal fluid** (Fig. 12.35). In +some areas, the arachnoid mater protrudes through the meningeal layer of +the dura mater into the dural venous sinuses. These areas, called **arachnoid** +**granulations**, are involved in the transport of CSF from the subarachnoid +space into the venous sinuses (see Fig. 12.35). + + +**FIGURE 12.35.** **Schematic diagram of the layers of the scalp and** +**cerebral meninges.** This diagram of the frontal section of the top of the +head shows the layers of the scalp, organization of the parietal bones of the +skull, and arrangement of meninges and blood vessels within the cranial +cavity. The five layers of the scalp can be remembered with the mnemonic +SCALP: (1) Skin; (2) Connective tissue (dense irregular) located below the +skin with an embedded subcutaneous layer of the vascular network; (3) +Aponeurosis, which represents a flat tendon (dense regular connective +tissue) for the attachment of occipital and frontalis muscles; (4) Loose +connective tissue network of collagen, elastic, and reticular fibers; and (5) +Pericranium, which represents the periosteum on the outer surface of the +bone. Below the scalp, the section through the parietal bone reveals a middle +spongy bone layer called _diploë_ located between the inner and outer plates +of compact bone. Diploic veins in the diploë connect dural sinuses with the +extracranial venous systems through emissary veins. Within the cranial +cavity, the superficial, outer layer of the dura mater, called the _periosteal_ +_layer_, is firmly attached to bone and serves as a periosteum (darker color). +Note the branches of meningeal arteries with accompanying veins located +between the periosteal layer of the dura mater and bone. The deeper, inner +layer of the dura mater is called the _meningeal layer_ ( _lighter color_ ). In most +regions of the cranial cavity, both layers of dura mater are fused, except at +the sites of venous (dural) sinuses; here, the layers are separated from each +other by a vascular space lined by endothelium. In a few regions of the +cranial cavity, fused meningeal layers of the dura mater project away from +the bone to form dural infoldings (reflections) that separate the different + + +regions of the brain. Note the falx cerebri, the largest dural infolding that +separates the right and left cerebral hemispheres. Deep to the dura mater is +the arachnoid. It is adjacent, but not attached, to the dura mater. The +arachnoid sends numerous web-like arachnoid trabeculae to the pia mater +that adheres to the brain surface and follows all its contours. The +subarachnoid space is located between the arachnoid and the pia mater; it +contains cerebrospinal fluid. The space also contains the larger blood +vessels (cerebral arteries and veins) that send branches into and receive +tributaries from the brain. Note that in some areas called _arachnoid_ +_granulations_, the arachnoid mater protrudes through the meningeal layer of +the dura mater into the dural venous sinuses. Arachnoid granulations are +involved in the transport of cerebrospinal fluid from the subarachnoid space +into venous sinuses. + + +**The pia mater lies directly on the surface of the brain and spinal** +**cord.** + + +The **pia mater** _[L. tender mother]_ is also a delicate connective tissue layer. +It lies directly on the surface of the brain and spinal cord and is continuous +with the perivascular connective tissue sheath of the blood vessels of the +brain and spinal cord. Both surfaces of the arachnoid, the inner surface of +the pia mater, and the trabeculae are covered with a thin squamous epithelial +layer. Both the arachnoid and the pia mater fuse around the opening for the +cranial and spinal nerves as they exit the dura mater. + +### **Blood–Brain Barrier** + + +**The blood–brain barrier protects the CNS from fluctuating levels of** +**electrolytes, hormones, and tissue metabolites circulating in the** +**blood vessels.** + + +The observation more than 100 years ago that vital dyes injected into the +bloodstream can penetrate and stain nearly all organs, except the brain, +provided the first description of the **blood–brain barrier** . More recently, +advances in microscopy and molecular biology techniques have revealed the +precise location of this unique barrier and the role of brain endothelial cells +in transporting essential substances to the brain tissue. + +The blood–brain barrier maintains the optimal microenvironment in the +CNS for proper brain function. In essence, it separates the brain tissue from +circulating blood. The major functions of the blood–brain barrier are to: + + +protect the brain from potential blood-borne toxins, +meet the metabolic demands of the brain tissue, and +regulate the homeostatic microenvironment in the CNS. + + +**The blood–brain barrier resides in the single layer of uninterrupted** +**vascular endothelial cells lining continuous capillaries in the CNS.** + + +The blood–brain barrier develops early in the embryo through an interaction +between glial astrocytes and capillary endothelial cells. The barrier is +created largely by the elaborate **tight junctions** between the **endothelial** +**cells**, which form continuous-type capillaries. Studies with the TEM using +electron-opaque tracers show complex tight junctions between the +endothelial cells. Morphologically, these junctions more closely resemble +epithelial tight junctions than tight junctions present between other +endothelial cells. In addition, TEM studies reveal a close association of +astrocytes and their end-foot processes with the **endothelial basal lamina** +(Fig. 12.36). The tight junctions eliminate gaps between endothelial cells +and prevent simple diffusion of solutes and fluid into the neural tissue. +Evidence suggests that the integrity of blood–brain barrier tight junctions +depends on the normal functioning of the associated **astrocytes;** however, +the astrocytes themselves and their end-foot processes do not significantly +contribute to the physical barrier. Several brain diseases are +characterized by a breakdown in the **blood–brain barrier** . +Examination of brain tissue in these conditions with the TEM reveals +loss of tight junctions as well as alterations in the morphology of +astrocytes. Other experimental evidence has revealed that astrocytes +release soluble factors that increase barrier properties and tight +junction protein content. + + +**FIGURE 12.36.** **Schematic drawing of the blood–brain barrier.** This +drawing shows the blood–brain barrier, which consists of endothelial cells +joined together by elaborate, complex tight junctions, endothelial basal +lamina, and the end-foot processes of astrocytes. + + +**The blood–brain barrier restricts passage of certain ions and** +**substances from the bloodstream to tissues of the CNS.** + + +The presence of only a few small vesicles indicates that pinocytosis across +the brain endothelial cells is severely restricted. Substances with a molecular +weight **greater than 500 Da** generally cannot cross the blood–brain barrier. +However, some molecules leave and enter the blood capillaries through +endothelial cells. For instance, O 2, CO 2, and certain lipid-soluble molecules +(e.g., ethanol and steroid hormones) easily penetrate the endothelial cells +and pass freely between the blood and extracellular fluid of the CNS. Owing +to the high K [+] permeability of the neuronal membrane, neurons are + + +particularly sensitive to changes in the concentration of extracellular K [+] . As +previously discussed, astrocytes are responsible for buffering the +concentration of K [+] in the brain extracellular fluid (see pages 411-412). +They are assisted by endothelial cells of the blood–brain barrier that +effectively limit the movement of K [+] into the extracellular fluid of the CNS. + + +**Substances that do cross the brain capillary wall are actively** +**transported by influx and efflux transporters.** + + +Many molecules that are required for neuronal integrity leave and enter the +blood capillaries through endothelial cells. Brain endothelial cells use highly +polarized transmembrane transporters to regulate the influx of nutrients and +efflux of metabolic waste and toxins between the blood and the extracellular +fluid of the CNS. The major class of known **efflux transporters** is the +**ATP-binding cassette (ABC)** transporters. These efflux transporters +utilize ATP to transport molecules into the blood against their concentration +gradients. Brain endothelial cells also express specialized **influx** +**transporters** that facilitate the transport of nutrients such as glucose (which +neurons depend on almost exclusively for energy), ions, amino acids, +nucleotides, vitamins, and proteins from the blood to the extracellular fluid +of the CNS. Many of these transporters belong to the superfamily **solute** +**carrier proteins (SLCs)**, which include glucose transporters (GLUT1) and +cationic amino acid transporters (SLC7A1). The permeability of the blood– +brain barrier to these macromolecules is attributable to the level of +expression of specific transporters on the brain endothelial cell surface. + +Several other proteins that reside within the plasma membrane of +endothelial cells protect the brain by metabolizing certain molecules, such +as drugs and foreign proteins, thus preventing them from crossing the +barrier. The restrictive nature of the blood–brain barrier hinders the +delivery of therapeutics for many neurologic disorders. For example, +**L** **-dopa (levodopa)**, the precursor of the neuromediators dopamine +and noradrenaline, easily crosses the blood–brain barrier. However, +the **dopamine** formed from the decarboxylation of L -dopa in +endothelial cells cannot cross the barrier and is restricted from the +CNS. In this case, the blood–brain barrier regulates the concentration +of L -dopa in the brain. Clinically, this restriction explains why L -dopa +is administered for the treatment of **dopamine deficiency** (e.g., +Parkinson disease) rather than dopamine. + +Recent studies indicate that the end-feet of astrocytes also play an +important role in maintaining **water homeostasis** in brain tissue. **Water** +**channels** (aquaporin AQP4) are found in end-foot processes in which +water crosses the blood–brain barrier. In pathologic conditions, such as brain + + +edema, these channels play a key role in reestablishing osmotic equilibrium +in the brain. + + +**The midline structures bordering the third and fourth ventricles are** +**unique areas of the brain that are outside the blood–brain barrier.** + + +Some parts of the CNS, however, are not isolated from substances carried in +the bloodstream. The barrier is ineffective or absent in the sites located +along the third and fourth ventricles of the brain, which are collectively +called **circumventricular organs** . Circumventricular organs include the +pineal gland, median eminence, subfornical organ, area postrema, +subcommissural organ, organum vasculosum of the lamina terminalis, and +posterior lobe of the pituitary gland. These barrier-deficient areas are most +likely involved in the sampling of materials circulating in the blood that are +normally excluded by the blood–brain barrier and then conveying +information about these substances to the CNS. Circumventricular organs +are important in regulating body fluid homeostasis and controlling +neurosecretory activity of the nervous system. Some researchers describe +them as “windows of the brain” within the central neurohumoral system. + +### **RESPONSE OF NEURONS TO INJURY** + + +Neuronal injury induces a complex sequence of events termed **axonal** +**degeneration** and **neural regeneration** . Neurons, Schwann cells, +oligodendrocytes, macrophages, and microglia are involved in these +responses. In contrast to the PNS, in which injured axons rapidly regenerate, +axons severed in the CNS usually cannot regenerate. This striking difference +is most likely related to the inability of oligodendrocytes and microglia cells +to phagocytose myelin debris quickly and the restriction of large numbers of +migrating macrophages by the blood–brain barrier. Because myelin debris +contains several inhibitors of axon regeneration, its removal is essential to +the regeneration progress. + +### **Degeneration** + + +**The portion of a nerve fiber distal to a site of injury degenerates** +**because of interrupted axonal transport.** + + +Degeneration of an axon distal to a site of injury is called **anterograde** +**(Wallerian) degeneration** (Fig. 12.37a and b). The first sign of injury, +which occurs 8–24 hours after the axon is damaged, is axonal swelling. The +axon then disintegrates, and the components of the cytoskeleton, including +microtubules and neurofilaments, are disassembled, resulting in + + +fragmentation of the axon. Myelin is also destroyed. This process is known +as **granular disintegration of the axonal cytoskeleton** . In the PNS, loss +of axon contact induces several changes in myelinating Schwann cells. After +injury, Schwann cells lose their characteristic gene expression pattern and +undergo dedifferentiation and reprogramming into **repair Schwann cells** . +This reprogramming involves the activation of a set of repair-related +transcription factors and reexpression of molecules characteristic of +immature Schwann cells during their early stages of development. Schwann +cells undergoing reprogramming downregulate promyelin transcription +factors and expression of myelin-specific proteins (see pages 405-407). +Genes associated with epithelial-to-mesenchymal transition (EMT) are +upregulated, triggering myelin autophagy that breaks down the myelin +sheath enclosing the axon. At the same time, transformed repair Schwann +cells upregulate and secrete several **glial growth factors (GGFs)**, +members of a family of axon-associated neuregulins and potent stimulators +of axonal proliferation. Increased secretion of cytokines allows repair +Schwann cells to interact with immune cells and recruit **macrophages** to +the site of nerve injury. Under the influence of GGFs, repair Schwann cells +divide and arrange themselves in a line along their external laminae. +Because axonal processes distal to the site of injury have been removed by +phagocytosis, the linear arrangement of the repair Schwann cells’ external +laminae resembles a long tube with an empty lumen (Fig. 12.37b). In the +CNS, oligodendrocyte survival is dependent on signals from axons. In +contrast to Schwann cells, if oligodendrocytes lose contact with axons, they +respond by initiating apoptotic programmed cell death. + + +**FIGURE 12.37.** **Response of a nerve fiber to injury. a.** A normal nerve +fiber at the time of injury, with its nerve cell body and the effector cell (striated +skeletal muscle). Note the position of the neuron nucleus and the number +and distribution of Nissl bodies. **b.** When the fiber is injured, the neuronal +nucleus moves to the cell periphery, and the number of Nissl bodies is +greatly reduced. The nerve fiber distal to the injury degenerates along with its +myelin sheath. Schwann cells dedifferentiate into repair Schwann cell; myelin +debris is phagocytosed by macrophages. **c.** Proliferating repair Schwann +cells form cellular bands (of Büngner) that are penetrated by the growing +axonal sprout. The axon grows at a rate of 0.5–3 mm/d. Note that the muscle +fibers show a pronounced atrophy. **d.** If the growing axonal sprout reaches +the muscle fiber, the regeneration is successful and new neuromuscular +junctions are developed; thus, the function of skeletal muscle is restored. +**Inset.** A confocal immunofluorescent image showing reinnervated skeletal +muscle of the mouse. Regenerating motor axons are stained _green_ for +neurofilaments; reestablished connections with two neuromuscular junctions +are visualized in _pink_, which reflects specific staining for postsynaptic +acetylcholine receptors; repair Schwann cells are stained _blue_ for S100, +which represents a Schwann cell–specific calcium-binding protein. +Regenerating axons have extended along repair Schwann cells, which has +led them to the original synaptic sites of the muscle fibers. ×640. (Courtesy +of Dr. Young-Jin Son.) + + +**The most important cells in clearing myelin debris from the site of** +**nerve injury are monocyte-derived macrophages.** + + +In the PNS, even before the arrival of phagocytotic cells at the site of nerve +injury, **repair Schwann cells** initiate the removal of myelin debris. It is +estimated that during the first 5–7 days after nerve injury, about 50% of the +myelin is degraded by repair Schwann cells. The rest of myelin clearance is +performed by macrophages, which migrate to the site of injury and +phagocytose myelin debris. Several cytokines, such as interleukin-6 (IL-6), +leukemia inhibitory factor (LIF), and monocyte chemotactic protein 1 +(MCP-1), are secreted by repair Schwann cells. These cytokines activate +**resident macrophages** (normally present in small numbers in the +peripheral nerves) to migrate to the site of nerve injury, proliferate, and then +phagocytize remaining myelin debris. + +The efficient clearance of myelin debris in the PNS is attributed to the +massive recruitment of **monocyte-derived macrophages** that migrate +from blood vessels and infiltrate the vicinity of the nerve injury (Fig. 12.38). +When an axon is injured, the blood–nerve barrier (see pages 424-425) is +disrupted along the entire length of the injured axon, which allows for the +influx of these cells into the site of injury. The presence of large numbers of + + +monocyte-derived macrophages speeds up the process of myelin removal, +which, in peripheral nerves, is usually completed within 2 weeks. + + +**FIGURE 12.38.** **Schematic diagram of response to neuronal injury within** +**peripheral and central nervous systems.** Injuries of nerve processes +(axons and dendrites) in both the peripheral nervous system (PNS) and the +central nervous system (CNS) induce axonal degeneration and neural +regeneration. These processes involve not only neurons but also supportive +cells such as Schwann cells and oligodendrocytes as well as phagocytic +cells such as macrophages and microglia. Injuries to axons in the PNS lead +to their degeneration, which triggers the reprogramming and dedifferentiation +of Schwann cells into repair Schwan cells and disruption of the blood–nerve +barrier along the entire length of the injured axon. Repair Schwann cells play +a major part in the initial phase of myelin degradation and clearance. About +50% of the myelin is degraded during this phase. Dismantling of the blood– +nerve barrier allows massive infiltration of monocyte-derived macrophages, +which phagocytose myelin debris. Rapid clearance of myelin debris allows +for axon regeneration and subsequent restoration of the blood–nerve barrier. +In the CNS, limited disruption of the blood–brain barrier restricts infiltration of +monocyte-derived macrophages, dramatically slowing the process of myelin + + +removal. Myelin is primarily removed by reactive microglia and secondarily +by reactive astrocytes. In addition, apoptosis of oligodendrocytes, inefficient +phagocytic activity of microglia, and the formation of an astrocyte-derived +scar lead to failure of nerve regeneration in the CNS. + + +**In the CNS, inefficient clearance of myelin debris due to limited** +**access** **of** **monocyte-derived** **macrophages,** **the** **inefficient** +**phagocytic activity of microglia, and the formation of an astrocyte-** +**derived scar severely restricts nerve regeneration.** + + +A key difference in the **CNS response to axonal injury** relates to the fact +that the blood–brain barrier (see pages 424-425) is disrupted only at the site +of injury and not along the entire length of the injured axon (see Fig. 12.38). +This limits infiltration of monocyte-derived macrophages to the CNS and +dramatically slows the process of myelin removal, which can take months or +even years. Although the number of microglial cells increases at the sites of +CNS injury, these **reactive microglia cells** do not possess the full +phagocytotic capabilities of migrating macrophages. As discussed earlier +(see page 410), astrocytic phagocytosis also plays a role in nerve tissue +remodeling after brain injury. The inefficient **clearance of myelin debris** +is a major factor in the failure of nerve regeneration in the CNS. Another +factor that affects nerve regeneration is the formation of a **glial (astrocyte-** +**derived) scar** that fills the empty space left by degenerated axons. Scar +formation is discussed in Folder 12.3; cognitive impairments after COVID19 infection are discussed in Folder 12.4. + + +When a region of the central nervous system (CNS) is injured, +astrocytes near the lesion become activated. They divide and undergo +marked hypertrophy with a visible increase in the number of their +cytoplasmic processes. In time, the processes become densely packed +with **glial fibrillary acidic protein (GFAP) intermediate filaments** . +Eventually, scar tissue is formed. This process is referred to as **reactive** +**gliosis**, whereas the resulting permanent scar is most often called a +**plaque** . Reactive gliosis varies widely in duration, degree of +hyperplasia, and time course of expression of GFAP immunostaining. + +Several biological mechanisms for induction and maintenance of +reactive gliosis have been proposed. The type of glial cell that responds +during reactive gliosis depends on the brain structure that is damaged. +In addition, activation of the microglial cell population occurs almost + + +immediately after any kind of injury to the CNS. These reactive +microglial cells migrate toward the site of injury and exhibit marked +phagocytic activity. However, their phagocytic activity and ability to +remove myelin debris are much less than that of monocyte-derived +macrophages. Gliosis is a prominent feature of many diseases of the +CNS, including stroke, neurotoxic damage, genetic diseases, +inflammatory demyelination, and neurodegenerative disorders, such as +multiple sclerosis. Much of the research in CNS regeneration is focused +on preventing or inhibiting glial scar formation. + + +The **COVID-19** (coronavirus disease 2019) pandemic caused by severe +acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in +over 550 million documented COVID cases worldwide and 6.3 million +deaths (mid-2022 data). Individuals with COVID-19 experience +symptoms ranging from mild respiratory symptoms to severe multiorgan +illnesses. Recent studies indicate that in both humans and animal +models, even mild COVID infection can result in detrimental +**neuroinflammatory responses** . These are marked by elevation of +neurotoxic cytokines and chemokines such as IFN-γ, IL6, TNF-α, +CXCL10, CCL7, CCL2, CCL11, GMCSF, BAFF, and others that +characteristically react against **white matter microglial cells** . In a +mouse model of mild respiratory COVID-19 infection, researchers +discovered hippocampal changes that included a decreased number of +oligodendrocytes with subsequent myelin loss. These changes were +accompanied by elevated levels of cerebrospinal fluid (CSF) +chemokines, including **CCL11** (also known as _eosinophil chemotactic_ +_protein_ or _eotaxin-1_ ), which is associated with the cognitive impairments +seen in aging. Similarly, individuals that recovered from COVID-19 +experience persistent neurologic symptoms resembling **cancer** +**therapy–related cognitive impairment (CRCI)** . Certain drugs used +in chemotherapy treatment (e.g., methotrexate) activate a distinct +subpopulation of microglia that reside in white matter. Activated +(reactive) microglia impair the ongoing differentiation of myelin-forming +oligodendrocytes (loss of myelin), inhibit new neuron formation +(neurogenesis) in the hippocampus, and cause elevation of CCL11. The +cognitive impairments experienced by individuals with CRCI syndrome +are often referred to as “ **chemo fog** .” Recent studies indicate that +COVID-19 survivors experience similar neurologic symptoms called +“ **COVID fog**,” which represent post-COVID cognitive impairments. +These include **impaired attention, decreased concentration,** + + +**slowed information processing speed, memory problems**, as well +as other impairments of executive function. As a result of these +impairments, individuals who recovered from COVID-19 may present in +the clinic with increased rates of **anxiety, depression, disordered** +**sleep**, and **fatigue** . These symptoms of post–COVID-19 cognitive +impairments represent a major public health crisis preventing people +from returning to their previous level of occupational activity. + + +**Traumatic degeneration occurs in the proximal part of the injured** + +**nerve.** + + +Some retrograde degeneration also occurs in the proximal axon and is called +**traumatic degeneration** . This process appears to be histologically similar +to anterograde (Wallerian) degeneration. The extent of traumatic +degeneration depends on the severity of the injury and usually extends to +only one or a few internodal segments. Sometimes, traumatic degeneration +extends more proximally than one or a few nodes of Ranvier and may result +in death of the cell body. When a motor fiber is cut, the muscle innervated +by that fiber undergoes atrophy (Fig. 12.37c). + + +**Retrograde signaling to the cell body of an injured nerve causes a** +**change in gene expression that initiates reorganization of the** +**perinuclear cytoplasm.** + + +Axonal injury also initiates retrograde signaling to the nerve cell body, +leading to the upregulation of a gene called **c-jun** . C-jun transcription factor +is involved in the early as well as later stages of nerve regeneration. +Reorganization of the perinuclear cytoplasm and organelles starts within a +few days. The cell body of the injured nerve swells, and its nucleus moves +peripherally. Initially, Nissl bodies disappear from the center of the neuron +and move to the periphery of the neuron in a process called **chromatolysis** . +Chromatolysis is first observed within 1–2 days after injury and reaches a +peak at about 2 weeks (see Fig. 12.37b). The changes in the cell body are +proportional to the amount of axoplasm destroyed by the injury; extensive +loss of axoplasm can lead to the death of the cell. + +Before the development of modern dyes and radioisotope tracer +techniques, Wallerian degeneration and chromatolysis were used as +research tools. These tools allowed researchers to trace the +pathways and destination of axons and the localization of the cell +bodies of experimentally injured nerves. + +### **Regeneration** + + +**In the PNS, repair Schwann cells divide and develop cellular bands** +**that bridge a newly formed scar and direct growth of new nerve** + +**processes.** + + +As mentioned previously, at the site of the injury, cells are reprogrammed to +generate specialized **repair Schwann cells** to promote tissue repair. +Division of repair Schwann cells is the first step in the regeneration of a +severed or crushed peripheral nerve. Initially, these cells arrange themselves +in a series of cylinders called **endoneurial tubes** . Removal of myelin and +axonal debris inside the tubes eventually causes them to collapse. +Proliferating repair Schwann cells elongate, extending long, parallel +processes, and organize themselves into cellular bands resembling +longitudinal columns called regeneration tracks or **bands of Büngner** (Fig. +12.39). These cellular bands guide the growth of new nerve processes +( **neurites** or **sprouts** ) of regenerating axons. Once the bands are in place, +large numbers of sprouts begin to grow from the proximal stump (see Fig. +12.37c). A **growth cone** develops in the distal portion of each sprout that +consists of filopodia rich in actin filaments. The tips of the filopodia +establish a direction for the advancement of the growth cone. They +preferentially interact with proteins of the extracellular matrix such as +fibronectin and laminin found within the external lamina of the repair +Schwann cell. Thus, if a sprout associates itself with a band of Büngner, it +regenerates between the layers of external lamina of the repair Schwann +cell. This sprout will grow along the band at a rate of about **3 mm/day** . +Although many new sprouts do not make contact with cellular bands and +degenerate, their large number increases the probability of reestablishing +sensory and motor connections. After crossing the site of injury, sprouts +enter the surviving cellular bands in the distal stump. These bands then +guide the neurites to their destination as well as provide a suitable +microenvironment for continued growth (Fig. 12.37d). Axonal regeneration +leads to Schwann cell redifferentiation, which occurs in a proximal-to-distal +direction. In addition, redifferentiated Schwann cells upregulate genes for +myelin-specific proteins and downregulate **c-Jun transcription factor**, +which is central to the reprogramming of myelinating and nonmyelinating +Remak Schwann cells to repair Schwann cells after injury. + + +**FIGURE 12.39.** **Electron micrograph of a distal stump of regenerating** +**nerve.** This image shows a cross section through the distal stump of the +mouse tibial nerve 4 weeks after transection. A repair Schwan cell with a +large nucleus and a thin rim of cytoplasm is enclosed by the basal (external) +lamina ( _BL_ ). Several cross sections of Büngner bands ( _BB_ ) are embedded in +the endoneurial connective tissue ( _eCT_ ). They contain elongated parts of +repair Schwann cells and their parallel processes. Note that every band and +their components are also surrounded by the basal laminae. The cell in the +_right upper corner_ represents connective tissue cell (lack of basal lamina), +and it may represent part of fibroblast or macrophage. × 65,000. (Courtesy of +Dr. Kristjan R. Jessen, University College London, London, UK). + + +**If physical contact is reestablished between a motor neuron and its** +**muscle, function is usually reestablished.** + + +Microsurgical techniques that rapidly reestablish intimate apposition of +severed nerve and vessel ends have made reattachment of severed limbs and +digits, with subsequent reestablishment of function, a relatively common +procedure. If the axonal sprouts do not reestablish contact with the +appropriate Schwann cells, then the sprouts grow in a disorganized + + +manner, resulting in a mass of tangled axonal processes known as a +**traumatic neuroma** or **amputation neuroma** . Clinically, a traumatic +neuroma usually appears as a freely movable nodule at the site of +nerve injury and is characterized by pain, particularly on palpation. +Formation of a traumatic neuroma of the injured motor nerve +prevents reinnervation of the affected muscle. + +## NERVE TISSUE + + +**OVERVIEW OF THE NERVOUS SYSTEM** + + +The **nervous system** enables the body to respond to changes in its +external environment and controls the functions of internal organs and +systems. +Anatomically, the nervous system is divided into the **central nervous** +**system** (CNS; (brain and spinal cord) and the **peripheral nervous** +**system** (PNS; peripheral and cranial nerves and ganglia). +Functionally, the nervous system is divided into the **somatic nervous** +**system** (SNS; under conscious voluntary control) and the **autonomic** +**nervous system** (ANS; under involuntary control). +The ANS is further subdivided into **sympathetic**, **parasympathetic**, +and **enteric divisions** . The enteric division serves the alimentary +canal and regulates the function of internal organs by innervating +smooth and cardiac muscle cells as well as glandular epithelium. + + +**SUPPORTING CELLS OF THE NERVOUS SYSTEM:** + +**NEUROGLIA** + + +**Peripheral neuroglia** includes Schwann cells and satellite cells. +In **myelinated** nerves, **Schwann cells** produce the **myelin sheath** +from compacted layers of their own cell membranes that are wrapped +concentrically around the nerve cell process. +The junction between two adjacent Schwann cells, the **node of** +**Ranvier**, is the site where the electrical impulse is regenerated for + + +high-speed propagation along the axon. +In **unmyelinated** nerves, nerve processes are enveloped in the +cytoplasm of **Remak Schwann cells** . +**Satellite cells** maintain a controlled microenvironment around the + +nerve cell bodies in ganglia of the PNS. +There are four types of **central neuroglia** : **astrocytes** (provide +physical and metabolic support for neurons of the CNS), +**oligodendrocytes** (produce and maintain the myelin sheath in the +CNS), **microglia** (possess phagocytotic properties and mediate +neuroimmune reactions), and **ependymal cells** (form the epitheliallike lining of the ventricles of the brain and spinal canal). + + +**NEURONS** + + +**Nerve tissue** consists of two principal types of cells: **neurons** +(specialized cells that conduct impulses) and **supporting cells** +(nonconducting cells in close proximity to nerve cells and their +processes). +The neuron is the structural and functional unit of the nervous system. +**Neurons** do not divide; however, in certain regions of the brain, +**neural stem cells** may divide and differentiate into new neurons. +Neurons are grouped into three categories: **sensory neurons** (carry +impulses from receptors to the CNS), **motor neurons** (carry impulses +from the CNS or ganglia to effector cells), and **interneurons** +(communicate between sensory and motor neurons). +Each neuron consists of a **cell body** or **perikaryon** (contains the +nucleus, Nissl bodies, and other organelles), an **axon** (usually the +longest process of the cell body; transmits impulses away from the cell +body), and several **dendrites** (shorter processes that transmit impulses +toward the cell body). +Neurons communicate with other neurons and with effector cells by +specialized junctions called **synapses** . +**Chemical synapses** are the most common type of synapse. Each has +a **presynaptic** **element** containing vesicles filled with +neurotransmitter, a **synaptic cleft** into which neurotransmitter is +released from the presynaptic vesicles, and a **postsynaptic** +**membrane** containing receptors to which the neurotransmitter binds. +**Electrical synapses** are less common and are represented by **gap** +**junctions** . +The chemical structure of a **neurotransmitter** determines either an +**excitatory** (e.g., acetylcholine, glutamine) or **inhibitory** (e.g., GABA, +glycine) response from the postsynaptic membrane. + + +**ORIGIN OF NERVE TISSUE CELLS** + + +CNS neurons and central glia (except microglial cells) are derived from +neuroectodermal cells of the **neural tube** . Microglial cells represent +population of resident macrophages derived from erythro-myeloid +progenitor cells in the **yolk sac** . +PNS ganglion cells and peripheral glia are derived from the **neural** +**crest** . + + +**ORGANIZATION OF THE PERIPHERAL NERVOUS** + +**SYSTEM** + + +The PNS consists of **peripheral nerves** with specialized nerve +endings (synapses) and **ganglia** -containing nerve cell bodies. +**Motor neuron cell bodies** of the PNS lie in the CNS, and **sensory** +**neuron cell bodies** are located in the dorsal root ganglia. +Individual nerve fibers are held together by connective tissue organized +into **endoneurium** (surrounds each individual nerve fiber and +associated Schwann cell), **perineurium** (surrounds each nerve +fascicle), and **epineurium** (surrounds a peripheral nerve and fills the +spaces between nerve fascicles). +**Perineurial cells** are connected by tight junctions and contribute to +the formation of the **blood–nerve barrier** . + + +**ORGANIZATION OF THE CENTRAL NERVOUS SYSTEM** + + +The CNS consists of the **brain** and **spinal cord** . It is protected by the +skull and vertebrae and is surrounded by three connective tissue +membranes called **meninges** ( **dura matter**, **arachnoid**, and **pia** +**matter** ). +The **cerebrospinal fluid (CSF)** produced by the choroid plexus in the +brain ventricles occupies the **subarachnoid space** located between +arachnoid and pia matter. CSF surrounds and protects the CNS within +the cranial cavity and the vertebral column. +In the brain, the **gray matter** forms an outer layer of the cerebral +cortex, whereas the **white matter** forms the inner core that is +composed of axons, associated glial cells, and blood vessels. + + +In the **spinal cord**, gray matter exhibits a butterfly-shaped inner +substance, whereas the white matter occupies the periphery. +The **cerebral cortex** contains nerve cell bodies, axons, dendrites, and +central glial cells. +The **blood–brain barrier** protects the CNS from fluctuating levels of +electrolytes, hormones, and tissue metabolites circulating in the blood. + + +**ORGANIZATION OF THE AUTONOMIC NERVOUS** + +**SYSTEM** + + +The **ANS** controls and regulates the body’s internal environment. Its +neural pathways are organized in a chain of two neurons ( **presynaptic** +and **postsynaptic neurons** ) that convey impulses from the CNS to +the visceral effectors. + +The ANS is subdivided into sympathetic, parasympathetic, and enteric +divisions. + +**Presynaptic neurons** of the **sympathetic division** are located in the +thoracolumbar portion of the spinal cord, whereas the **presynaptic** +**neurons** of the **parasympathetic division** are located in the +brainstem and sacral spinal cord. +The **enteric division** of the ANS consists of ganglia and their +processes that innervate the alimentary canal. + + +**RESPONSE OF NEURONS TO INJURY** + + +Injured axons in the PNS usually regenerate, whereas axons severed in +the CNS do not regenerate. This difference is related to the inability of +microglial cells and astrocytes to efficiently phagocytose myelin debris. +In the PNS, neuronal injury initially induces complete degeneration of +an axon distal to the site of injury ( **Wallerian degeneration** ). +**Traumatic degeneration** occurs in the proximal part of the injured +nerve, followed by **neural regeneration**, in which repair Schwann +cells divide and develop cellular bands that guide the growing axonal +sprouts to the effector site. + +#### **PLATE 12.1 SYMPATHETIC AND DORSAL ROOT** **GANGLIA** + + +##### Sympathetic ganglion, human, silver and +###### hematoxylin and eosin (H&E) stains ×160. + +This micrograph shows a sympathetic ganglion stained with +silver and counterstained with H&E is illustrated here. Shown to +advantage are several discrete bundles of nerve fibers ( _NF_ ) and +numerous large circular structures, namely, the cell bodies ( _CB_ ) of +the postsynaptic neurons. Random patterns of nerve fibers are also +seen. Moreover, careful examination of the cell bodies shows that some display +several processes joined to them. Thus, these are multipolar neurons (one contained +within the _rectangle_ is shown at higher magnification). Generally, the connective +tissue is not conspicuous in a silver preparation, although it can be identified by +virtue of its location around the larger blood vessels ( _BV_ ), particularly in the _upper_ +_part_ of this figure. + +##### Sympathetic ganglion, human, silver and H&E +###### stains ×500. + + +The cell bodies of the sympathetic ganglion are typically large, +and the one labeled here shows several processes ( _P_ ). In addition, +the cell body contains a large, pale-staining spherical nucleus ( _N_ ); +this, in turn, contains a spherical, intensely staining nucleolus +( _NL_ ). These features, namely, a large pale-staining nucleus +(indicating much-extended chromatin) and a large nucleolus, reflect a cell active in + + +protein synthesis. Also shown in the cell body are accumulations of lipofuscin ( _L_ ), a +yellow pigment that is darkened by silver. Because of the large size of the cell body, +the nucleus is not always included in the section; in that case, the cell body appears +as a rounded cytoplasmic mass. + +##### Dorsal root ganglion, cat, H&E ×160. + + +Dorsal root ganglia differ from autonomic ganglia in a number +of ways. Whereas the latter contain multipolar neurons and have +synaptic connections, dorsal root ganglia contain pseudounipolar +sensory neurons and have no synaptic connections in the ganglion. + + +Part of a dorsal root ganglion stained with H&E is shown in +this figure. The specimen includes the edge of the ganglion, where +it is covered with connective tissue ( _CT_ ). The dorsal root ganglion contains large cell +bodies ( _CB_ ) that are typically arranged as closely packed clusters. Also, between and +around the cell clusters, there are bundles of nerve fibers ( _NF_ ). Most of the fiber +bundles indicated by the label have been sectioned longitudinally. + +##### Dorsal root ganglion, cat, H&E ×350. + + +At higher magnification of the same ganglion, the constituents +of the nerve fiber show their characteristic structure, namely, a +centrally located axon ( _A_ ) surrounded by an empty space after +myelin was washed out during slide preparation (not labeled), +which, in turn, is bounded on its outer border by the thin +cytoplasmic strand of the neurilemma ( _arrowheads_ ). + +The cell bodies of the sensory neurons display large, pale-staining spherical +nuclei ( _N_ ) and intensely staining nucleoli ( _NL_ ). Also seen in this H&E preparation +are the nuclei of satellite cells ( _Sat C_ ) that completely surround the cell body and are +continuous with the Schwann cells that invest the axon. Note how much smaller + +these cells are compared with the neurons. Clusters of cells ( _asterisks_ ) within the +ganglion that have an epithelioid appearance are en-face views of satellite cells +where the section tangentially includes the satellite cells but barely grazes the +adjacent cell body. + + +**A,** axon +**BV,** blood vessels +**CB,** cell body of neuron +**CT,** connective tissue +**L,** lipofuscin +**N,** nucleus of nerve cell + + +**NF,** nerve fibers +**NL,** nucleolus +**P,** processes of nerve cell body +**Sat C,** satellite cells +**arrowheads,** neurilemma +**asterisks,** clusters of satellite cells + + +#### **PLATE 12.2 PERIPHERAL NERVE** + + +##### Peripheral nerve, cross section, femoral nerve, +###### hematoxylin and eosin (H&E) ×200 and ×640. + +This cross section shows several bundles of nerve fibers +( _BNF_ ). The external cover for the entire nerve is the **epineurium** +( _Epn_ ), the layer of dense connective tissue that one touches when +a nerve has been exposed during a dissection. The epineurium may +also serve as part of the outermost cover of individual bundles. It +contains blood vessels ( _BV_ ) and may contain some fat cells. Typically, adipose tissue +( _AT_ ) surrounds the nerve. + + +The figure on the _right_ shows, at higher magnification, the perineurial septum +(marked with _arrows_ on the _left_ image, which is now rotated and vertically +disposed). + + +The layer beneath the epineurium that directly surrounds the bundle of nerve +fibers is the **perineurium** ( _Pn_ ). As seen in the cross section through the nerve, the +nuclei of the perineurial cells appear flat and elongated; they are actually being +viewed on edge and belong to flat cells that are also being viewed on edge. Again, as +noted by the distribution of nuclei, it can be ascertained that the perineurium is only +a few cells thick. The perineurium is a specialized layer of cells and extracellular +material whose arrangement is not evident in H&E sections. The perineurium ( _Pn_ ) +and epineurium ( _Epn_ ) are readily distinguished in the _triangular area_ formed by the +diverging perineurium of the two adjacent nerve bundles. + +The nerve fibers included in the figure on the _right_ are mostly myelinated, and +because the nerve is cross-sectioned, the nerve fibers are also seen in this plane. +They have a characteristic cross-sectional profile. Each nerve fiber shows a centrally +placed axon ( _A)_ ; this is surrounded by a myelin space ( _M_ ) in which some radially +disposed precipitate may be retained, as in this specimen. External to the myelin +space is a thin cytoplasmic rim representing the **neurilemma** . On occasion, a +Schwann cell’s nucleus ( _SS_ ) appears to be perched on the neurilemma. The _upper_ + + +edge of the nuclear crescent appears to occupy the same plane as that occupied by +the neurilemma ( _NI_ ). These features enable one to identify the nucleus as belonging +to a Schwann (neurilemma) cell. Other nuclei are not related to the neurilemma but, +rather, appear to be located between the nerve fibers. Such nuclei belong to the rare +fibroblasts ( _F_ ) of the endoneurium. The latter is the delicate connective tissue +between the individual nerve fibers; it is extremely sparse and contains the +capillaries ( _C_ ) of the nerve bundle. + +##### Peripheral nerve, longitudinal section, femoral +###### nerve, H&E ×200 and ×640. + + +The edge of a longitudinally sectioned nerve bundle is shown +on the _left_ ; a portion of the same nerve bundle is shown at higher +magnification on the _right_ . The boundary between the epineurium +( _Epn_ ) and perineurium is ill-defined. Within the nerve bundle, the +nerve fibers show a characteristic wavy pattern. Included among +the wavy nerve fibers are nuclei belonging to **Schwann cells** and cells within the +endoneurium. Higher magnification allows one to identify certain specific +components of the nerve. Note that the nerve fibers ( _NF_ ) are now shown in +longitudinal profile. Moreover, each myelinated nerve fiber shows a centrally +positioned axon ( _A_ ) surrounded by a myelin space ( _M_ ), which, in turn, is bordered on +its outer edge by the thin cytoplasmic band of the neurilemma ( _NI_ ). Another +diagnostic feature of myelinated nerve fibers is also seen in longitudinal section, +namely, the **node of Ranvier** ( _NR_ ). This is the site at which the ends of the two +Schwann cells meet. Histologically, the node appears as a constriction of the +neurilemma, and sometimes, the constriction is marked by a cross-band, as in the +figure on the _right_ . It is difficult to determine whether the nuclei ( _N_ ) shown here +belong to Schwann cells or endoneurial fibroblasts. + + +**A,** axon +**AT,** adipose tissue +**BNF,** bundle of nerve fibers +**BV,** blood vessels +**C,** capillary +**Epn,** epineurium +**F,** fibroblast +**M,** myelin +**N,** nucleus of Schwann cell +**NF,** nerve fiber +**Nl,** neurilemma +**NR,** node of Ranvier + + +**Pn,** perineurium +**SS,** Schwann cell nucleus +**arrows,** septum formed by perineurium + + +##### Cerebral cortex, brain, human, Luxol fast blue— +###### (Periodic acid–Schiff) PAS ×65. + +This micrograph shows a low-magnification view of the +cerebral cortex ( _CC_ ). It includes the full thickness of the gray +matter and a small amount of white matter at the bottom of the + +micrograph ( _WM_ ). The white matter contains considerably fewer +cells per unit area; these are neuroglial cells rather than nerve cell +bodies that are present in the cortex. Covering the cortex is the pia mater ( _PM_ ). A +vein ( _V_ ) can be seen enclosed by the pia mater. Also, a smaller blood vessel ( _BV_ ) can +be seen entering the substance of the cortex. The six layers of the cortex are marked +by _dashed lines_, which represent only an approximation of the boundaries. Each +layer is distinguished on the basis of predominant cell types and fiber (axon and +dendrite) arrangement. Unless the fibers are specifically stained, they cannot be +utilized to further aid in the identification of the layers. Rather, the delineation of the +layers, as they are identified here, is based on cell types and more specifically, the +shape and appearance of the cells. + + +The six layers of the cortex are named and described as follows: + + +I. The **plexiform layer** (or molecular layer) consists largely of fibers, most of + +which travel parallel to the surface, and relatively few cells, mostly neuroglial +cells and occasional horizontal cells of Cajal. +II. The **small pyramidal cell layer** (or outer granular layer) consists mainly of + +small pyramidal cells and granule cells, also called _stellate cells_ . +III. The **layer of medium pyramidal cells** (or layer of outer pyramidal cells) + +is not sharply demarcated from layer II. However, the pyramidal cells are +somewhat larger and possess a typical pyramidal shape. +IV. The **granular layer** (or inner granular layer) is characterized by the presence + +of many small granule cells (stellate cells). +V. The **layer of large pyramidal cells** (or inner layer of pyramidal cells) + +contains pyramidal cells that, in many parts of the cerebrum, are smaller than + + +the pyramidal cells of layer III but, in the motor area, are extremely large and +are called _Betz cells_ . +VI. The **layer of polymorphic cells** contains cells with diverse shapes, many + +of which have a spindle of fusiform shape. These cells are called _fusiform cells_ . + + +In addition to pyramidal cells, granule cells, and fusiform cells, two other cell +types are also present in the cerebral cortex but are not recognizable in this +preparation: the horizontal cells of Cajal, which are present only in layer I and send +their processes laterally, and the cells of Martinotti, which send their axons toward +the surface (opposite to that of pyramidal cells). + +##### Layer I of cerebral cortex, brain, human, Luxol +###### fast blue—PAS ×350. + + +This higher power micrograph shows layer I, the **plexiform** +**layer** . It consists of nerve fibers, numerous neuroglial cells ( _NN_ ), +and occasional horizontal cells of Cajal. The neuroglial cells +appear as naked nuclei, with the cytoplasm being indistinguishable +from the nerve fibers that make up the bulk of this layer. Also +present is a small capillary ( _Cap_ ). The _pink_ outline of the vessel is due to the PASstaining reaction of its basement membrane. + +##### Layer II of cerebral cortex, brain, human, Luxol +###### fast blue—PAS ×350. + + +This micrograph shows layer II, the **small pyramidal cell** +**layer** . Many small pyramidal cells ( _PC_ ) are present. Granule cells +( _GC_ ) are also numerous, although difficult to identify here. + +##### Layer IV of cerebral cortex, brain, human, Luxol +###### fast blue—PAS ×350. + + +This micrograph shows layer IV, the **granular layer** . Many +of the cells here are granule cells, but neuroglial cells are also +prominent. The micrograph also reveals a number of capillaries. +Note how they travel in various directions. + + +##### Layer VI of cerebral cortex, brain, human, Luxol +###### fast blue—PAS ×350. + +This micrograph shows layer VI, the **layer of polymorphic** +**cells**, so named because of the diverse shape of the cells in this +region. Pyramidal cells ( _PC_ ) are readily recognized. Other cell +types present include fusiform cells ( _FC_ ), granule cells, and +Martinotti cells. + +##### White matter, brain, human, Luxol fast blue—PAS + +###### ×350. + + +This micrograph shows the outer portion of the **white** +**matter** . The small round nuclei ( _NN_ ) belong to neuroglial cells. +As in the cortex, the cytoplasm of the cell is not distinguishable. +Thus, they appear as naked nuclei in the bed of nerve processes. +The neuropil is essentially a densely packed aggregation of nerve +fibers and neuroglial cells. + + +**BV,** blood vessel +**Cap,** capillary +**CC,** cerebral cortex +**FC,** fusiform cells +**GC,** granule cells +**NN,** neuroglial nuclei +**PC,** pyramidal cells +**PM,** pia mater +**V,** vein +**WM,** white matter + + +#### **PLATE 12.4 CEREBELLUM** + + +##### Cerebellum, brain, human, hematoxylin and eosin +###### (H&E) ×40. + +The **cerebellar cortex** has the same appearance regardless +of which region is examined. In this low-magnification view of the +cerebellum, the outermost layer, the **molecular layer** ( _Mol_ ), is +lightly stained with eosin. Beneath this layer is the **granule cell** +**layer** ( _Gr_ ), which stains intensely with hematoxylin. Together, +these two layers constitute the cortex of the cerebellum. Deep in the granule cell +layer is another region that stains lightly with H&E and, except for location, shows +no distinctive histologic features. This is the white matter ( _WM_ ). As in the cerebrum, +it contains nerve fibers, supporting neuroglial cells, and small blood vessels but no +neuronal cell bodies. The fibrous cover on the cerebellar surface is the pia mater +( _Pia_ ). Cerebellar blood vessels ( _BV_ ) travel in this layer. (Shrinkage artifact has +separated the pia mater from the cerebellar surface.) The _rectangular area_ is shown +at higher magnification in the figure on the _right_ . + +##### Cerebellum, brain, human, H&E ×400. + + +At the junction between the molecular and granule cell layers +are the extremely large flask-shaped cell bodies of the **Purkinje** +**cells** ( _Pkj_ ). These cells are characteristic of the cerebellum. Each +possesses numerous dendrites ( _D_ ) that arborize in the molecular +layer. The Purkinje cell has a single axon that is not usually +evident in H&E sections. This nerve fiber represents the beginning +of the outflow from the cerebellum. + +The figure shows relatively few neuron cell bodies, those of the basket cells +( _BC_ ), in the molecular layer; they are widely removed from each other and, at best, +show only a small amount of cytoplasm surrounding the nucleus. In contrast, the +granule cell layer presents an overall spotted-blue appearance due to the staining of +numerous small nuclei with hematoxylin. These small neurons, called **granule** +**cells**, receive incoming impulses from other parts of the CNS and send axons into +the molecular layer, where they branch in the form of a T, so that the axons contact +the dendrites of several Purkinje cells and basket cells. Incoming (mossy) fibers +contact granule cells in the lightly stained areas called _glomeruli_ ( _arrows_ ). Careful +examination of the granule cell layer where it meets the molecular layer will reveal a + + +group of nuclei ( _G_ ) that are larger than the nuclei of granule cells. These belong to +Golgi type II cells. + +##### Cerebellum, brain, human, silver stain ×40. + + +The specimen in this figure has been stained with a silver +procedure. Such procedures do not always color the specimen +evenly, as does H&E. Note that the part of the molecular layer on +the _right_ is much darker than that on the _left_ . A _rectangular area_ +on the _left_ has been selected for examination at higher +magnification in the _lower right_ figure. Even at the relatively low +magnification shown here, however, the Purkinje cells can be recognized in the silver +preparation because of their large size, characteristic shape, and location between an +outer molecular layer ( _Mol_ ) and an inner granule cell layer ( _Gr_ ). The main advantage +of this silver preparation is that the **white matter** ( _WM_ ) can be recognized as being +composed of fibers; they have been blackened by the silver-staining procedure. The +pia mater ( _Pia_ ) and cerebellar blood vessels ( _BV_ ) are also evident in the preparation. + +##### Cerebellum, brain, human, silver stain ×400. + + +At higher magnification, the **Purkinje cell** bodies ( _Pkj_ ) stand +out as the most distinctive and conspicuous neuronal cell type of +the cerebellum, and numerous dendritic branches ( _D_ ) can be seen. +Note, also, the blackened fibers within the granule cell layer ( _Gr_ ), +about the Purkinje cell bodies, and in the molecular layer ( _Mol_ ) +disposed in a horizontal direction (relative to the cerebellar +surface). Basket cells ( _BC_ ) are the most common neurons that are visible in the +molecular layer. The _arrow_ indicates a T-turn characteristic of the turn made by +axons of granule cells. As these axonal branches travel horizontally, they make +synaptic contact with numerous Purkinje cells. + + +**BC,** basket cells +**BV,** blood vessels +**D,** dendrites +**G,** Golgi type II cells +**Gr,** granule cell layer +**Mol,** molecular layer +**Pia,** pia mater +**Pkj,** Purkinje cells +**WM,** white matter + + +**arrows,** upper right figure, glomeruli; lower right figure, T branching of + +axon in molecular layer +**rectangular area,** areas shown at higher magnification + + +##### Spinal cord, human, silver stain ×16. + +A cross section through the lower lumbar region of the spinal +cord is shown here. The preparation is designed to stain the gray +matter that is surrounded by the ascending and descending nerve +fibers. Although the fibers that have common origins and +destinations in the physiologic sense are arranged in tracts, these +tracts cannot be distinguished unless they have been marked by +special techniques, such as causing injury to the cell bodies from which they arise or +by using special dyes or radioisotopes to label the axons. + + +The **gray matter** of the spinal cord appears roughly in the form of a butterfly. +The anterior and posterior prongs are referred to as _ventral horns_ ( _VH_ ) and _dorsal_ +_horns_ ( _DH_ ), respectively. The connecting bar is called the _gray commissure_ ( _GC_ ). +The neuron cell bodies that are within the ventral horns (ventral horn cells) are so +large that they can be seen even at this extremely low magnification ( _arrows_ ). The +pale-staining fibrous material that surrounds the spinal cord is the **pia mater** ( _Pia_ ). +It follows the surface of the spinal cord intimately and dips into the large ventral +fissure ( _VF_ ) and the shallower sulci. Blood vessels ( _BV_ ) are present in the pia mater. +Some dorsal roots ( _DR_ ) of the spinal nerves are included in the section. + +##### Ventral horn, spinal cord, human, silver stain ×640. + + +This preparation shows a region of a ventral horn. The nucleus +( _N_ ) of the **ventral horn cell** (ventral motor neuron) is the large, +spherical, pale-staining structure within the cell body. The ventral +horn cell has many obvious processes. A number of other nuclei +belong to neuroglial cells. The cytoplasm of these cells is not +evident. The remainder of the field consists of nerve fibers and +neuroglial cells whose organization is hard to interpret. This is +called the neuropil ( _Np_ ). + +##### Ventral horn, spinal cord, human, toluidine blue +###### ×640. + + +This preparation of the spinal cord is from an area comparable +to the _left_ image. Three ventral horn cells (ventral motor neurons) +are visible. Owing to the plane of section, only two of them +exhibit large pale-staining nuclei ( _N_ ) with dark-staining nucleoli in +the center. The toluidine blue reveals the **Nissl bodies** ( _NB_ ) that +appear as the large, dark-staining bodies in the cytoplasm. Nissl bodies do not extend +into the axon hillock. The axon leaves the cell body at the axon hillock. The nuclei +of neuroglial cells ( _NN_ ) are also evident here. + + +**BV,** blood vessels +**DH,** dorsal horn +**DR,** dorsal root +**GC,** gray commissure +**N,** nucleus of ventral horn cell +**NB,** Nissl bodies +**NN,** nucleus of neuroglial cell +**Np,** neuropil +**Pia,** pia mater +**VF,** ventral fissure +**VH,** ventral horn +**arrows,** cell bodies of ventral horn cell + + diff --git a/content/Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.pdf b/content/Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.pdf new file mode 100644 index 0000000..bbd0cb8 --- /dev/null +++ b/content/Anatomi & Histologi 2/CNS histologi/12 Nerve Tissue.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6433f9df2e99c6267d2167ae5ff531d5098e7d7e5755dbc390cf07b52d959916 +size 6369376 diff --git a/content/Anatomi & Histologi 2/Demokompendium.md b/content/Anatomi & Histologi 2/Demokompendium.md index 1f452b4..1962a25 100644 --- a/content/Anatomi & Histologi 2/Demokompendium.md +++ b/content/Anatomi & Histologi 2/Demokompendium.md @@ -1,112 +1,8 @@ - -**DEMONSTRATIONKOMPENDIUM** - -## Preparatfilmer och digitalt mikroskop - -Preparatfilmer: Dessa är inspelade mikroskoperingsfilmer av våra preparat med förklaringar. Du hittar dessa på Canvas i modulen ”C. Preparatfilmer”. - -Digital mikroskopi: Preprat som representerar alla våra ävnader och organ är inskannade och finns i modulen ”C. digitala preparat”. I samma modul hittar du infromation om användarnamn och lösenord.  - -## Histologiska färgningsmetoder - -**Hematoxylin och Eosin (Htx-E)** - -Detta är den vanligaste färgningstekniken. Hematoxylin är ett basiskt (plus-laddat) färgämne som reagerar med sura (minus-laddade) ämnen i cellerna och ger en blå färg. Kärnor och RER är typiska exempel på detta p.g.a. förekomst av DNA och RNA. Som kontrast används eosin (sur färg) som färgar basiska strukturer röd-rosa. De flesta proteinerna i cytoplasman är basiska, därför är oftast cytoplasman i en cell rosa. - -Cellkärnor                                     blå -Acidofil cytoplasma (vanligast)    rosa -Basofil cytoplasma                        blå -Kollagen                                        rött -Förhornade celler                          röda -Muskulatur                                    röd -Erytrocyter                                    röda -RER                                               blått - -**van Giesons pikrinsyra-fuchsin färgning** - -_Bra för att skilja bindväv från muskulatur:_ - -Kärnor                                           brunsvarta -Cytoplasma                                   gul -Kollagen                                        rött -Muskulatur                                    gul -Erytrocyter                                    gula - -**AZAN (Azocarmin - Anilinblått)** - -_För bindvävsstudier, bindväven blir vackert blå:_ -Kärnor                                           röda -Cytoplasma                                   rosa till blå -Kollagen                                        blått -Muskulatur                                    röd till gul -Basalmembran                              blått -Erytrocyter                                    orange - - - -**Giemsa** - -_Används för blodutsryk:_ -Kärnor                                           mörkblå-violett -Cytoplasma                                   blekblå -Erytrocyter                                    blekrosa - -**Silverfärgnin****g** - -Retikulära fibrer och granula färgas svarta, kollagena fibrer -färgas bruna, axon färgas svarta, myelinskidor färgas brunsvarta. - -**Mucikarmin** - -Muciner färgas rött. - -**PA****S** (Periodic-acid-Schiff): - -Slem och glykogen färgas rött till purpur. - -**Weigerts elastinfärgning** - -Elastiska fibrer färgas violetta - -**Orcein** - -Elastiska fibriller färgas bruna - -**Retikelfärgning** - -Retikulära fibrer färgas blå-svart, kärnor kan vara röda eller blå - -**Richardson** - -En översiktsfärgning som används på plastsnitt. Vävnaden färgas i olika blåa och blåröda nyanser. - -**Peroxidas-anti-peroxidas (PAP)** - -Används för att synliggöra en immunreaktion. Snittet inkuberas med en primär antikropp (ak) mot ett visst protein t ex GFAP (Glial fibrillary acidic protein). Sedan tillsätts en sekundär ak som är riktad emot den primära. Den sekundära ak är konjugerad ("sitter ihop med") till en peroxidasmolekyl. Peroxidasen kan sedan "framkallas", ett färgprecipitat bildas och det som blivit positivt (brunt eller svart) markerar det protein som den primära ak var riktad mot. - -## Förkortningslista - -CV = Celler och vävnader -HK = Hjärta - kärl -MT = Mun och tänder -LY = Lymfoida organ -RE = Respiration -EN = Endokrina organ -GI = Gastrointestinalkanalen -LP = Lever och pankreas -NU = Njure och urinvägar -MG = Manliga genitalia -KG = Kvinnliga genitalia -HU = Hud med adnexa - -I varje grupprum finns en kursbok: Ross & Pawlina: Histology a text and atlas, sjunde upplagan. I texten nedan hänvisas till bildsidor = "plates" eller enskilda bilder  = "Fig" i denna textbok. Endast exempel ges, fler bilder finns i boken. - -**OBS!** De preparatnummer som anges nedan är exempel på preparat där de olika strukturerna ses. I andra preparat kan man finna väl så bra exempel. Titta igenom alla preparat i lådorna! För detaljstudier är plastpreparaten att föredra då de är tunnare än paraffinsnitt och ger bättre upplösning. # Kursdel F. CNS, ÖGA, ÖRA CENTRALA NERVSYSTEMET (CNS) (Kapitel 12) -**1. CELLER I CNS** +## 1. CELLER I CNS **Nervcellens** soma varierar kraftigt i storlek ~5-140 µm i olika områden i CNS. Kärnan i multipolära nervceller som motoriska framhornscellerna i ryggmärgen (_NE8_), nervcellerna i storhjärnans cortex, hippocampus (_NE21_) och hjärnstam (_NE23_) samt i cerebellums Purkinjeceller _(t.ex. NE13)_ är oftast runda, ljusa och innehåller en nukleol. I mindre neuron kan kärnan vara mörkare. De stora nervcellerna har rikligt med granulärt (rough) endoplasmatiskt retikel, RER. Det klumpar ihop sig och färgas kraftigt med basiska färger (t.ex. kresylviolett eller toluidinblått) och kallas Nissl-substans (Fig 12.4). Ibland kan man se neuron med lipofuscingranulae, gulbruna pigment, en biprodukt som ökar med åldern**.** Observera att det krävs specialfärgningar för att kunna urskilja dendriter och axon från varandra och från gliacellsutskott. @@ -118,22 +14,20 @@ CENTRALA NERVSYSTEMET (CNS) (Kapitel 12) **Ependymcellen** inkläder hjärnans ventriklar och syns snyggt i ryggmärgskanalen (Fig 12.22; _NE8_) -**2. RYGGMÄR****G** (plate 31; Figs 12.22; 12.30) +## 2. RYGGMÄRG +(plate 31; Figs 12.22; 12.30) I tvärsnittet av ryggmärg ses olika typer av nervceller och gliaceller (mikrogliacellen är dock svår att identifiera i rutinfärgningar men syns som sagt snyggt i specialfärgningen NE25)**.** Den grå substansen liknar ett ”H” (eller en fjäril), med framhorn och bakhorn. Utanför ligger den vita substansen. Den grå substansen innehåller nervcellskroppar, axon, dendriter, olika gliacellstyper, astrocyter, oligodendrocyter och mikroglia. Framhornen skiljer sig från bakhornen genom att de inte går ut till kanten av ryggmärgen. De är oftast tjockare än bakhornen. I framhornen finns de motoriska nervcellerna, stora multipolära nervceller. Bakhornen är oftast smalare och fortsätter ut genom hela den vita substansen. I bakhornen hittar vi mindre sensoriska neuron. Ibland finns ett lateralhorn (beror på vilket segment snittet är taget ifrån). Här är preganglionära neuron i det autonoma nervsystemet lokaliserade. Den vita substansen innehåller tvärsnittade axon, astrocyter, oligodendrocyter och mikroglia (svåra att se i rutinfärgning). Mitt i ”H’t” ser man cerebrospinalkanalen med kubiska-cylindriska ependymceller. Cellerna är oftast både cilierade och har mikrovilli.  (Fig 12.22). _NE8 tvärsnitt (OBS! Olika species och färgningar förekommer i NE8)._ -**3****. CEREB****ELLUM (Lillhjärnan)** (plate 30; Fig 12.28) +## 3 CEREBELLUM (Lillhjärnan) +(plate 30; Fig 12.28) Den yttre grå substansen, cortex cerebellaris, består av 3 lager (se t.ex. _NE13_ och _NE15_, rutin-färgningar): - 1)   Stratum/Lamina molecularis, glest med små nervceller; stjärncellerna ligger närmast pian och korgcellerna längre ner närmare Purkinjecellslagret. Liksom i övriga CNS finns alla typer av gliaceller i hela cerebellum (se ovan för att urskilja de olika typerna i rutinfärgningar). - 2)    Purkinjecellslagret. En enkel rad med de största nervcellerna i lillhjärnan, Purkinjecellerna. - 3)   Stratum/Lamina granularis, ett mörkt cellrikt korncellslager. Glomeruli cerebelli är stora ”synapsnystan” mellan inkommande axon (mossfibrer) och korncellsdendriter och ses som ljusa öar i stratum granularis. Stratum/lamina granularis innehåller också ett litet antal Golgiceller som ligger i det övre skiktet och ibland inne i Purkinjecellslagret. Golgicellernas cellkärnor är större än korncellernas kärnor men de är svåra att urskilja i det kompakta korncellslagret. Även gliaceller är svåra att identifiera utom i _NE11_. - Vit substans finns under stratum granularis med talrika oligodendrocyt- och astrocyt-cellkärnor och bildar en trädlik struktur: Arbor vitae som betyder livets träd (_NE8_). **Specialfärgningar:** Dendriterna till Purkinjecellerna i l. molekylaris kan urskiljas med specialfärgning av en typ av neurofilament som dominerar i dendriter (_NE10_). Astrocyt-utskott kan urskiljas med specialfärgning mot ett intermediärfilament, "glial fibrillary acidic protein" (GFAP). Immunfärgning för GFAP ger infärgning av cellkropp och utskott, men ej av kärnan. Man ser dels Bergmangliacellernas radialutskott som går vinklerätt mot ytan i l. molekylaris från Purkinjecellslagret (_NE11_) dels astrocyterna och deras utskott i l. granularis och i vit substans. Korgcellernas axon i l. molecularis och Purkinjecellslagret kan urskiljas med en specialfärgning för axon (_NE14_). Purkinjecellerna omges av en ”korg” av dessa axon. (Det finns artefaktmässiga blåsor i den vita substansen.) @@ -142,22 +36,18 @@ _NE10 -Neurofilamentfärgning, fina Purkinjecellsdendriter (titta i olika NE10). _NE13, 15, 16 -Rutinfärgningar. Cortex med de olika lagren, vit substans syns bra. NE14 -Specialfärgning för korgcellernas axon som bildar en ”korg” runt Purkinjecellernas bas._ -**4.** **CEREBRUM/CORTEX CEREBRI** (plate 29; Fig 12.27) +## 4. CEREBRUM/CORTEX CEREBRI +(plate 29; Fig 12.27) De vanligaste nervcellstyperna i storhjärnsbarken, cortex cerebri, är pyramidcellen och korncellen. Utskotten, som syns dåligt i rutinfärgningar, är mera tydliga i specialfärgningen för neurofilament (_NE17_). Pyramidcellerna är allra störst i det inre pyramidcells-lagret i motorisk cortex (V) som i råttans hjärna är lokaliserat lateralt om medellinjen (i homo i gyrus precentralis). Här kan man se hur apikaldendriten sträcker sig ut mot ytan. I sensoriskt cortex, som är lokaliserat till medellinjen på råtta (i homo i g. postcentralis) dominerar korncellerna. Från hjärnytan till den vita substansen ser man följande lager: 1)   Lamina molecularis, består mest av fibrer som går parallellt med ytan, ganska få celler. - 2)   Lamina granularis externa, framförallt kornceller. - 3)   Lamina pyramidalis externa, ej skarpt avgränsat från lamina granularis externa. Innehåller pyramidceller men även korncellerna. - 4)   Lamina granularis interna, kornceller. - 5)   Lamina pyramidalis interna eller lamina ganglionaris, pyramidceller, större än de i lager 3. I motorcortex finns mycket stora pyramidceller s.k. Betz jätteceller vars axon bildar pyramidbanan. - 6)   Lamina multiformis, med bl.a. spolformiga celler -”fusiform cells” blandat med ett fåtal stora pyramidceller samt kornceller. Den vita substansen tar vid under lamina 6. Gliaceller finns i alla lager (men syns inte i _NE17_). @@ -166,34 +56,34 @@ Motorisk bark är totalt sett tjockare än sensorisk bark. I motorisk bark domin _NE17 -Neurofilamentfärgning (råtta);_ -**5. HJÄRNSTAM** **(ingen plate eller Fig i läroboken, men se film på Canvas)** +## 5. HJÄRNSTAM +(ingen plate eller Fig i läroboken, men se film på Canvas) Hjärnstammen ligger under cerebellum. En kärna/nukleus i CNS är en grupp av nervceller som är funktionellt sammanlänkade. Stora nervceller ligger bilateralt i grupper i NE23. _NE23 – Hjärnstammen (Medulla oblongata)._ -**(6. HIPPOCAMPUS (ingen plate eller Fig i läroboken, men se film på Canvas)** +## 6. HIPPOCAMPUS +(ingen plate eller Fig i läroboken, men se film på Canvas) Liksom cortex cerebri innehåller hippocampus pyramidceller och kornceller. Hippocampus består av en utvecklingsmässigt äldre typ av cortex där pyramidcellerna bildar en C-formation (påminner i tvärsnitt om den egyptiske guden Ammons horn, Cornu Ammonis, därav CA-regionen). I tvärsnitt brukar CA-regionens delas in i 3-4 avsnitt, CA1, (CA2), CA3 (böjen) och CA4. Den inre CA4-regionen omsluts av den V-(eller U-) formade gyrus dentatus. Tillsammans bildar pyramidcellerna och korncellerna en formation som (med lite fantasi) kan liknas vid ett G eller 2 C i varandra. Korncellerna ligger tätt och då de dessutom är mindre än pyramidcellerna, ger de sitt lager en mörkare färg än lagret med pyramidcellerna. Pyramidcellerna ger ett ljus intryck p.g.a. deras stora ljusa kärnor. Plexus choroideus, som kan ses i ventrikeln i anslutning till hippocampus, består av specialiserade kubiska ependymceller som omsluter kapillärer. _(NE20), NE21)_ -SINNESORGAN (ÖGA ÖRA) (Kapitel 24 och 25) +# SINNESORGAN (ÖGA ÖRA) +(Kapitel 24 och 25) -**1****. ÖGAT** **och ÖGONBULBEN** (kapitel 24; plate 104 - 107) +## 1 ÖGAT och ÖGONBULBEN +(kapitel 24; plate 104 - 107) Vid makroskopisk inspektion ser man ögonbulbens yttre cirkulära begränsning med dess lager (tunikor), som är 3 till antalet: 1) cornea och sclera, 2) uvea, samlingsnamn för ögats vaskulära delar och består av iris, ciliarkroppen och choroidea, samt 3) retina. Linsen ser man i ögats främre del. Tre olika hålrum finns i ögat: 1) främre ögonkammaren, mellan cornea och iris, 2) bakre ögonkammaren, mellan iris och lins, samt 3) glaskroppen, stora hålrummet. Mikroskopiskt urskiljer man lager och celltyper i flera olika strukturer. _Cornea_ – hornhinnan (Fig 24.4) utgör begränsning i ögats främre pol och här ser man utifrån: 1)     Epitelcellslager, flerskiktat skivepitel. - 2)     Bowmans membran. Homogent lager av kollagena trådar. Viktigt för corneans stadga samt utgör ett skydd mot infektioner. - 3)     Tjockt stroma. Ca 60 lameller kollagena trådar. Mellan lamellerna finns fibroblaster. Viktig för ögats transparens. - 4)     Descements membran, ett nätverk av fibrer och porer, förtjockat basalmembran. - 5)     Endotel, enskiktat skivepitel. Metabolt utbyte mellan cornea och främre ögonkammaren. Cornean/hornhinnan övergår lateralt i sclera **-** senhinnan, som omsluter resten av bulben och utgörs av stram bindväv. Vid sclerans yttre gräns kan ibland ögonmusklernas fästen ses. @@ -207,41 +97,28 @@ I ögats bakre pol studerar man med fördel sclera, choroidea, och retina. Ytter Retina (plate105; Fig 24.9) består av följande lager utifrån och in: 1)     Pigmentepitel, enskiktat kubiskt epitel. Utgör en blod-retina-barriär. - 2)     Tappar och stavars ljuskänsliga segment - -3)     Membrana limitans externa, yttre gränsmembran, mycket tunt. Zonula - - adherens mellan Müllerceller och fotoreceptorernas yttre segment. - +3)     Membrana limitans externa, yttre gränsmembran, mycket tunt. Zonula adherens mellan Müllerceller och fotoreceptorernas yttre segment. 4)     Yttre kärnlagret, tappars och stavars kärnor. - 5)     Yttre plexiforma skiktet, Tappars och stavars utskott, samt utskott tillhörande horizontalceller och bipolära celler. - 6)     Inre kärnlagret, cellkroppar tillhörande bipolära neuron, horisontalceller, amakrina celler och Müllerceller (en typ av gliaceller). - 7)     Inre plexiforma skiktet, utskott tillhörande amakrina celler, bipolära celler och ganglieceller. - 8)     Gangliecellslagret. Cellkroppar till ganglieceller. - 9)     Nervfiberlagret. Axon tillhörande gangliecellerna som leder information från retina till hjärnan. Axonen är icke myeliniserade. - 10)     Membrana limitans interna, inre gränsmembran, mycket tunt. Müllercellernas basalmembran. Innanför retina finns glaskroppen, den är löst fäst mot membrana limitans interna. En strukturlös gel som är transparent. _NE29 helt öga; NE31 nervus opticus (plate 105). Myeliniserade, tunna axon omgivna av meningier._ -**2. INNERÖRAT** (kapitel 25; plate 108 och 109; Fig 25.13; 25.16, 25.19) +## 2. INNERÖRAT +(kapitel 25; plate 108 och 109; Fig 25.13; 25.16, 25.19) Preparatet visar cochlea med 5-6 tvärsnitt av Cortiska organet. I vissa preparat ses även en del av vestibularisapparaten med ampulla. I cochleans centrum ser man modiolus, som utgörs av spongiöst ben (oftast ljusblått), nervus cochlearis, hörselnerven, samt ganglion spirale, spiralgangliet, som består av bipolära neuron. I varje vindling av cochlea ser man tre hålrum: - Scala vestibuli, som begränsas neråt av membrana vestibularis (Reissners membran). - Scala media, som begränsas neråt av membrana basilaris och uppåt av membrana vestibularis. Scala tympani ligger under Scala media och begränsas uppåt av membrana basilaris. - Cortiska organet, i scala media, vilar på membrana basilaris över vilket membrana tectoria/tektorialmembranet, ett tunt ljusblått membran, som oftast är uppvikt, vilar. Identifiera den inre tunneln, som omges av pelarceller, röda, som ibland är söndertrasade. Bredvid pelarcellerna/inre tunneln, mot centrum, ligger den inre hårcellen, vilande på sin falangealcell (stödjecell). På andra sidan om pelarcellerna/inre tunneln ligger 3-5 rader yttre hårceller, med yttre falangealceller (stödjeceller), Deiterceller. Yttre tunneln ligger utanför dessa och oftast lite högre upp (oftast trasig). Utanför yttre hårcellerna syns ibland Hensens celler. Scala medias lateralvägg utgörs av stria vascularis, ett flerradigt cylinderepitel (pseudostratifierat) som bildar endolymfa och ansvarar för K+- homeostasen. Scala vestibuli och scala tympani innehåller däremot perilymfa, som har en jonsammansättning lik den i blodplasma. _NE3__4 -Cochlea (hörselsnäckan)_ @@ -307,49 +184,49 @@ Preparat i låda I (2018-01-10) Preparat i låda II (2018-01-10) -| | | | | | | -|---|---|---|---|---|---| -|**LP 1**|Lever||**HU 1**|Hjässhud|| -|LP 2|Lever||HU 2|Hjässhud **Ej i alla lådor**|| -|LP 4|Lever, v.Kupfferska

stjärnceller||HU 3|Scrotalhud|| -|LP 5|Lever, gallblåsa||HU 4|Axillarhud **Ej i alla lådor**|| -|LP 6|Gallblåsa||HU 5|Nagel|| -|LP 8|Duodenum, pankreas||HU 6|Tåblomma|| -|LP 9|Pankreas||HU 7|Fingerblomma|| -|LP 10|Pankreas||HU 8|Mamma, icke lakterande|| -|LP 11|Pankreas||HU 9|Mamma, lakterande|| -|LP 12|Pankreas||HU 10|Mamill|| -|**NU 1**|Njure||||| -|NU 2|Njure||||| -|NU 3|Njure + binjure||**NE 1**|Spinalganglion|| -|NU 4|Embryonal njure||NE 2|Spinalganglion|| -|NU 5|Ureter/ Urinledare||NE 3|Sympatiskt ganglion|| -|NU 6|Ureter/ Urinledare||NE 4|Nerv (autonom) och elastisk artär|| -|NU 7|Urinblåsa, utspänd||NE 5|Nerv, ischiadicus, tvärs **Ej i alla lådor**|| -|NU 8|Urinblåsa, tömd,||NE 6|Nerv, ischiadicus|| -|**MG 1**|Testis, prepubertal||NE 7|Nerv **Ej i alla lådor**|| -|MG 2|Testis **Ej i alla lådor**||NE 8|Ryggmärg (tvärs)|| -|MG 3|Testis||NE 10|Cerebellum, neurofilament|| -|MG 4|Testis + epididymis||NE 11|Cerebellum, gliafilament|| -|MG 5|Funiculus spermaticus||NE 12|Cerebellum, GABA|| -|MG 6|Ductus deferens||NE 13|Cerebellum|| -|MG 7|Vesicula seminalis||NE 14|Cerebellum|| -|MG 8|Prostata||NE 15|Cerebellum|| -|MG 9|Penis, tvärsnitt||NE 16|Cerebellum **Ej i alla lådor**|| -|MG 10|Penis eller testis||NE 17|Frontalsnitt hjärna, motorisk och sensorisk bark, neurofilament|| -|**K****G 1**|Ovarium||NE 18|Cerebrum, synbark **Ej i alla lådor**|| -|KG 2|Ovarium||NE 20|Frontalsnitt hjärna|| -|KG 3|Ovarium, överårigt||NE 21|Hippocampus + cortex +

Sidoventrikel med plexus choroideus|| -|KG 4|Ovarium||NE 23|Laterala vestibulariskärnan|| -|KG 5|Tuba uterina||NE 25|Medulla oblongata.mikrogliaceller|| -|KG 6|Ampulla tubae||NE 26|Nervändslut i muskulatur|| -|KG 7|Isthmus tubae||NE 27|Tvärstrimmig muskel med

muskelspole|| -|KG 8|Uterus||NE 28|Vater-Paccinis nervändkropp

mesenterium|| -|KG 9|Endometriumskrap, prol.fas||NE 29|Bulbus occuli|| -|KG 10|Endometriumskrap, sekr.fas||NE 31|Nervus opticus|| -|KG 11|Vagina||NE 34|Cochlea|| -|KG 12|Placenta||||| -|KG 13|Placenta och foster||||| -|KG 14|Placenta||||| -|KG 15|Navelsträng||||| -|KG 16|Cervix||||| \ No newline at end of file +| | | | | | | +| ------------ | --------------------------------------- | --- | -------- | ----------------------------------------------------------------- | --- | +| **LP 1** | Lever | | **HU 1** | Hjässhud | | +| LP 2 | Lever | | HU 2 | Hjässhud **Ej i alla lådor** | | +| LP 4 | Lever, v.Kupfferska

stjärnceller | | HU 3 | Scrotalhud | | +| LP 5 | Lever, gallblåsa | | HU 4 | Axillarhud **Ej i alla lådor** | | +| LP 6 | Gallblåsa | | HU 5 | Nagel | | +| LP 8 | Duodenum, pankreas | | HU 6 | Tåblomma | | +| LP 9 | Pankreas | | HU 7 | Fingerblomma | | +| LP 10 | Pankreas | | HU 8 | Mamma, icke lakterande | | +| LP 11 | Pankreas | | HU 9 | Mamma, lakterande | | +| LP 12 | Pankreas | | HU 10 | Mamill | | +| **NU 1** | Njure | | | | | +| NU 2 | Njure | | | | | +| NU 3 | Njure + binjure | | **NE 1** | Spinalganglion | | +| NU 4 | Embryonal njure | | NE 2 | Spinalganglion | | +| NU 5 | Ureter/ Urinledare | | NE 3 | Sympatiskt ganglion | | +| NU 6 | Ureter/ Urinledare | | NE 4 | Nerv (autonom) och elastisk artär | | +| NU 7 | Urinblåsa, utspänd | | NE 5 | Nerv, ischiadicus, tvärs **Ej i alla lådor** | | +| NU 8 | Urinblåsa, tömd, | | NE 6 | Nerv, ischiadicus | | +| **MG 1** | Testis, prepubertal | | NE 7 | Nerv **Ej i alla lådor** | | +| MG 2 | Testis **Ej i alla lådor** | | NE 8 | Ryggmärg (tvärs) | | +| MG 3 | Testis | | NE 10 | Cerebellum, neurofilament | | +| MG 4 | Testis + epididymis | | NE 11 | Cerebellum, gliafilament | | +| MG 5 | Funiculus spermaticus | | NE 12 | Cerebellum, GABA | | +| MG 6 | Ductus deferens | | NE 13 | Cerebellum | | +| MG 7 | Vesicula seminalis | | NE 14 | Cerebellum | | +| MG 8 | Prostata | | NE 15 | Cerebellum | | +| MG 9 | Penis, tvärsnitt | | NE 16 | Cerebellum **Ej i alla lådor** | | +| MG 10 | Penis eller testis | | NE 17 | Frontalsnitt hjärna, motorisk och sensorisk bark, neurofilament | | +| **K****G 1** | Ovarium | | NE 18 | Cerebrum, synbark **Ej i alla lådor** | | +| KG 2 | Ovarium | | NE 20 | Frontalsnitt hjärna | | +| KG 3 | Ovarium, överårigt | | NE 21 | Hippocampus + cortex +

Sidoventrikel med plexus choroideus | | +| KG 4 | Ovarium | | NE 23 | Laterala vestibulariskärnan | | +| KG 5 | Tuba uterina | | NE 25 | Medulla oblongata.mikrogliaceller | | +| KG 6 | Ampulla tubae | | NE 26 | Nervändslut i muskulatur | | +| KG 7 | Isthmus tubae | | NE 27 | Tvärstrimmig muskel med

muskelspole | | +| KG 8 | Uterus | | NE 28 | Vater-Paccinis nervändkropp

mesenterium | | +| KG 9 | Endometriumskrap, prol.fas | | NE 29 | Bulbus occuli | | +| KG 10 | Endometriumskrap, sekr.fas | | NE 31 | Nervus opticus | | +| KG 11 | Vagina | | NE 34 | Cochlea | | +| KG 12 | Placenta | | | | | +| KG 13 | Placenta och foster | | | | | +| KG 14 | Placenta | | | | | +| KG 15 | Navelsträng | | | | | +| KG 16 | Cervix | | | | | \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2022-01-06-adrihajdu-Anatomi och histologi 2 quiz.docx b/content/Anatomi & Histologi 2/Gamla tentor/2022-01-06-adrihajdu-Anatomi och histologi 2 quiz.docx new file mode 100644 index 0000000..4d4b807 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2022-01-06-adrihajdu-Anatomi och histologi 2 quiz.docx @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3b46dcf84a9c1a1d22a644e8bd5ee4a858ed3ccc7f23b913e396af9bf0f7414 +size 6707 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2022-01-15-0032-BWD.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2022-01-15-0032-BWD.pdf new file mode 100644 index 0000000..891512b --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2022-01-15-0032-BWD.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:028804d1080f172b57ea10f751bd0febac799b3e2edc4b6b52e58a9006f88a12 +size 5719615 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2022-06-01-0101-MGY.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2022-06-01-0101-MGY.pdf new file mode 100644 index 0000000..eab9338 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2022-06-01-0101-MGY.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:647fd24816d4bc58a18a8d096e7486b7714ce30763990aa44d763b0cc09add6b +size 7229561 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2023-01-11-0044-PRX.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2023-01-11-0044-PRX.pdf new file mode 100644 index 0000000..09f7e52 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2023-01-11-0044-PRX.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ce07d256c5b0ab8b717a1f9082a333694bc107dc5c8e5a27aa87a39f23491289 +size 12557729 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2023-02-23-adderino-anki.apkg b/content/Anatomi & Histologi 2/Gamla tentor/2023-02-23-adderino-anki.apkg new file mode 100644 index 0000000..88d84c4 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2023-02-23-adderino-anki.apkg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5d9c0f389445c43f05906d7bf58053e24ca71ee208690a656ffa410dcfc36ffd +size 18691929 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2023-05-31-0100-DKS.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2023-05-31-0100-DKS.pdf new file mode 100644 index 0000000..fd824a0 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2023-05-31-0100-DKS.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a91ef820fd40a8b83e5cb9157237f96545f5ffbbb6b703e1a14f2514a86878d8 +size 8180853 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2024-01-10-0009-RYY.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2024-01-10-0009-RYY.pdf new file mode 100644 index 0000000..bada4c4 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2024-01-10-0009-RYY.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1fed7cd94ca10650a7bc08adadde194cf4aea07c1374ff46611430c82c60b678 +size 7228801 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2024-01-10-0088-KOM.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2024-01-10-0088-KOM.pdf new file mode 100644 index 0000000..4680da1 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2024-01-10-0088-KOM.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:926cb09576915364a34d76cf1f581798bb88f3144b8fa23342b1db4a9378e976 +size 7702528 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2024-05-29-0125-GZX.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2024-05-29-0125-GZX.pdf new file mode 100644 index 0000000..b6c45cc --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2024-05-29-0125-GZX.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:66a047a9c5faaf62aba3167822c3207068e2cc0a434c7475e0e669a4c986fefb +size 10852025 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-01-15-0021-HRY.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2025-01-15-0021-HRY.pdf new file mode 100644 index 0000000..bfa379f --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-01-15-0021-HRY.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dcb6dd609058cc8d75595dfdbf30bf9933a6e6c1444b435dddb16809ed92fc5e +size 4628650 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-01-15-0024-HFS.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2025-01-15-0024-HFS.pdf new file mode 100644 index 0000000..f65ebeb --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-01-15-0024-HFS.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1db4148aa9cb6e810348047db26f38a1def346a1bb463d66909ed059792f0e79 +size 4628754 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-02-08-0003-ESW.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2025-02-08-0003-ESW.pdf new file mode 100644 index 0000000..24358cc --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-02-08-0003-ESW.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e09c00e8832a673746e070d4180bb021eaf6f0332da013b485ea2c1364cfaeec +size 5909974 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-02-08-0004-PNZ.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2025-02-08-0004-PNZ.pdf new file mode 100644 index 0000000..31021d2 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-02-08-0004-PNZ.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ba35a163228ebf451605944e99b18ed9649f574ac711ead0bf456b16896e321 +size 5908583 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-06-03-0003-UJR.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2025-06-03-0003-UJR.pdf new file mode 100644 index 0000000..b7dfec4 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-06-03-0003-UJR.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:976af061984e092562441f259ecfd7420c56929fa020ecf126d556a4c0fd854c +size 14940225 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.md b/content/Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.md new file mode 100644 index 0000000..e83bab2 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.md @@ -0,0 +1,321 @@ +# LPG001 – Omtentamen Anatomi/Histologi del 2 +**Kandidat:** 0030-SHJ +**Datum:** 2025-08-08 +**Tid:** 06:00–08:00 + +--- + +## CNS + +### CNS 1 +**Vilken/vilka av följande delar av nervsystemet omges av meninges?** +(Ange ja eller nej) + +- Medulla spinalis +- Cerebellum +- Cerebrum +- Truncus encephali + +--- + +### CNS 2 +**Matcha funktion till rätt lob** + +Funktioner: +- Syn +- Motorik +- Hörsel +- Smak +- Somatosensorik + +Lober: +- Lobus frontalis +- Lobus temporalis +- Lobus insularis (insula) +- Lobus occipitalis +- Lobus parietalis + +--- + +### CNS 3 +**Vilket påstående är mest korrekt?** + +- Thalamus tar emot cerebrums afferenta banor och består främst av vit substans +- Diencephalon reglerar balans och koordination +- Tallkottkörteln är en kärna där nervceller frisläpper melatonin +- Hypothalamus byggs upp av flera kärnor som bl.a. reglerar endokrina systemet + +--- + +### CNS 4 +**Vilka kärnor återfinns i mesencephalon?** +(Svara ja/nej) + +- Putamen +- Nucleus caudatus +- Globus pallidus +- Nucleus ruber +- Substantia nigra +- Nucleus olivaris + +--- + +### CNS 5 +**Vilket påstående beskriver bäst cerebellums anatomi?** + +- Cerebellums kortex veckas mycket mer än cerebrums +- Cerebellum binder till cerebrum med tre pedunklar +- Cerebellum har efferenta motoriska bansystem som reglerar nedre motorneuron +- Cerebellums två halvor binds samman av corpus callosum + +--- + +### CNS 6 +**Vilket bansystem terminerar i framhornet?** + +- Spinothalamiska banan +- Baksträngsbanan +- Pyramidbanan +- Hörselbanorna +- Synbanorna + +--- + +### CNS 7 +**Vilket påstående är mest korrekt?** + +- Somatisk afferens förmedlas av neuron vars soma återfinns medialt om n. spinalis +- De nedre motorneuronen sitter i PNS +- Spinalnerver passerar alltid ut ur ryggraden och bildar plexa +- Visceral afferens löper i ventralroten + +--- + +### CNS 8 +**Vilka kranialnerver styr ögonmotoriken?** +(flera svar möjliga) + +- N. facialis +- N. abducens +- N. oculomotorius +- N. vagus +- N. trigeminus +- N. olfactorius +- N. hypoglossus +- N. trochlearis +- N. vestibulocochlearis +- N. opticus +- N. glossopharyngeus +- N. accessorius + +--- + +### CNS 9 +**Vilket påstående är mest korrekt?** + +- Arachnoidea ligger närmast hjärnans yta +- Dura mater är starkast och följer inte med i hjärnans fåror +- Under dura mater återfinns blodkärl och CSV +- Meningierna omger hjärna, ryggmärg och nerver + +--- + +### CNS 10 +**Vilket påstående är mest korrekt?** + +- Sidoventriklarna omger diencephalon +- Det nybildas ett par liter CSV per dag +- CSV bildas av plexus choroideus i sidoventriklarna +- Aqueductus binder samman tredje och fjärde ventrikeln + +--- + +### CNS 11 +**Vilken siffra markerar thalamus?** + +--- + +### CNS 12 +**Vilken siffra markerar synbanornas slutmål?** + +--- + +### CNS 13 +**Markera hippocampus i bild** +(klick i bild) + +--- + +### CNS 14 +**Markera var soma för postganglionära neuron finns** +(klick i bild) + +--- + +### CNS 15 +**Markera strukturen som förmedlar information mellan storhjärnshalvorna** + +--- + +### CNS 16 +**Markera dura mater i bild** + +--- + +### CNS 17 +**Ange läget (siffra) för:** + +- Motoriska nervcellskroppar +- Sensoriska nervcellskroppar +- Framhorn + +--- + +### CNS 18 +**Vilka celltyper är central neuroglia?** +(Svara ja/nej) + +- Satellitcell +- Astrocyt +- Korgcell +- Oligodendrocyt +- Purkinjecell +- Ependymcell +- Schwanncell +- Mikroglia + +--- + +### CNS 19 +**Vilket cellager pekar pilen på?** + +- Lamina molekularis +- Lamina multiforme +- Lamina pyramidalis externa +- Lamina pyramidalis interna +- Purkinjecellslagret +- Lamina granularis externa +- Lamina granularis interna + +--- + +### CNS 20 +**Dra rätt lager till bilden (två lager)** + +- Lamina pyramidalis +- Lamina molekularis +- Lamina granularis +- Lamina multiformis +- Lamina ganglionaris + +--- + +## Öga + +### Öga 1 +**Vilka strukturer bryter ljuset på väg mot retina?** +(flera svar) + +- Iris +- Lins +- Corpus vitreum +- Cornea +- Corpus ciliare + +--- + +### Öga 2 +**Vilken del av retina ger upphov till blinda fläcken?** + +- Gula fläcken +- Fovea centralis +- Synnervens utträde +- Corpus vitreum + +--- + +### Öga 3 +**Vad är rätt om cornea?** + +- Insidan bekläds av tjockt basalmembran +- Ytterst enkelt kubiskt epitel +- Saknar nerver +- Stroma med fibroblaster och kollagena fibrer + +--- + +### Öga 4 +**Vad är rätt om mogna linsfibrer?** + +- Kubiska +- Mellan parallella kollagenfibrer +- Differentieras från epitel vid linsens ekvator +- Rund central cellkärna + +--- + +### Öga 5 +**Ögats lager A–C (bakre delen)** + +a) Lager → anterior struktur +- Lager A → (epitel / hornhinna / ciliarkropp / iris) +- Lager B → (epitel / conjunctiva / iris / hornhinna) +- Lager C → (iris / epitel / hornhinna / ciliarkropp) + +b) I vilket lager finns muskulatur? + +--- + +## Öra + +### Öra 1 +**Markera förbindelsen mellan trumhålan och svalget** +(klick i bild) + +--- + +### Öra 2 +**Vilken del av innerörat registrerar rotation?** + +- Båggångarna och hinnsäckarna +- Hinnsäckarna +- Cochlea +- Alla tre +- Båggångarna + +--- + +### Öra 3 +**Vad stämmer om stapes?** + +- Fäster vid runda fönstret +- Förbinder malleus och incus +- Fäster vid trumhinnan +- Fäster vid ovala fönstret + +--- + +### Öra 4 +**Vilken bokstav pekar på:** +a) Hud med apokrina körtlar +b) Hud utan hår och körtlar + +--- + +### Öra 5 +**Vad är rätt om crista ampullaris?** + +- Registrerar gravitation +- Finns i utriculus och sacculus +- Har en geleaktig cupula +- En rad inre och tre rader yttre hårceller + +--- + +### Öra 6 +**Cortiska organet** + +a) Bokstav för struktur som pumpar K⁺ till endolymfan +b) Bokstav för cell som släpper in K⁺ vid böjning av apikala utskott + +--- \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.pdf b/content/Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.pdf new file mode 100644 index 0000000..1f552ee --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/2025-08-08/2025-08-08-0030-SHJ.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77acdec612f86672468d2af6e7a3129977f11b70054382a258ee594d183cb63b +size 12819906 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/Anatomi och Histologi 2 av Nils.apkg b/content/Anatomi & Histologi 2/Gamla tentor/Anatomi och Histologi 2 av Nils.apkg new file mode 100644 index 0000000..c44bc22 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/Anatomi och Histologi 2 av Nils.apkg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:22980a7e0cbea544b5f69ae149c43e0bd7b5aa057c8b94b370d7ee5bad684c24 +size 56763382 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/Maja Arnetorp Ankisar anatomi och histologi del 2.apkg b/content/Anatomi & Histologi 2/Gamla tentor/Maja Arnetorp Ankisar anatomi och histologi del 2.apkg new file mode 100644 index 0000000..ec78beb --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/Maja Arnetorp Ankisar anatomi och histologi del 2.apkg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d1725f89ac2da950f577bf10a5782ffa72ab349d60c8ac9985dee9b8de7a2b33 +size 17545852 diff --git a/content/Anatomi & Histologi 2/Gamla tentor/Statistik.md b/content/Anatomi & Histologi 2/Gamla tentor/Statistik.md new file mode 100644 index 0000000..ee907e7 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/Statistik.md @@ -0,0 +1,37 @@ + +| | CNS A | CNS H | Öga A | Öga H | Öra A | Öra H | Totalt | +| ---------- | ----- | --------- | ----- | ----- | ----- | ----- | ------ | +| 2022-01-15 | | | | | | | 30 | +| 2022-06-01 | 10 | 7 eller 2 | 3 | 3 | 3 | 3 | 30 | +| 2023-01-11 | 18 | | 6 | | 6 | | 30 | +| 2023-05-31 | 12 | 6 | 3 | 3 | 3 | 3 | 30 | +| 2024-01-10 | 15 | 3 | 3 | 3 | 3 | 3 | 30 | +| 2024-05-29 | 15 | 3 | 2 | 3 | 2 | 3 | 28 | +| 2025-01-15 | 20 | | 5 | | 5 | | 30 | +| 2025-02-08 | 20 | | 3 | 3 | 3 | 3 | 32 | +| 2025-06-03 | 16 | 4 | 2 | 3 | 2 | 3 | 30 | +| 2025-08-08 | 17 | 3 | 5 | 3 | 4 | 2 | 31 | +Föreläsningar +1. Öga Anatomi 2h +2. Öra Anatomi 2h +3. Öga Histologi 2h +4. Öra Histologi 2h +5. TBL Öga/Öra 3h +6. CNS I 3h + 1. Översikt och celler 1h + 2. Cerebrum/Telencephalon 1h + 3. Diencephalon och Limbiska systemet 1h + 1. Diencephalon + 2. Limbiska systemet +7. CNS II 3h + 1. CNS: Truncus encephali & Cerebellum 1h + 2. CNS: Medulla spinalis 1h + 3. CNS: Hinnor hålrum och kärl 1h + 1. Meninges + 2. Ventrikelsystem + 3. Blodkärl +8. CNS: Histologi (1h) +9. CNS III 2h + 1. PNS 1h + 2. ANS 1h +10. TBL CNS 3h \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Gamla tentor/gusgoranvi Anki.zip b/content/Anatomi & Histologi 2/Gamla tentor/gusgoranvi Anki.zip new file mode 100644 index 0000000..3c2c33f Binary files /dev/null and b/content/Anatomi & Histologi 2/Gamla tentor/gusgoranvi Anki.zip differ diff --git a/content/Anatomi & Histologi 2/Gamla tentor/tentor-utan-svar.pdf b/content/Anatomi & Histologi 2/Gamla tentor/tentor-utan-svar.pdf new file mode 100644 index 0000000..65064d5 --- /dev/null +++ b/content/Anatomi & Histologi 2/Gamla tentor/tentor-utan-svar.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dfd484cb6ea181197d58aa894c909dfa461964487d779fb86bc3b93ac895d832 +size 30374162 diff --git a/content/Anatomi & Histologi 2/Instuderingsfrågor.md b/content/Anatomi & Histologi 2/Instuderingsfrågor.md index ecdaf3f..68b7164 100644 --- a/content/Anatomi & Histologi 2/Instuderingsfrågor.md +++ b/content/Anatomi & Histologi 2/Instuderingsfrågor.md @@ -1,209 +1,177 @@ -Instuderingsfrågor CNS och sinnesorgan T1 -Översikt +# Översikt 1. Beskriv uppbyggnad och funktion för följande celler -a. Astrocyt -b. Microglia -c. Ependymcell -d. Oligodendrocyt + a. Astrocyt + b. Microglia + c. Ependymcell + d. Oligodendrocyt 2. Vad skiljer och vad förenar Oligodendrocyter och Astrocyter. Hur ses detta i ljusmikroskåpet. -3. Vilka celler tillverkar myelin i CNS respektive PNS? Be skriv skillnader mellan cellerna -(funktionellt och morfologiskt). +3. Vilka celler tillverkar myelin i CNS respektive PNS? Be skriv skillnader mellan cellerna (funktionellt och morfologiskt). 4. Beskriv uppbyggnaden av -a. ett typiskt neuron -b. en typisk synaps -c. en axodendritisk, axosomatisk, resp axoaxonisk synaps -d. de tre olika morfologiska typerna av neuron + a. ett typiskt neuron + b. en typisk synaps + c. en axodendritisk, axosomatisk, resp axoaxonisk synaps + d. de tre olika morfologiska typerna av neuron 5. Hur många axon har ett neuron 6. Hur många axonterminaler har ett neuron 7. Hur många dendriter har ett neuron 8. Vissa nervceller är rejält stora. Hur stora och varför? Ge exempel. 9. Vad menas med en kärna (ej cell) i CNS -Cerebrum -10. Storhjärnan delas in i två halvor, vad heter dessa? Vilken struktur binder dessa samman? -11. Vilken färg (grå/vit) har följande strukturer -a. Cortex cerebri -b. Gyri (cerebri) -c. Substantia alba -d. Capsula interna -e. Corpus callosum -f. Nuclei basales (basala ganglierna) -12. Rita en enkels skiss som visar storhjärnan sedd från sidan, där du sedan markerar och -namnger de två stora fårorna samt synliga lober -13. Vilken funktion återfinns i respektive lob? -14. Vad menas med motoriska- och sensoriska homunculus? -15. Vad heter den stora motoriska bana som börjar i lobus frontalis, motorkortex, motoriska -homunculus? -16. Vad heter de två stora sensoriska banor som terminerar i lobus parietalis, somatosensoriskt -kortex, sensoriska homunculus? -17. Vad heter de knippen med axon/banor som binder samman de olika loberna? -18. Genom vilken struktur, mellan de basala gangligerna, passerar flertalet av banorna t/f -storhjärnan? -19. Vad heter de tre största basala kärnorna/ganglierna -20. Vad menas med nucleus lentiformis och striatum? -21. Vad har de basala kärnorna/ganglierna för funktion? -22. Längsta frågan, rita upp en enkel skiss av cortex cerebris olika lager samt namnge dessa. Vilka -är de största morfologiska skillnaderna mellan sensorisk och motorisk cortex -Värd dubbla poäng och en mindre kaffepaus, men definitivt kärnkunskap. -23. Ange det cortexområde och det cortexlager där pyramidbanans nervcellskroppar är belägna? -24. Var hittar du Insula? Vad har det området för funktion? -Diencephalon -25. Vi delar in diencephalon i tre delar, vilka? -26. Beskriv uppbyggnad och funktion av Thalamus -27. Vad heter de två sensoriska bansystem som förmedlar känsel och som kopplar om i -thalamus? -28. Kopplar pyramidbanan om i thalamus? -29. Vad heter den struktur av vit substans som återfinns precis lateralt om thalamus? -30. Beskriv uppbyggnad och funktion av hypothalamus -31. Vilken del av ventrikelsystemet återfinns mellan bägge sidors hypothalamus? -32. Hur fungerar samspelet (ytterst kort beskrivet) mellan hypothalamus och hypofysen? -33. Vilken körtel återfinns i epithalamus och vad har den kort för funktion? -34. Vilken del av CNS återfinns superiort- respektive inferiort om diencephalon -Limbiska systemet -35. Beskriv uppbyggnad (inkl. de i målbeskrivningen angivna delstrukturerna) och översiktlig -funktion för det limbiska systemet. -36. Vilken del av limbiska systemet arbetar specifikt med minnesinlagring? Vilken färg (grå/vit) -har den förresten? -37. Vad heter den del av limbiska systemet som ”rider över” thalamus och binder samman, ja -vilka strukturer då? -38. En del av limbiska systemet och hypoyhalamus (posteriort om de hypothalama kärnorna) kan -ses utifrån som en utbuktning under hjärnan, vilken? -39. Vilken kärna djupt inne i lobus temporalis räknas till det limbiska systemet och vad är dess -funktion? Grå- eller vit substans? -Truncus encephali -40. Vad heter hjärnstammens tre delar? -41. Vilken struktur återfinns superiort respektive posteriort (dorsalt) och hjärnstammen. -42. Var återfinns vit- respektive grå substans i hjärnstammen. -43. Vad är formatio reticularis och var återfinns det? -44. Vilka, i målbeskrivningen angivna, strukturer återfinns i respektive hjärnstamsdel? -45. Kan du rita upp en enkel skiss över varje hjärnstamsdel och namnge viktiga strukturer? -46. Vad heter de strukturer som kopplar samman truncus encephali med cerebellum? -47. Vilken del av ventrikelsystemet återfinns i övre- respektive nedre delen av hjärnstammen? -48. Vilken del av CNS tar vid inferiort om hjärnstammen? -49. Vad är en kranialnervskärna? -50. Vilka tre stora banor som vi diskuterat på kursen passerar igenom hjärnstammen -51. Beskriv hjärnstammens uppbyggnad, vad ser du i mikroskopet? -Cerebellum -52. Beskriv uppbyggnaden av cerebellum makroanatomiskt -53. Redogör för cortex cerebelli -54. Vad heter den vita substansen i cerebellum och var återfinns den? -55. Hur ser kopplingen mellan cerebrum och cerebellum ut? -56. Vad är vermis för något? -57. Vad har cerebellum för funktion? -58. Vilken struktur återfinns på djupet i cerebellum, grå eller vit substans på den? -59. Var i cerebellum finner man mikroglia, Oligodendrocyter, Astrocyter och Ependymceller -60. Var finner man följande nervceller; Purkinjeceller, stjärnceller, korgceller, kornceller o. -Golgiceller? -61. Vilket ursprung har parallellfibrerna och klättertrådarna i cerebellum? -62. Var finner man parallellfibrer och deras synapser i cerebellum -63. Beskriv till slut uppbyggnad av cortex cerebelli histologiskt, dvs rita upp enkelt och namnge -de olika lagren och celltyperna. Tag därefter ny kaffepaus. -Medulla spinalis -64. Ryggmärgen omges av skyddande strukturer, vilka? (upp till tre korrekta svar jag kommer på) -65. Vilken typ av nervceller finner man i ryggmärgens bakhorn, sidohorn och framhorn (utseende -och huvudsaklig funktion -66. Hur namnges ryggmärgens olika segment? -67. Var återfinner du vit- respektive grå substans i medulla spinalis? (hur ser det ut i övriga delar -av CNS förresten?) -68. Rita upp ett tvärsnitt av ryggmärgen och ange: grå substans, alla de tre hornen och -strängarna samt centralkanal -69. Utifrån ovanstående bild; var fäster dorsal- respektive ventralrot? Var har du ned nedre -motorneuronet? -70. Vad är ett dermatom? -71. Vad är ett myotom? -72. Vad heter det motoriska- och de två sensoriska bansystemen? -73. Beskriv kortfattat förlopp för ovanstående tre bansystem (från var, till var?) -74. Vad menas med övre- respektive nedre motorneuron? -75. Hur ser ryggmärgens olika delar ut histologiskt (dvs cervikala-/thorakala/lumbala respektive -sakrala medulla spinalis). Likheter, skillnader? -76. Beskriv hur ryggmärgens olika celler ser ut och kan särskiljas i ljusmikroskopet -Meninges -77. Vad heter de tre hjärnhinnorna -78. I vilken ordning återfinns de -79. Vilken hinna är tjockast respektive tunnast? -80. Under vilken hinna finner du liquor cerebrospinalis -81. Redogör för dura mater utifrån dess två blad samt sinus durae matris -82. Var finner du Epiduralrummet respektive subduralrummet? Är det fysiologiska rum? -83. Var finner du subarachnoidalrummet, vad finns där och är det ett fysiologiskt rum? -84. Finns alla tre hinnor även runt medulla spinalis? -Ventrikelsystem och blodkärl -85. Vad är ventrikelsystemet för något? -86. Vilka delar ingår och i vilken del av CNS återfinns respektive del -87. Var produceras liquor cerebrospinalis -88. Var töms liquor cerebrospinalis (2 alternativa svar, lite beroende på hur ni resonerar) -89. Har hjärnan artärer och vener som övriga organ eller syresätts hjärnan av liquor -cerebrospinalis? -90. Redogör för blod-hjärn-barriären utifrån ingående delar. Funktion? -91. Vad är funktionen för plexus choroideus? Var finner man det? Hur är det uppbyggt? -92. Hur är respektive hinna uppbyggd histologiskt (kan behöva läsas i histologiboken här) -Ögats anatomi och histologi - instuderingsfrågor -93. Ögat består av tre olika lager, vilka och vad heter de på svenska och latin? -94. Sclera övergår anteriort i, ja vad då? -95. Choroidea övergår anteriort i, ja vad då? -96. Retina övergår anteriort i, ja vad då? -97. Var finner du främre resp. bakre ögonkammare? -98. Vad är och var återfinner du conjunctiva? Histologisk uppbyggnad? -99. Hur är cornea (hornhinnan) uppbyggd? (Jämför egenskaper och uppbyggnad med sclera) -100. Vilken vävnadstyp finns centralt i corpus ciliare och vad har den för funktion? Hur är dess -funktionella koppling till processus ciliare? -101. Hur är linsen uppbyggd och vad har den för funktion? Vad händer när man fokuserar på ett -objekt nära, respektive långt bort i synfältet? -102. Beskriv uppbyggnaden av Iris samt dess relation till dels ANS, dels pupillen -103. Vad består glaskroppen av? Funktion? -104. När du fokuserar på ett objekt, var på näthinnan projiceras då den bilden? -105. Vad är den anatomiska bakgrunden till blinda fläcken? -106. Avseende retina: -a. Vilka lager återfinns? Vad heter de, vad finns i respektive lager, kan du rita upp eller -peka ut på bild? -b. Vilken funktion har retinala pigmentepitelet? -c. Redogör för synnervspapillen -d. Redogör för macula lutea et fovea centralis -e. Vad är och var återfinns stavar och tappar? -107. Rita upp en cirkel och låt denna symbolisera näthinnan, som om du tittade in i en patients -öga. Var hittar du då synnervens inträde och var hittar du gula fläcken? (utgå från att det är -ex höger öga). -108. Vilken kranialnerv förmedlar syn till CNS? -109. Till vilken struktur samt därefter till vilken lob sänds synintryck? -110. Rita upp en bild av ögat i genomskärning och markera de i målbeskrivningen angivna -anatomiska strukturerna (kan du detta, kan du ”allt” om anatomi i detta kursavsnitt) -111. Ta fram en av modellerna i grupprummen och peka på samt namnge de i målbeskrivningen -angivna anatomiska struktur -112. Slutligen, beskriv anatomiskt och histologiskt ljusets väg från det objekt du fokuserar hela -vägen in i ögat och därefter vidare som bild till cortex cerebri. Därefter, Kaffe. -Örats anatomi och histologi -113. Vilka tre delar delas örat in i? -114. Hur är öronmusslan (auricula) uppbyggd? -115. Vilken typ av epitel finner du i hörselgången (meatus acusticus ext)? -116. Var finner du apokrina körtlar? Funktion? -117. Vad är membrana tympani? Uppbyggnad, funktion? -118. Vad heter de tre hörselbenen, vad har de för funktion? -119. Vilket hörselben fäster mot membrana tympani, vilket fäster mot ovala fönstret? -120. Vilken typ av epitel finner man i mellanörat (auris media)? -121. Vad är örontrumpeten (tuba auditiva) för något? Vilken epiteltyp bekläds det -av? -122. Vad är benlabyrinten och vad är hinnlabyrinten (=membranlabyrinten)? -123. Hur är dessa strukturer histologiskt uppbyggd? -124. Vilka delar av innerörat innehåller perilymfa respektive endolymfa? -125. Nämn två egenskaper som skiljer endolymfa och perilymfa och som är nödvändiga för örats -funktion. -126. Hur fungerar mekanosensoriska stimuli i örat (översiktligt)? -127. Redogör för följande begrepp (lokalisation, funktion och uppbyggnad) -a. Ampulla med crista ampullaris -b. Macula -c. Vad är modiolus? -d. Vad är ductus cochlearis? -e. Vad heter de perilymfa-fyllda kanalerna som angränsar mot ductus cochlearis? -f. Vad heter membranen som avgränsar ductus cochlearis? -g. Var finns cortiska organet, och vilken funktion har det? -h. Redogör för uppbyggnaden av cortiska organet och hur svängningar i -basilarmembranet leder till nervimpuls -i. Var finns stria vascularis – funktion? -128. Utifrån modellerna i grupprummen alternativt enkel skiss: redogör för anatomi och funktion för -a. Båggångarna -b. Hinnsäckarna (utriculus et sacculus) -c. Cochlean -129. Vilken kranialnerv förmedlar balans och hörsel till CNS? -130. Vad heter de två ganglierna i ovanstående nerv? Vad finns i ganglierna? -131. Var återfinns hörsel- respektive balanscentrum? -132. Slutligen, redogör för hörselns anatomi/histologi, utifrån att ljudvågor kommer till auricula till att -du får en ljudförnimmelse. Minst 10p, därefter kaffe. \ No newline at end of file +# Cerebrum +1. Storhjärnan delas in i två halvor, vad heter dessa? Vilken struktur binder dessa samman? +2. Vilken färg (grå/vit) har följande strukturer + a. Cortex cerebri + b. Gyri (cerebri) + c. Substantia alba + d. Capsula interna + e. Corpus callosum + f. Nuclei basales (basala ganglierna) +3. Rita en enkels skiss som visar storhjärnan sedd från sidan, där du sedan markerar och namnger de två stora fårorna samt synliga lober +4. Vilken funktion återfinns i respektive lob? +5. Vad menas med motoriska- och sensoriska homunculus? +6. Vad heter den stora motoriska bana som börjar i lobus frontalis, motorkortex, motoriska homunculus? +7. Vad heter de två stora sensoriska banor som terminerar i lobus parietalis, somatosensoriskt kortex, sensoriska homunculus? +8. Vad heter de knippen med axon/banor som binder samman de olika loberna? +9. Genom vilken struktur, mellan de basala gangligerna, passerar flertalet av banorna t/f storhjärnan? +10. Vad heter de tre största basala kärnorna/ganglierna +11. Vad menas med nucleus lentiformis och striatum? +12. Vad har de basala kärnorna/ganglierna för funktion? +13. Längsta frågan, rita upp en enkel skiss av cortex cerebris olika lager samt namnge dessa. Vilka är de största morfologiska skillnaderna mellan sensorisk och motorisk cortex Värd dubbla poäng och en mindre kaffepaus, men definitivt kärnkunskap. +14. Ange det cortexområde och det cortexlager där pyramidbanans nervcellskroppar är belägna? +15. Var hittar du Insula? Vad har det området för funktion? +# Diencephalon +1. Vi delar in diencephalon i tre delar, vilka? +2. Beskriv uppbyggnad och funktion av Thalamus +3. Vad heter de två sensoriska bansystem som förmedlar känsel och som kopplar om i thalamus? +4. Kopplar pyramidbanan om i thalamus? +5. Vad heter den struktur av vit substans som återfinns precis lateralt om thalamus? +6. Beskriv uppbyggnad och funktion av hypothalamus +7. Vilken del av ventrikelsystemet återfinns mellan bägge sidors hypothalamus? +8. Hur fungerar samspelet (ytterst kort beskrivet) mellan hypothalamus och hypofysen? +9. Vilken körtel återfinns i epithalamus och vad har den kort för funktion? +10. Vilken del av CNS återfinns superiort- respektive inferiort om diencephalon +# Limbiska systemet +1. Beskriv uppbyggnad (inkl. de i målbeskrivningen angivna delstrukturerna) och översiktlig funktion för det limbiska systemet. +2. Vilken del av limbiska systemet arbetar specifikt med minnesinlagring? Vilken färg (grå/vit) har den förresten? +3. Vad heter den del av limbiska systemet som ”rider över” thalamus och binder samman, ja vilka strukturer då? +4. En del av limbiska systemet och hypoyhalamus (posteriort om de hypothalama kärnorna) kan ses utifrån som en utbuktning under hjärnan, vilken? +5. Vilken kärna djupt inne i lobus temporalis räknas till det limbiska systemet och vad är dess funktion? Grå- eller vit substans? +# Truncus encephali +1. Vad heter hjärnstammens tre delar? +2. Vilken struktur återfinns superiort respektive posteriort (dorsalt) och hjärnstammen. +3. Var återfinns vit- respektive grå substans i hjärnstammen. +4. Vad är formatio reticularis och var återfinns det? +5. Vilka, i målbeskrivningen angivna, strukturer återfinns i respektive hjärnstamsdel? +6. Kan du rita upp en enkel skiss över varje hjärnstamsdel och namnge viktiga strukturer? +7. Vad heter de strukturer som kopplar samman truncus encephali med cerebellum? +8. Vilken del av ventrikelsystemet återfinns i övre- respektive nedre delen av hjärnstammen? +9. Vilken del av CNS tar vid inferiort om hjärnstammen? +10. Vad är en kranialnervskärna? +11. Vilka tre stora banor som vi diskuterat på kursen passerar igenom hjärnstammen +12. Beskriv hjärnstammens uppbyggnad, vad ser du i mikroskopet? + +# Cerebellum +1. Beskriv uppbyggnaden av cerebellum makroanatomiskt +2. Redogör för cortex cerebelli +3. Vad heter den vita substansen i cerebellum och var återfinns den? +4. Hur ser kopplingen mellan cerebrum och cerebellum ut? +5. Vad är vermis för något? +6. Vad har cerebellum för funktion? +7. Vilken struktur återfinns på djupet i cerebellum, grå eller vit substans på den? +8. Var i cerebellum finner man mikroglia, Oligodendrocyter, Astrocyter och Ependymceller +9. Var finner man följande nervceller; Purkinjeceller, stjärnceller, korgceller, kornceller o. Golgiceller? +10. Vilket ursprung har parallellfibrerna och klättertrådarna i cerebellum? +11. Var finner man parallellfibrer och deras synapser i cerebellum +12. Beskriv till slut uppbyggnad av cortex cerebelli histologiskt, dvs rita upp enkelt och namnge de olika lagren och celltyperna. Tag därefter ny kaffepaus. + +# Medulla spinalis +1. Ryggmärgen omges av skyddande strukturer, vilka? (upp till tre korrekta svar jag kommer på) +2. Vilken typ av nervceller finner man i ryggmärgens bakhorn, sidohorn och framhorn (utseende och huvudsaklig funktion +3. Hur namnges ryggmärgens olika segment? +4. Var återfinner du vit- respektive grå substans i medulla spinalis? (hur ser det ut i övriga delar av CNS förresten?) +5. Rita upp ett tvärsnitt av ryggmärgen och ange: grå substans, alla de tre hornen och strängarna samt centralkanal +6. Utifrån ovanstående bild; var fäster dorsal- respektive ventralrot? Var har du ned nedre motorneuronet? +7. Vad är ett dermatom? +8. Vad är ett myotom? +9. Vad heter det motoriska- och de två sensoriska bansystemen? +10. Beskriv kortfattat förlopp för ovanstående tre bansystem (från var, till var?) +11. Vad menas med övre- respektive nedre motorneuron? +12. Hur ser ryggmärgens olika delar ut histologiskt (dvs cervikala-/thorakala/lumbala respektive sakrala medulla spinalis). Likheter, skillnader? +13. Beskriv hur ryggmärgens olika celler ser ut och kan särskiljas i ljusmikroskopet +# Meninges +1. Vad heter de tre hjärnhinnorna +2. I vilken ordning återfinns de +3. Vilken hinna är tjockast respektive tunnast? +4. Under vilken hinna finner du liquor cerebrospinalis +5. Redogör för dura mater utifrån dess två blad samt sinus durae matris +6. Var finner du Epiduralrummet respektive subduralrummet? Är det fysiologiska rum? +7. Var finner du subarachnoidalrummet, vad finns där och är det ett fysiologiskt rum? +8. Finns alla tre hinnor även runt medulla spinalis? +# Ventrikelsystem och blodkärl +1. Vad är ventrikelsystemet för något? +2. Vilka delar ingår och i vilken del av CNS återfinns respektive del +3. Var produceras liquor cerebrospinalis +4. Var töms liquor cerebrospinalis (2 alternativa svar, lite beroende på hur ni resonerar) +5. Har hjärnan artärer och vener som övriga organ eller syresätts hjärnan av liquor cerebrospinalis? +6. Redogör för blod-hjärn-barriären utifrån ingående delar. Funktion? +7. Vad är funktionen för plexus choroideus? Var finner man det? Hur är det uppbyggt? +8. Hur är respektive hinna uppbyggd histologiskt (kan behöva läsas i histologiboken här) +# Ögats anatomi och histologi - instuderingsfrågor +1. Ögat består av tre olika lager, vilka och vad heter de på svenska och latin? +2. Sclera övergår anteriort i, ja vad då? +3. Choroidea övergår anteriort i, ja vad då? +4. Retina övergår anteriort i, ja vad då? +5. Var finner du främre resp. bakre ögonkammare? +6. Vad är och var återfinner du conjunctiva? Histologisk uppbyggnad? +7. Hur är cornea (hornhinnan) uppbyggd? (Jämför egenskaper och uppbyggnad med sclera) +8. Vilken vävnadstyp finns centralt i corpus ciliare och vad har den för funktion? Hur är dess funktionella koppling till processus ciliare? +9. Hur är linsen uppbyggd och vad har den för funktion? Vad händer när man fokuserar på ett objekt nära, respektive långt bort i synfältet? +10. Beskriv uppbyggnaden av Iris samt dess relation till dels ANS, dels pupillen +11. Vad består glaskroppen av? Funktion? +12. När du fokuserar på ett objekt, var på näthinnan projiceras då den bilden? +13. Vad är den anatomiska bakgrunden till blinda fläcken? +14. Avseende retina: + a. Vilka lager återfinns? Vad heter de, vad finns i respektive lager, kan du rita upp eller peka ut på bild? + b. Vilken funktion har retinala pigmentepitelet? + c. Redogör för synnervspapillen + d. Redogör för macula lutea et fovea centralis + e. Vad är och var återfinns stavar och tappar? +15. Rita upp en cirkel och låt denna symbolisera näthinnan, som om du tittade in i en patients öga. Var hittar du då synnervens inträde och var hittar du gula fläcken? (utgå från att det är ex höger öga). +16. Vilken kranialnerv förmedlar syn till CNS? +17. Till vilken struktur samt därefter till vilken lob sänds synintryck? +18. Rita upp en bild av ögat i genomskärning och markera de i målbeskrivningen angivna anatomiska strukturerna (kan du detta, kan du ”allt” om anatomi i detta kursavsnitt) +19. Ta fram en av modellerna i grupprummen och peka på samt namnge de i målbeskrivningen angivna anatomiska struktur +20. Slutligen, beskriv anatomiskt och histologiskt ljusets väg från det objekt du fokuserar hela vägen in i ögat och därefter vidare som bild till cortex cerebri. Därefter, Kaffe. +# Örats anatomi och histologi +1. Vilka tre delar delas örat in i? +2. Hur är öronmusslan (auricula) uppbyggd? +3. Vilken typ av epitel finner du i hörselgången (meatus acusticus ext)? +4. Var finner du apokrina körtlar? Funktion? +5. Vad är membrana tympani? Uppbyggnad, funktion? +6. Vad heter de tre hörselbenen, vad har de för funktion? +7. Vilket hörselben fäster mot membrana tympani, vilket fäster mot ovala fönstret? +8. Vilken typ av epitel finner man i mellanörat (auris media)? +9. Vad är örontrumpeten (tuba auditiva) för något? Vilken epiteltyp bekläds det av? +10. Vad är benlabyrinten och vad är hinnlabyrinten (=membranlabyrinten)? +11. Hur är dessa strukturer histologiskt uppbyggd? +12. Vilka delar av innerörat innehåller perilymfa respektive endolymfa? +13. Nämn två egenskaper som skiljer endolymfa och perilymfa och som är nödvändiga för örats funktion. +14. Hur fungerar mekanosensoriska stimuli i örat (översiktligt)? +15. Redogör för följande begrepp (lokalisation, funktion och uppbyggnad) + a. Ampulla med crista ampullaris + b. Macula + c. Vad är modiolus? + d. Vad är ductus cochlearis? + e. Vad heter de perilymfa-fyllda kanalerna som angränsar mot ductus cochlearis? + f. Vad heter membranen som avgränsar ductus cochlearis? + g. Var finns cortiska organet, och vilken funktion har det? + h. Redogör för uppbyggnaden av cortiska organet och hur svängningar i basilarmembranet leder till nervimpuls + i. Var finns stria vascularis – funktion? +16. Utifrån modellerna i grupprummen alternativt enkel skiss: redogör för anatomi och funktion för + a. Båggångarna + b. Hinnsäckarna (utriculus et sacculus) + c. Cochlean +17. Vilken kranialnerv förmedlar balans och hörsel till CNS? +18. Vad heter de två ganglierna i ovanstående nerv? Vad finns i ganglierna? +19. Var återfinns hörsel- respektive balanscentrum? +20. Slutligen, redogör för hörselns anatomi/histologi, utifrån att ljudvågor kommer till auricula till att du får en ljudförnimmelse. Minst 10p, därefter kaffe. \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2022-09-05-sara-berglin-sammanfattning.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2022-09-05-sara-berglin-sammanfattning.pdf new file mode 100644 index 0000000..ddd392c --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2022-09-05-sara-berglin-sammanfattning.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6af0a7d8787517b1aebd6288c1257a4f1a3d6b46f90235b34194ea574d460384 +size 142922 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-01-23-annie-bernn-sammanfattning.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-01-23-annie-bernn-sammanfattning.pdf new file mode 100644 index 0000000..414797c --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-01-23-annie-bernn-sammanfattning.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:63b4070f161533b38b541c3149a98d38dd751604b8bc5777266101b2700d4bce +size 1880287 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-motorik.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-motorik.pdf new file mode 100644 index 0000000..3674ae2 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-motorik.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fff948de4a867f12725c3035377c1dd62b34465fabb61fb01fffdc799d13d734 +size 9097682 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-somatosensorik.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-somatosensorik.pdf new file mode 100644 index 0000000..2c48c4c --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-somatosensorik.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3c444356da3470c62fae24f22c188aac07e2b48373e14c247038a25ef4aa7fed +size 10083437 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-syn.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-syn.pdf new file mode 100644 index 0000000..5a2da9a --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-syn.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1c720d7500e1205c71c54559476826864b8aa290f239a70dda6a217227d0ee44 +size 11343914 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-vestibularis.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-vestibularis.pdf new file mode 100644 index 0000000..c56010e --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo alonso-sammanfattning-vestibularis.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ef1d56721a0cf88013f2093316745f4e6bd4e3f2c48d835fc03c433a3855249c +size 7958581 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo-alonso-sammanfattning-hörsel.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo-alonso-sammanfattning-hörsel.pdf new file mode 100644 index 0000000..45834e9 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-02-20-pablo-alonso-sammanfattning-hörsel.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:980e35dce0cde98074288583238f93353b5e26adbcffa004306c293f4ac6e362 +size 8672790 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-03-09-tuve34-sammanfattning.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-03-09-tuve34-sammanfattning.pdf new file mode 100644 index 0000000..958e012 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-03-09-tuve34-sammanfattning.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:72ce0cd6d76610ea1a2276a1547466256bd4960a0107fd8015c5f9ebde4c828a +size 171867 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-05-17-judy-mind-map-cns-3.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-05-17-judy-mind-map-cns-3.pdf new file mode 100644 index 0000000..d232fe9 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-05-17-judy-mind-map-cns-3.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:93b948d80c1a4e5e815136f5674637a7a0af500900662841c8d7309fdc71f540 +size 115062 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2023-06-26-dante-salheri.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2023-06-26-dante-salheri.pdf new file mode 100644 index 0000000..a058df9 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2023-06-26-dante-salheri.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:59be5ac88cf89533ec3ff019f9198aecf0edce5ebf09195e94e4b4e89e613194 +size 1178665 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/2025-09-25-gabriel-anteckningar.pdf b/content/Anatomi & Histologi 2/Kandidaterna/2025-09-25-gabriel-anteckningar.pdf new file mode 100644 index 0000000..d8479dd --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/2025-09-25-gabriel-anteckningar.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d8a0e0c982d7bf5736d856e0501b821b9c337c125020a845b1ba9f6512da859b +size 43770710 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/Anatomi & histologi 2 - Adian Fashil.pdf b/content/Anatomi & Histologi 2/Kandidaterna/Anatomi & histologi 2 - Adian Fashil.pdf new file mode 100644 index 0000000..885adb6 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/Anatomi & histologi 2 - Adian Fashil.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ed2e3a10bb36f6633537d29e0edd18c69586e8ff841cb3bc058bbe9718084834 +size 176056 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/Tentafrågor gamla läkarprogrammet.pdf b/content/Anatomi & Histologi 2/Kandidaterna/Tentafrågor gamla läkarprogrammet.pdf new file mode 100644 index 0000000..d49371c --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/Tentafrågor gamla läkarprogrammet.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8c9e232289a0a7ac0676a6af22502a6ef06a0ccd84696635bb8fbf06c4d52924 +size 7399458 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/anonym anteckningar.pdf b/content/Anatomi & Histologi 2/Kandidaterna/anonym anteckningar.pdf new file mode 100644 index 0000000..fd3d89a --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/anonym anteckningar.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:94dd483c8b94ddfb8d810532f12913bd010cf5e351685d00c3b731f4989241b7 +size 20438309 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/e70ae2b3-eec3-4eaf-a750-54ef474aca93.pdf b/content/Anatomi & Histologi 2/Kandidaterna/e70ae2b3-eec3-4eaf-a750-54ef474aca93.pdf new file mode 100644 index 0000000..e620f4d --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/e70ae2b3-eec3-4eaf-a750-54ef474aca93.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ee80fa23e8572909ce012dd738beeb124d57deff708c1433114a98f2796c2ede +size 10801133 diff --git a/content/Anatomi & Histologi 2/Kandidaterna/tentamen HT23 inga svar.pdf b/content/Anatomi & Histologi 2/Kandidaterna/tentamen HT23 inga svar.pdf new file mode 100644 index 0000000..d879583 --- /dev/null +++ b/content/Anatomi & Histologi 2/Kandidaterna/tentamen HT23 inga svar.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1bd0f85beb6e0ad04c09ee0a7c1f2e3b2a9322457bd6fcea67366875dae6e1be +size 8127874 diff --git a/content/Anatomi & Histologi 2/Målbeskrivning.md b/content/Anatomi & Histologi 2/Målbeskrivning.md index b69965a..f4c7f9c 100644 --- a/content/Anatomi & Histologi 2/Målbeskrivning.md +++ b/content/Anatomi & Histologi 2/Målbeskrivning.md @@ -1,31 +1,27 @@ -https://canvas.gu.se/courses/91586/files/10070039?wrap=1 +Original från https://canvas.gu.se/courses/91586/files/10070039?wrap=1 -**Detaljerad målbeskrivning för kursdel F:** -**Anatomi och histologi del 2**  -**Uppdaterad senast ht-24** +| **Moment Öga/öra** | **Nyckelord** | **Mål** | +| -------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| **Ögat**

**MR anatomi**
**AU histologi** | **Övergripande:** Palpebrae och conjunctiva. Sclera, choroidea och retina. Corpus vitreum.
**Yttersta lagret:** Sclera och cornea.
**Mellersta lagret:** Choroidea, corpus ciliare, proc ciliare, lens, iris, pupilla, corpus vitreum, retina.
**Innersta lagret:** Retina med papilla/discus opticus, macula lutea och fovea centralis. Histologiska lager och dess celler. Koppling till N. Opticus.
**Synens koppling till CNS:** Nervus Opticus, chiasma opticum, tractus opticus, radiatio optica, synkortex. | - Beskriv uppbyggnad och funktion för ögats yttre och mellersta delar samt för linsen.
- Beskriv uppbyggnad och funktion för retina
- Beskriv kopplingen till CNS. | +| **Örat**

**MR anatomi**
**AU histologi** | **Ytteröra:** Auricula, meatus acusticus externus.
**Mellanöra:** Membrana tympani med malleus, incus, och stapes. Fenestra ovalis (vestibularis) och fenestra rotunda (cochlearis). Tuba auditiva.
**Inneröra översikt:** Ben- och hinnlabyrint. Canalis semicircularis vestibulum och cochlea.
**Inneröra balans:** Ductus semicircularis, ampulla, crista ampullaris samt utriculus och sacculus med macula. Ganglion Scarpa, N Vestibularis, centrala banor, balanscentrum och cerebellum.
**Inneröra hörsel:** Ductus cochlearis, scala vestibuli, scala media, scala tympani, lamina basilaris, striae vascularis. Cortiska organet och membrana tectoria. Ganglion spirale, N Cochlearis, centrala banor och hörselcentrum. | - Beskriv uppbyggnad och funktion för ytter- och mellanörat.
- Beskriv uppbyggnad och funktion för innerörat.
- Beskriv uppbyggnad och funktion för balans- apparaten.
- Beskriv uppbyggnad och funktion för hörsel- apparaten. | -| | **Nyckelord** | **Mål** | -| ----------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| **Översikt**

**och celler**

**MR anatomi**

**HC histologi** | **Övergripande:** CNS, PNS. Afferens, efferens och integration. Somatisk, visceral och ANS.

**Neuronets uppbyggnad**: Soma, nucleus, nucleol och Nissl-substans. Dendrit och dendritic spine. Axon, axonkägla, axonterminal, synaps och myelin. Retro- och anterograd transport.

**Typer av neuron**: Multipolära-, bipolära- och pseudounipolära neuron. Motoriska-, sensoriska- och interneuron.

**Synaps:** Pre- och postsynaptiskt neuron, synaptisk klyfta, vesikel, transmittorsubstans och receptor.

**Gliaceller:**  Schwannceller och Satellitceller. Oligodendrocyter, Astrocyter, Microglia, Ependymceller. | - Beskriv nervsystemets övergripande uppbyggnad.

- Beskriva uppbyggnad, funktion och utseende i ljusmikroskopet för neuron

 - Beskriv uppbyggnad, funktion och utseende i ljusmikroskopet för glia. | -| **Telencephalon**

**MR anatomi**

**HC histologi** | **Allmän anatomi:** Hemispherium cerebri, fissura longitudinalis/transversa cerebri, ventriculi I-II.

**Cortex cerebri:** Gyri et sucli, med gyrus pre- och postcentralis, sulcus centralis och sulcus lateralis. Lober med l. frontalis, l. parietalis med uncus, l. temporalis, l. occipitalis samt insula.

**Funktionella centra:** Motorik, somatosensorik,

hörsel, lukt, smak, balans, syn, högre kognitiva funktioner samt limbiska funktioner.

**Histologi: Cortex cerebri lamina (l):**  l. molecularis, II- l. granularis ext, III- l. pyramidalis ext., IV- l. granularis int., V- l. pyramidalis int., VI- l. multiformis

**Substantia alba:** Associationsbanor med fasciculi. Commisurbanor med corpus callosum. Projektionsbanor med capsula interna, pyramid-, baksträngs- och spinothalamiska banan.

**Nuclei basales:** Ncl. Caudatus, ncl. Lentiformis (putamen och globus pallidus). Striatum (ncl. Caudatus och putamen). | - Beskriv uppbyggnad och funktion av cortex cerebri, makroanatomiskt.

- Beskriv uppbyggnad och funktion av cortex cerebri, funktionellt.

- Beskriv hur de olika lagren i cortex cerebri ser ut samt särskiljs i ljusmikroskop.

- Beskriv uppbyggnad och funktion för substantia alba.

- Beskriv uppbyggnad och funktion för nuclei basales och “basala ganglierna”. | -| **Diencephalon**

**och Limbiska systemet**

**MR anatomi**

**HC histologi** | **Thalamus:** Multipla kärnor, afferenta- och efferenta banor. Metathalamus.  3:e ventrikeln.

**Hypothalamus:** Multipla kärnor. Corpora mammillaria. Hypophysis. 3:e ventrikeln.

**Epithalamus:** Corpus pineale (tallkottkörteln).

**Subthalamus:** Nucleus subthalamicus.

**Limbiska systemet:** Hippocampus, ncl. amygdaloideum (amygdala), gyrus cinguli, fornix, corpora mammillaria. | - Beskriv uppbyggnad och funktion för diencephalons olika delar

- Beskriv uppbyggnad och funktion för limbiska systemet | +| | **Nyckelord** | **Mål** | +| -------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| **Översikt och celler**

**MR anatomi**
**HC histologi** | **Övergripande:** CNS, PNS. Afferens, efferens och integration. Somatisk, visceral och ANS.
**Neuronets uppbyggnad**: Soma, nucleus, nucleol och Nissl-substans. Dendrit och dendritic spine. Axon, axonkägla, axonterminal, synaps och myelin. Retro- och anterograd transport.
**Typer av neuron**: Multipolära-, bipolära- och pseudounipolära neuron. Motoriska-, sensoriska- och interneuron.
**Synaps:** Pre- och postsynaptiskt neuron, synaptisk klyfta, vesikel, transmittorsubstans och receptor.
**Gliaceller:**  Schwannceller och Satellitceller. Oligodendrocyter, Astrocyter, Microglia, Ependymceller. | - Beskriv nervsystemets övergripande uppbyggnad.
- Beskriva uppbyggnad, funktion och utseende i ljusmikroskopet för neuron
 - Beskriv uppbyggnad, funktion och utseende i ljusmikroskopet för glia. | +| **Telencephalon**

**MR anatomi**
**HC histologi** | **Allmän anatomi:** Hemispherium cerebri, fissura longitudinalis/transversa cerebri, ventriculi I-II.
**Cortex cerebri:** Gyri et sucli, med gyrus pre- och postcentralis, sulcus centralis och sulcus lateralis. Lober med l. frontalis, l. parietalis med uncus, l. temporalis, l. occipitalis samt insula.
**Funktionella centra:** Motorik, somatosensorik, hörsel, lukt, smak, balans, syn, högre kognitiva funktioner samt limbiska funktioner.
**Histologi: Cortex cerebri lamina (l):**  l. molecularis, II- l. granularis ext, III- l. pyramidalis ext., IV- l. granularis int., V- l. pyramidalis int., VI- l. multiformis
**Substantia alba:** Associationsbanor med fasciculi. Commisurbanor med corpus callosum. Projektionsbanor med capsula interna, pyramid-, baksträngs- och spinothalamiska banan.
**Nuclei basales:** Ncl. Caudatus, ncl. Lentiformis (putamen och globus pallidus). Striatum (ncl. Caudatus och putamen). | - Beskriv uppbyggnad och funktion av cortex cerebri, makroanatomiskt.
- Beskriv uppbyggnad och funktion av cortex cerebri, funktionellt.
- Beskriv hur de olika lagren i cortex cerebri ser ut samt särskiljs i ljusmikroskop.
- Beskriv uppbyggnad och funktion för substantia alba.
- Beskriv uppbyggnad och funktion för nuclei basales och “basala ganglierna”. | +| **Diencephalon och Limbiska systemet**

**MR anatomi**
**HC histologi** | **Thalamus:** Multipla kärnor, afferenta- och efferenta banor. Metathalamus.  3:e ventrikeln.
**Hypothalamus:** Multipla kärnor. Corpora mammillaria. Hypophysis. 3:e ventrikeln.
**Epithalamus:** Corpus pineale (tallkottkörteln).
**Subthalamus:** Nucleus subthalamicus.
**Limbiska systemet:** Hippocampus, ncl. amygdaloideum (amygdala), gyrus cinguli, fornix, corpora mammillaria. | - Beskriv uppbyggnad och funktion för diencephalons olika delar
- Beskriv uppbyggnad och funktion för limbiska systemet | -| | **Nyckelord** | **Mål** | -| ------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| **Truncus encephali**

**MR anatomi**

**HC histologi** | **Allmän anatomi:** Vit substans med banor. Grå substans med kranialnervskärnor, formatio reticularis och övriga kärnor.

**Mesencephalon:** Crus- et pedunculus cerebri, substantia nigra, ncl. ruber, aqueductus med periaqueductal grey, colliculus superior och inferior.

**Pons:** Nuclei pontis, cerebellära banor.

**Medulla oblongata:** Ncl. Olivaris med Oliva, decussatio pyramidales med pyramis. Autonoma centra för andning, BT och hjärtfrekvens.

**Neuromodulatoriska bansystem:** Locus coeruleus (NA), nucleus raphe (5HT), ventral tegmental area VTA  och substantia nigra (DA), ponto-mesencephala komplexet med nuclei -septi/-basales (Ach.). | - Beskriv uppbyggnad och funktion för truncus encephali.

- Beskriv horisontalsnitt för hjärnstammens 3 delar

- Kunna särskilja kärnor och banor i ljusmikroskopet

- Översiktligt beskriva formatio reticularis och neuromodulatoriska bansystem. | -| **Cerebellum**

**MR anatomi**

**HC histologi** | **Allmän anatomi:** Hemispherium cerebelli med vermis. Nuclei cerebelli

**Cortex cerebelli:** Folia/fissura,lobi. Laminae (l.molecularis, Purkinjecellslagret,, l.granularis).

Celler (stjärnceller, korgceller, purkinjeceller, golgiceller, kornceller och Bergmannglia).

**Substantia Albai:** Arbor vitae. Pedunculi cerebellares.

**Nuclei cerebelli:** Nucleus Dentatus et al.

**Afferens- och Efferens:** Balans, Proprioception, syn. Motoriska centra i storhjärna/hjärnstam. | - Beskriv uppbyggnaden och funktion för cerebellum

- Beskriv cerebellums afferens och efferens.

- Beskriv hur de olika lagren i cortex cerebelli ser ut samt särskiljs i ljusmikroskop. | -| **Medulla spinalis**

**MR anatomi**

**HC histologi** | **Allmän anatomi:**  Segment, koppling till n.spinalis med radix ant. et post, conus medullaris, cauda equina, canalis centralis.

Meninges och subarachnoidala rummet.

**Motoriska banor:** Tr. corticospinalis lateralis/anterius, extrapyramidala banor.

**Sensoriska banor:** Fasciculus cuneatus/gracilis (baksträngsbanan). Tr. spinothalamicus ant-/lat. **Segment:** Cornu anterius, lateralis och posterius. Funiculus anterius, lateralis och posterius. Canalis centralis.  Motoriska- sensoriska och autonoma neuron.

**Segment koppling PNS:** N spinalis, radix ant./post, ggl spinalis. Myotom & motorisk enhet. Dermatom. | - Beskriv uppbyggnad och funktion för medulla spinalis makroanatomiskt.

- Beskriv uppbyggnad och funktion för de tre stora bansystemen.

- Beskriv relation till PNS

- Beskriv uppbyggnad av segmentet, hur dess olika celler ser ut och hur de kan särskiljas i ljusmikroskopet. | -| **Hinnor, hålrum och kärl**

**MR anatomi**

**HC histologi** | **Meninges:** Dura mater med dess två blad samt epi- och subduralrummet.  Arachnoidea mater med subarachnoidalrummet. Pia mater med plexus choroideus.

**Systema ventriculi:** Ventriculus I-IV med aqueductus cerebri.  Plexus choroideus med liquor cerebrospinalis (CSF).

**Blodkärl:** Artärer och blod-hjärn-barriären (BBB). Vener och sinus durae matris. Glymfatiska systemet. | - Beskriv uppbyggnad och funktion av meninges

-Beskriv uppbyggnad och funktion av systema ventriculi med CSF.

- Beskriv uppbyggnad och funktion av kärl och BBB. | +| | **Nyckelord** | **Mål** | +| --------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| **Truncus encephali**

**MR anatomi**
**HC histologi** | **Allmän anatomi:** Vit substans med banor. Grå substans med kranialnervskärnor, formatio reticularis och övriga kärnor.
**Mesencephalon:** Crus- et pedunculus cerebri, substantia nigra, ncl. ruber, aqueductus med periaqueductal grey, colliculus superior och inferior.
**Pons:** Nuclei pontis, cerebellära banor.
**Medulla oblongata:** Ncl. Olivaris med Oliva, decussatio pyramidales med pyramis. Autonoma centra för andning, BT och hjärtfrekvens.
**Neuromodulatoriska bansystem:** Locus coeruleus (NA), nucleus raphe (5HT), ventral tegmental area VTA  och substantia nigra (DA), ponto-mesencephala komplexet med nuclei -septi/-basales (Ach.). | - Beskriv uppbyggnad och funktion för truncus encephali.
- Beskriv horisontalsnitt för hjärnstammens 3 delar
- Kunna särskilja kärnor och banor i ljusmikroskopet
- Översiktligt beskriva formatio reticularis och neuromodulatoriska bansystem. | +| **Cerebellum**

**MR anatomi**
**HC histologi** | **Allmän anatomi:** Hemispherium cerebelli med vermis. Nuclei cerebelli
**Cortex cerebelli:** Folia/fissura,lobi. Laminae (l.molecularis, Purkinjecellslagret,, l.granularis).
Celler (stjärnceller, korgceller, purkinjeceller, golgiceller, kornceller och Bergmannglia).
**Substantia Albai:** Arbor vitae. Pedunculi cerebellares.
**Nuclei cerebelli:** Nucleus Dentatus et al.
**Afferens- och Efferens:** Balans, Proprioception, syn. Motoriska centra i storhjärna/hjärnstam. | - Beskriv uppbyggnaden och funktion för cerebellum
- Beskriv cerebellums afferens och efferens.
- Beskriv hur de olika lagren i cortex cerebelli ser ut samt särskiljs i ljusmikroskop. | +| **Medulla spinalis**

**MR anatomi**
**HC histologi** | **Allmän anatomi:**  Segment, koppling till n.spinalis med radix ant. et post, conus medullaris, cauda equina, canalis centralis.
Meninges och subarachnoidala rummet.
**Motoriska banor:** Tr. corticospinalis lateralis/anterius, extrapyramidala banor.
**Sensoriska banor:** Fasciculus cuneatus/gracilis (baksträngsbanan). Tr. spinothalamicus ant-/lat. **Segment:** Cornu anterius, lateralis och posterius. Funiculus anterius, lateralis och posterius. Canalis centralis.  Motoriska- sensoriska och autonoma neuron.
**Segment koppling PNS:** N spinalis, radix ant./post, ggl spinalis. Myotom & motorisk enhet. Dermatom. | - Beskriv uppbyggnad och funktion för medulla spinalis makroanatomiskt.
- Beskriv uppbyggnad och funktion för de tre stora bansystemen.
- Beskriv relation till PNS
- Beskriv uppbyggnad av segmentet, hur dess olika celler ser ut och hur de kan särskiljas i ljusmikroskopet. | +| **Hinnor, hålrum och kärl**

**MR anatomi**
**HC histologi** | **Meninges:** Dura mater med dess två blad samt epi- och subduralrummet.  Arachnoidea mater med subarachnoidalrummet. Pia mater med plexus choroideus.
**Systema ventriculi:** Ventriculus I-IV med aqueductus cerebri.  Plexus choroideus med liquor cerebrospinalis (CSF).
**Blodkärl:** Artärer och blod-hjärn-barriären (BBB). Vener och sinus durae matris. Glymfatiska systemet. | - Beskriv uppbyggnad och funktion av meninges
- Beskriv uppbyggnad och funktion av systema ventriculi med CSF.
- Beskriv uppbyggnad och funktion av kärl och BBB. | -| | **Nyckelord** | **Mål** | -| ----------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -| **PNS**

**MR anatomi**

**HC histologi** | **Övergripande:**. Grå- och vit substans med nerver och ganglier. Visceral- och somatisk afferens och efferens.

**Nervi spinales:** N spinalis med radix anterior, radix posterior och ganglion spinalis (ggl dorsalis). Plexa. Perifer nerv. (samma neuron hela vägen)

**Nervi craniales:** N. I-XII (samma neuron hela vägen).

**Nervens histologi:** Epi-, peri- och endoneurium. Neurilemma. Blod-nerv-barriären (BNB) med tight junctions, schwannceller och ranvierska noder/kors.

**Sensoriska ganglion, histologi:** Neuron, glia, bindväv. Skillnad mot autonoma ganglion. | - Beskriv uppbyggnad och funktion för PNS och dess olika delar.

- Beskriv kopplingen segment, spinalnerv. plexa, perifer nerv och målorgan.

- Beskriv uppbyggnad och utseende i ljusmikroskopet för nerver, BNB och sensoriska ganglion. | -| **ANS**

**MR anatomi**

**HC histologi** | **Övergripande:** Pre- och postganglionära neuron. Autonoma ganglier.

**Sympaticus:** Thorako-lumbalt ursprung.

Cornu lateralis, nervus spinalis, ganglion paravertebralis med truncus sympaticus, ganglion prevertebralis, perifer nerv (eller via kärl).

**Parasympaticus:** Kraniosakralt ursprung.

Kraniella delen: Truncus encephali, nervi craniales.

Sakrala delen: Cornu lateralis S2-S4, n. spinalis, perifera nerve,  ganglion intramuralis.

**Autonoma ganglion, histologi:** Neuron, glia, bindväv. Skillnad mot sensoriska ganglion. | - Beskriv uppbyggnad och funktion för sympaticus och parasympaticus.

- Beskriv kopplingen ANS - PNS - CNS.

- Beskriv uppbyggnad, och utseende i ljusmikroskopet för autonoma ganglion. | - -| **Moment Öga/öra** | **Nyckelord** | **Mål** | -| ------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -| **Ögat**

**MR anatomi**

**AU histologi** | **Övergripande:** Palpebrae och conjunctiva. Sclera, choroidea och retina. Corpus vitreum.

**Yttersta lagret:** Sclera och cornea.

**Mellersta lagret:** Choroidea, corpus ciliare, proc ciliare, lens, iris, pupilla, corpus vitreum, retina.

**Innersta lagret:** Retina med papilla/discus opticus, macula lutea och fovea centralis. Histologiska lager och dess celler. Koppling till N. Opticus.

**Synens koppling till CNS:** Nervus Opticus, chiasma opticum, tractus opticus, radiatio optica, synkortex. | - Beskriv uppbyggnad och funktion för ögats yttre och mellersta delar samt för linsen.

- Beskriv uppbyggnad och funktion för retina

- Beskriv kopplingen till CNS. | -| **Örat**

**MR anatomi**

**AU histologi** | **Ytteröra:** Auricula, meatus acusticus externus.

**Mellanöra:** Membrana tympani med malleus, incus, och stapes. Fenestra ovalis (vestibularis) och fenestra rotunda (cochlearis). Tuba auditiva.

**Inneröra översikt:** Ben- och hinnlabyrint. Canalis semicircularis vestibulum och cochlea.

**Inneröra balans:** Ductus semicircularis, ampulla, crista ampullaris samt utriculus och sacculus med macula. Ganglion Scarpa, N Vestibularis, centrala banor, balanscentrum och cerebellum.

**Inneröra hörsel:** Ductus cochlearis, scala vestibuli, scala media, scala tympani, lamina basilaris, striae vascularis. Cortiska organet och membrana tectoria. Ganglion spirale, N Cochlearis, centrala banor och hörselcentrum. | - Beskriv uppbyggnad och funktion för ytter- och mellanörat.

- Beskriv uppbyggnad och funktion för innerörat.

- Beskriv uppbyggnad och funktion för balans- apparaten.

- Beskriv uppbyggnad och funktion för hörsel- apparaten. | \ No newline at end of file +| | **Nyckelord** | **Mål** | +| ------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| **PNS**

**MR anatomi**
**HC histologi** | **Övergripande:**. Grå- och vit substans med nerver och ganglier. Visceral- och somatisk afferens och efferens.
**Nervi spinales:** N spinalis med radix anterior, radix posterior och ganglion spinalis (ggl dorsalis). Plexa. Perifer nerv. (samma neuron hela vägen)
**Nervi craniales:** N. I-XII (samma neuron hela vägen).
**Nervens histologi:** Epi-, peri- och endoneurium. Neurilemma. Blod-nerv-barriären (BNB) med tight junctions, schwannceller och ranvierska noder/kors.
**Sensoriska ganglion, histologi:** Neuron, glia, bindväv. Skillnad mot autonoma ganglion. | - Beskriv uppbyggnad och funktion för PNS och dess olika delar.
- Beskriv kopplingen segment, spinalnerv. plexa, perifer nerv och målorgan.
- Beskriv uppbyggnad och utseende i ljusmikroskopet för nerver, BNB och sensoriska ganglion. | +| **ANS**

**MR anatomi**
**HC histologi** | **Övergripande:** Pre- och postganglionära neuron. Autonoma ganglier.
**Sympaticus:** Thorako-lumbalt ursprung.
Cornu lateralis, nervus spinalis, ganglion paravertebralis med truncus sympaticus, ganglion prevertebralis, perifer nerv (eller via kärl).
**Parasympaticus:** Kraniosakralt ursprung.
Kraniella delen: Truncus encephali, nervi craniales.
Sakrala delen: Cornu lateralis S2-S4, n. spinalis, perifera nerve,  ganglion intramuralis.
**Autonoma ganglion, histologi:** Neuron, glia, bindväv. Skillnad mot sensoriska ganglion. | - Beskriv uppbyggnad och funktion för sympaticus och parasympaticus.
- Beskriv kopplingen ANS - PNS - CNS.
- Beskriv uppbyggnad, och utseende i ljusmikroskopet för autonoma ganglion. | diff --git a/content/Anatomi & Histologi 2/Schema.md b/content/Anatomi & Histologi 2/Schema.md index c737c77..93a7313 100644 --- a/content/Anatomi & Histologi 2/Schema.md +++ b/content/Anatomi & Histologi 2/Schema.md @@ -1,45 +1,28 @@ -TimeEdit - Göteborgs universitet -LPG001, Basvetenskap och tidig yrkeskontakt 1, DAG, HT2025, ORD, NML, GÖTEBORG 2025-12-20 - 2026-06-20 OBS! Schemat är preliminärt fram till 14 dagar före kursstart. - v 52 2025-12-22 08:15 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Distansundervisning/Online, , Magnus Rudenholm, Videoinspelning, , Öga, Öra anatomi, inspelad föreläsning, , , - v 52 2025-12-22 16:00 - 17:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Zoom, Zoom, , Magnus Rudenholm, Frågestund, , Frågestund, , , - v 52 2025-12-24 00:00 - 00:00 Julafton, , , , , , , , , , , - v 52 2025-12-25 00:00 - 00:00 Juldagen, , , , , , , , , , , - v 52 2025-12-26 00:00 - 00:00 Annandag jul, , , , , , , , , , , - v 1 2025-12-31 00:00 - 00:00 Nyårsafton, , , , , , , , , , , - v 1 2026-01-01 00:00 - 00:00 Nyårsdagen, , , , , , , , , , , - v 1 2026-01-02 08:15 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , , , Anne Uv, Föreläsning, Inspelat material, , Öga, Öra histologi, inspelad, , , - v 1 2026-01-02 13:15 - 16:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , , , Anne Uv, Zoom, , Digital mikroskopering och frågor histo, öga och öra, , , - v 2 2026-01-05 09:15 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Distansundervisning/Online, , Magnus Rudenholm, Videoinspelning, , CNS I på Canvas, , , - v 2 2026-01-05 16:00 - 17:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Zoom, , Magnus Rudenholm, Frågestund, , Frågestund via zoom, , , - v 2 2026-01-06 00:00 - 00:00 Trettondedag jul, , , , , , , , , , , - v 2 2026-01-07 08:30 - 11:45 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , 2403 Stenbrottet Multisal, , Anne Uv, Magnus Rudenholm, Gruppundervisning, , TBL Öga/Öra, , , - v 2 2026-01-07 13:00 - 15:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , 1405 B Folkow, , Joan Camuñas, Abhishek Niroula, Föreläsning, , Biomedicinsk forskning, original/ översiktsartikel Vetenskapliga modellsystem, , , - v 2 2026-01-08 09:15 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Arvid Carlsson, , Magnus Rudenholm, Föreläsning, , CNS II, , , - v 2 2026-01-08 12:00 - 12:30 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Arvid Carlsson, , Magnus Rudenholm, Föreläsning, , Kursens halvtimme, , , - v 2 2026-01-08 13:15 - 14:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , 1405 B Folkow, , Helena Carén, Föreläsning, , CNS histologi, , , - v 2 2026-01-09 08:15 - 11:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , 1034 I Ivarsson, , Magnus Rudenholm, Föreläsning, , CNS III, , , - v 2 2026-01-09 12:00 - 15:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Grupprum 1 BioMed, Grupprum 10 BioMed, Grupprum 11-Vis Tab BioMed, Grupprum 2 BioMed, Grupprum 3 BioMed, Grupprum 4 BioMed, Grupprum 5 BioMed, Grupprum 6 BioMed, Grupprum 7 BioMed, Grupprum 8 BioMed, Grupprum 9-Vis Tab BioMed, Anatomens grupprum, , Helena Carén, Gruppövning, , Mikroskopering och anatomimodeller, , , - v 3 2026-01-12 08:30 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , 2403 Stenbrottet Multisal, , Helena Carén, Magnus Rudenholm, Gruppundervisning, , TBL CNS, , , - v 3 2026-01-12 13:00 - 16:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , , , , Självstudier, , Inläsning / förberedelse vetenskaplig artikel, , , - v 3 2026-01-13 09:00 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , , , , Självstudier, , , , , - v 3 2026-01-13 13:00 - 16:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , , , , Självstudier, , Inläsning / förberedelse vetenskaplig artikel, , , - v 3 2026-01-14 10:00 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Zoom, , Anne Uv, Helena Carén, Magnus Rudenholm, Frågestund, , Frågestund inför skriftliga tentamen (via zoom), , , - v 3 2026-01-14 13:00 - 16:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , , , , Självstudier, , Självstudier, , , - v 3 2026-01-15 08:00 - 16:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Distansundervisning/Online, , , Självstudier, , Inläsning / förberedelse vetenskaplig artikel, , , - v 3 2026-01-15 19:00 - 21:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Andra Långgatan 19, , , Digital tentamen, Obligatoriskt, , Skriftig tentamen anatomi/histologi del 2, , , - v 3 2026-01-16 09:15 - 12:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, B1, B10, B2, B3, B4, B5, B6, B7, B8, B9, , 2045 T Bjurström, , Joan Camuñas, Abhishek Niroula, Gruppundervisning, Obligatoriskt, , TBL vetenskaplig artikel, , , - v 3 2026-01-16 13:15 - 16:00 LPG001. Basvetenskap och tidig yrkeskontakt 1, A1, A10, A2, A3, A4, A5, A6, A7, A8, A9, , 2045 T Bjurström, , Joan Camuñas, Abhishek Niroula, Gruppundervisning, Obligatoriskt, , TBL vetenskaplig artikel, , , - v 5 2026-01-31 08:30 - 12:30 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Första Långgatan 16, , , Digital tentamen, Obligatoriskt, , Digital omtentamen - biokemi med skannat papper., , , - v 6 2026-02-07 08:30 - 10:30 LPG001. Basvetenskap och tidig yrkeskontakt 1, , , Andra Långgatan 19, , , Digital tentamen, Obligatoriskt, , Digital omtentamen anatomi/histologi del 2, , , - v 14 2026-04-03 00:00 - 00:00 Långfredag, , , , , , , , , , , - v 14 2026-04-04 00:00 - 00:00 Påskafton, , , , , , , , , , , - v 14 2026-04-05 00:00 - 00:00 Påskdagen, , , , , , , , , , , - v 15 2026-04-06 00:00 - 00:00 Annandag påsk, , , , , , , , , , , - v 16 2026-04-18 07:00 - 21:00 Högskoleprovet, , , , , , , , , , , - v 18 2026-05-01 00:00 - 00:00 Första maj, , , , , , , , , , , - v 20 2026-05-14 00:00 - 00:00 Kristi himmelsfärdsdag, , , , , , , , , , , - v 21 2026-05-23 00:00 - 00:00 Pingstafton, , , , , , , , , , , - v 21 2026-05-24 00:00 - 00:00 Pingstdagen, , , , , , , , , , , - v 23 2026-06-06 00:00 - 00:00 Sveriges nationaldag, , , , , , , , , , , - v 25 2026-06-19 00:00 - 00:00 Midsommarafton, , , , , , , , , , , - v 25 2026-06-20 00:00 - 00:00 Midsommardagen, , , , , , , , , , , \ No newline at end of file + +| Datum | Tid | Aktivitet | Plats | Lärare | +| ---------- | ----------- | ---------------------------------------------------- | ------------------------------------------------------------------------------------------------ | --------------------------------------- | +| 2025-12-22 | 08:15-12:00 | Öga, Öra anatomi | [Inspelad föreläsning](https://www.youtube.com/playlist?list=PLobtoK7crbL90JbKjgTFAL19hTcqy-fZ-) | Magnus Rudenholm | +| 2025-12-22 | 16:00–17:00 | Frågestund | [Zoom](https://app.zoom.us/wc/join/62993534868?fromPWA=1&pwd=dmVuVXc0NXRoRnFqdXR1dEVSc2Urdz09) | Magnus Rudenholm | +| 2026-01-02 | 08:15–12:00 | Öga, Öra histologi | Inspelad föreläsning | Anne Uv | +| 2026-01-02 | 13:15–16:00 | Digital mikroskopering och frågor histo, öga och öra | [Zoom](https://app.zoom.us/wc/join/62993534868?fromPWA=1&pwd=dmVuVXc0NXRoRnFqdXR1dEVSc2Urdz09) | Anne Uv | +| 2026-01-05 | 09:15–12:00 | CNS I på Canvas | Inspelad föreläsning | Magnus Rudenholm | +| 2026-01-05 | 16:00–17:00 | Frågestund | [Zoom](https://app.zoom.us/wc/join/62993534868?fromPWA=1&pwd=dmVuVXc0NXRoRnFqdXR1dEVSc2Urdz09) | Magnus Rudenholm | +| 2026-01-07 | 08:30–11:45 | TBL Öga/Öra | 2403 Stenbrottet Multisal | Anne Uv, Magnus Rudenholm | +| 2026-01-07 | 13:00–15:00 | Biomedicinsk forskning/Vetenskapliga modellsystem | 1405 B Folkow | Joan Camuñas, Abhishek Niroula | +| 2026-01-08 | 09:15–12:00 | CNS II | Arvid Carlsson | Magnus Rudenholm | +| 2026-01-08 | 12:00–12:30 | Kursens halvtimme | Arvid Carlsson | Magnus Rudenholm | +| 2026-01-08 | 13:15–14:00 | CNS histologi | 1405 B Folkow | Helena Carén | +| 2026-01-09 | 08:15–11:00 | CNS III | 1034 I Ivarsson | Magnus Rudenholm | +| 2026-01-09 | 12:00–15:00 | Mikroskopering och anatomimodeller | Anatomens grupprum | Helena Carén | +| 2026-01-12 | 08:30–12:00 | TBL CNS | 2403 Stenbrottet Multisal | Helena Carén, Magnus Rudenholm | +| 2026-01-12 | 13:00–16:00 | Förberedelse vetenskaplig artikel | Självstudier | | +| 2026-01-13 | 13:00–16:00 | Förberedelse vetenskaplig artikel | Självstudier | | +| 2026-01-14 | 10:00–12:00 | Frågestund inför skriftliga tentamen | [Zoom](https://app.zoom.us/wc/join/62993534868?fromPWA=1&pwd=dmVuVXc0NXRoRnFqdXR1dEVSc2Urdz09) | Anne Uv, Helena Carén, Magnus Rudenholm | +| 2026-01-15 | 08:00–16:00 | Förberedelse vetenskaplig artikel | Distansundervisning/Online Självstudier | | +| 2026-01-15 | 19:00–21:00 | Skriftig tentamen anatomi/histologi del 2 | Andra Långgatan 19 | | +| 2026-01-16 | 09:15–12:00 | TBL vetenskaplig artikel: B1-B10 - Obligatorisk | 2045 T Bjurström | Joan Camuñas, Abhishek Niroula | +| 2026-01-16 | 13:15–16:00 | TBL vetenskaplig artikel: A1-A10 - Obligatorisk | 2045 T Bjurström | Joan Camuñas, Abhishek Niroula | +| 2026-01-31 | 08:30–12:30 | Digital omtentamen - biokemi med skannat papper | Första Långgatan 16 | | +| 2026-02-07 | 08:30–10:30 | Digital omtentamen anatomi/histologi del 2 | Andra Långgatan 19 | | + + diff --git a/content/Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.md b/content/Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.md new file mode 100644 index 0000000..02e9b01 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.md @@ -0,0 +1,398 @@ +Organa sensum: Auris et oculus + +Detta kapitel beskriver endast syn- och hörselsinnen. Smak, lukt och sensorisk innervering för känsel beskrivs i Systema nervosum. + +### Auris + +AURIS (örat) delas in i auris externa, media och interna (ytter-, mellan- och inneröra). + +AURIS EXTERNA (figur 4.1) består av den yttre hörselgången MEATUS ACUSTICUS EXTERNUS samt öronmusslan AURICULA som beskrivs efter dess utmärkande konturer. Den fria kanten benämns HELIX och broskåsen, som ligger framför den, kallas ANTIHELIX. Med utgångspunkten framför PORUS ACUSTICUS EXTERNUS (öppningen till den yttre hörselgången) finns broskfliken TRAGUS, som delvis överlappar öppningen. ANTITRAGUS är en upphöjd flik där antihelix slutar nedåt. CONCHA AURICULAE är musslans hålighet som avgränsas av tragus, antitragus och antihelix. Den nedre djupa halvan av concha auriculae kallas CAVITAS CONCHAE. Örsnibben, den broskfria nedre delen av ytterörat, benämns LOBULUS AURICULAE. + +**Bildbeskrivning (Figur 4.1):** En detaljerad anatomisk bild av människoörat, sedd framifrån från höger sida, med fokus på ytterörat, mellanörat och innerörat. Benämningarna för de olika delarna är tydligt markerade. + +* **Ytterörat:** + * m. temporalis + * auricula (öronmusslan) + * helix (öronmusslans yttre kant) + * meatus acusticus externus (yttre hörselgången) + * crus helicis + * antihelix (broskåsen innanför helix) + * tragus (broskfliken framför hörselgången) + * porus acusticus externus (öppningen till yttre hörselgången) + * cavitas conchae (musslans hålighet) + * antitragus (broskfliken mittemot tragus) + * lobulus auriculae (örsnibben) + * nodi lymphoidei parotidei + * gl. parotidea + +* **Mellanörat:** + * malleus (hammaren, ett av hörselbenen) + * incus (städet, ett av hörselbenen) + * stapes (stigbygeln, ett av hörselbenen) + * cavitas tympani (trumhålan) + * membrana tympanica (trumhinnan) + * tuba auditiva (örontrumpeten, förbinder mellanörat med svalget) + +* **Innerörat:** + * canales semicirculares (båggångarna, del av balansorganet) + * n. vestibularis (vestibularisnerven, del av balansnerven) + * n. facialis (ansiktsnerven) + * n. vestibulocochlearis (balans- och hörselnerven) + * n. cochlearis (cochleanerven, del av hörselnerven) + * cochlea (snäckan, hörselorganet) + +*FORFATTAREN OCH STUDENTLITTERATUR* +174 4 ORGANA SENSUM: AURIS ET OCULUS + +huvudsakliga funktion är att fånga upp ljudvågor och rikta dem mot hörselgången. + +Meatus acusticus externus är drygt två centimeter lång och slutar vid bindvävshinnan MEMBRANA TYMPANICA (trumhinnan, figur 4.2) som utgör gränsen till auris media. Membrana tympanica omges av en fibrös ring, ANULUS FIBROCARTILAGINEUS, och består av en superior, liten och slapp del, PARS FLACCIDA, samt en inferior, större, spänd och ljudförmedlande del, PARS TENSA. UMBO MEMBRANAE TYMPANICAE är en konliknande inbuktning centralt i hinnan. Där bendelen manubrium mallei ("hammarens handtag") lyser igenom membrana tympanica syns en strimma som kallas STRIA MALLEARIS. Luftvibrationer (ljudvågor) som fokuseras av auricula och leds genom meatus acusticus externus sätter membrana tympanica i vibrerande rörelse. + +AURIS MEDIA tar vid medialt om membrana tympanica som samtidigt utgör den laterala väggen till CAVITAS TYMPANI (figur 4.3), ett luftfyllt utrymme beläget i pars petrosa som utgör utrymmets övriga begräns- + +**[Bildbeskrivning av Figur 4.2: En stiliserad lateral vy av höger trumhinna (membrana tympanica). Trumhinnan är avlång och oval med en central inbuktning. Den övre, mindre delen är benämnd "pars flaccida", medan den större, nedre delen har en långsträckt sträcka benämnd "stria mallearis". I den centrala inbuktningen finns "umbo membranae tympanicae" som markerar naveln på trumhinnan. En stråle linje utgår från denna punkt som pekar mot "ljusreflektion vid undersökning", vilket indikerar hur ljus reflekteras under en otoskopisk undersökning. Bilden illustrerar trumhinnans anatomiska struktur och viktiga landmärken.]** + +Figur 4.2 Membrana tympanica, höger öra. + +**[Bildbeskrivning av Figur 4.3: En medial vy av mellanörat (cavitas tympani) med dess omgivande strukturer. Från vänster ses "canalis caroticus" längst ner och ovanför den "membrana tympanica" (trumhinnan) med "manubrium mallei" (hammarskaftet) som går genom den. Vidare uppåt finns "tuba auditiva" (örontrumpeten) och "m. tensor tympani" (trumhinnans spännarmuskel). Mellanörat innehåller också hörselbenen: "incus" med anslutningen "m. tensor tympani, tendo" och "chorda tympani" till mallei, och ”caput mallei” som sticker upp i "recessus epitympanicus". Längst bort till höger, under mellanörat, finns "n. facialis (nc. VII)" (ansiktsnerven).]** + +Figur 4.3 Cavitas tympani, medial vy. + +©FÖRFATTAREN OCH STUDENTLITTERATUR +## 4 ORGANA SENSUM: AURIS ET OCULUS + +ningar (s. 108). Det tunna bensegmentet tegmen tympani separerar utrymmet från direkt överliggande dura mater i fossa cranii media. + +Cavitas tympani innehåller de tre hörselbenen MALLEUS (hammaren), INCUS (städet) och STAPES (stigbygeln). MANUBRIUM MALLEI, hammarens "handtag" fäster vid trumhinnan medan stapes fäster vid FENESTRA VESTIBULI (ibland även kallad *fenestra ovalis*, +Image: A detailed description in Swedish of a diagram showing fenestra ovalis, a key part of the ear anatomy. This image would illustrate the oval window, an opening in the bone that houses the inner ear, and how it relates to the stapes. +, figur 4.5), den membrantäckta öppning som leder in till AURIS INTERNA (innerörat). Ljudvågor fortplantas +Image: A detailed description in Swedish of a diagram illustrating sound wave propagation through the ear. This image would show how sound waves travel from the tympanic membrane to the ossicles (malleus, incus, stapes) and then into the inner ear via the oval window, eventually exiting through the round window. The diagram would emphasize the vibrational transfer. +(figur 4.7) från membrana tympanica över hörselbenen, in i innerörat genom fenestra vestibuli och tillbaka ut genom FENESTRA COCHLEAE (även kallad *fenestra rotunda*, +Image: A detailed description in Swedish of a diagram showing fenestra rotunda. This image would illustrate the round window, another opening in the bone of the inner ear, playing a crucial role in pressure equalization during sound transmission. It would be shown in relation to the cochlea. +, figur 4.4). Konstruktionen gör att vibrationskraften multipliceras flerfaldigt samtidigt som amplituden på svängningarna minskar från membrana tympanica till stapes bas. + +I cavitas tympani återfinns även M. TENSOR TYMPANI som spänner membrana tympanica och M. STAPEDIUS som drar ut stapes från fenestra vestibuli. Effekten av bådas kontraktioner blir att amplituden på svängningarna minskar. M. tensor tympani aktiveras kraftigast för att stänga ute starka ljud som annars kan orsaka skada. M. stapedius är kroppens minsta skelettmuskel (kring 1 mm) och löper från en urgröpning i cavitas tympanis posteriora vägg till stapes (inte illustrerad). + +Anteriort och medialt i cavitas tympani ansluter TUBA AUDITIVA ("örontrumpeten") som förbinder trumhålan med pharynx. Tuba auditiva utjämnar lufttrycket på båda sidor om membrana tympanica vilket tillåter att denna får vibrera fritt. Muskulatur i palatum molle (m. levator veli palatini och m. tensor veli palatini) kontraherar aktivt för att öppna tuba auditiva vars väggar annars ligger an mot varandra. Nervgrenen chorda tympani (s. 146) passerar genom auris media längs med den övre kanten av membrana tympanica. + +Den del av cavitas tympani som är belägen superiort om membrana tympanica benämns RECESSUS EPITYMPANICUS och är genom *antrum mastoideum* i kontakt med CELLULAE MASTOIDEAE (små hålrum i processus mastoideus), vilket är en kliniskt relevant spridningsväg för infektioner. + +Auris interna innehåller ORGANUM VESTIBULOCOCHLEARE vars sinnesceller ger upphov till hörselintryck och bidrar till balansen. En membranös labyrint, LABYRINTHUS MEMBRANACEUS, som innehåller sinnescellerna och endolymfatisk vätska, är upphängd i och omsluten av den beniga labyrinten LABYRINTHUS OSSEUS +Image: A detailed description in Swedish of a diagram of the osseous labyrinth. This image would show a cross-section or 3D rendering of the bony labyrinth of the inner ear, including the cochlea, vestibule, and semicircular canals, highlighting its intricate structure and how it encases the membranous labyrinth. +(figur 4.5-4.6) som innehåller perilymfatisk vätska. Labyrinterna består av tre sektioner: cochlea (hörsel), vestibulum (balans) och canales semicirculares (balans). + +COCHLEA är det snäckformade segmentet av labyrinten och utgörs av tre gångsystem. DUCTUS COCHLEARIS (även kallad scala media) med dess ORGANUM SPIRALE (som innehåller hörselreceptorer) ligger mellan SCALA + +FÖRFATTAREN OCH STUDENTLITTERATUR + +176 4 ORGANA SENSUM: AURIS ET OCULUS + +Figur 4.4 Labyrinthus osseus, vy från sned posterior vinkel, höger sida. +*Bildbeskrivning: En detaljerad bild av det mänskliga benlabyrinten, sedd från en snett posterior vinkel. Olika delar är märkta med linjer och etiketter, inklusive "canalis semicircularis anterior", "canalis semicircularis posterior", "canalis semicircularis lateralis", "ampulla ossea anterior", "ampulla ossea posterior", "vestibulum", "cochlea", och "fenestra cochleae".* + +Figur 4.5 Labyrinthus osseus med urholkade håligheter, anterolateral vy, höger sida. +*Bildbeskrivning: En detaljerad bild av det mänskliga benlabyrinten, sedd från en anterolateral vinkel. Olika delar är märkta med linjer och etiketter: "fenestra vestibuli", "ampulla ossea posterior", "crista fenestrae cochleae", "scala vestibuli", och "scala tympani".* + +Figur 4.6 Canalis spiralis cochleae, genomskärning. +*Bildbeskrivning: En detaljerad genomskärning av Canalis spiralis cochleae. Olika delar är märkta med linjer och etiketter: "helicotrema", "scala vestibuli", "ductus cochlearis", "scala tympani", och "n. cochlearis".* + +VESTIBULI OCH SCALA TYMPANI som båda innehåller perilymfatisk vätska. Scala vestibuli och scala tympani förbinds av HELICOTREMA. De tre gångarna benämns tillsammans som CANALIS SPIRALIS COCHLEAE (figur 4.6). +Stapes vibrationer skapar tryckvågor i den perilymfatiska vätskan i scala vestibuli och fortplantas genom helicotrema till och genom scala tympani (figur 4.7). Sinnescellerna i ORGANUM SPIRALE COCHLEAE (figur + +© FÖRFATTAREN OCH STUDENTLITTERATUR +**4 ORGANA SENSUM: AURIS ET OCULUS** 177 + +4.8) vilar på ductus cochlearis golv, LAMINA BASILARIS, och reagerar på att ductus cochlearis deformeras av hydrauliska tryckvågor i den perilymfatiska vätskan. Sinnescellerna har cilier som projicerar in i det ovanliggande geléliknande MEMBRANA TECTORIA. +Ductus cochlearis tak benämns MEMBRANA VESTIBULARIS. Hörselcellerna innerveras av bipolära ganglieceller i GANGLION SPIRALE COCHLEAE vars axon bildar n. cochlearis som löper samman med n. vestibularis och då utgör n. vestibulocochlearis (nc. VIII, s. 140). + +VESTIBULUM är en oval kammare som innehåller de två otolitorganen SACCULUS OCH UTRICULUS vilka detekterar linjär acceleration och är viktiga för balansen. Deras förtjockningar med sinnesceller kallas MACULA SACCULI respektive MACULA UTRICULI. +Posteriort övergår vestibulum i CANALES SEMICIRCULARES (anterior, posterior och lateralis). + +*Bildbeskrivning 1: Ett diagram över örats anatomi som visar hur ljudvågor fortleds. På vänster sida finns yttre och mellanörat detaljerat: + * **fenestra vestibuli** (ovali fönstret) + * **stapes** (stigbygeln) + * **malleus** (hammaren) + * **incus** (städet) + * **meatus acusticus externus** (yttre hörselgången) med en pil som indikerar inåtgående ljudvågor. + * **membrana tympanica** (trumhinnan) + * **fenestra cochleae** (runda fönstret) + Från mellanörat leder strukturer in i innerörat, som avbildas som en snigelliknande cochlea. Inuti cochlean markeras: + * **scala vestibuli** + * **n. vestibulo-cochlearis (nc. VIII)** (vestibulocochlearisnerven) + * **ductus cochlearis** (snäckgången) + * **organum spirale** (spirorganet) + * **scala tympani** + Pilar visar vägen för ljudvågorna genom innerörat. Under diagrammet står: **"Figur 4.7 Fortledning av ljudvågor."*** + +*Bildbeskrivning 2: Ett detaljerat diagram som visar en sektion av spirorganet (Organum Spirale) från innerörat. Diagrammet inkluderar: + * **membrana tectoria** (tektorialmembranet), som ligger ovanpå. + * **sinnesceller** (hårceller), arrangerade i rader med cilier som sticker upp mot membrantektorian. + * **membrana basilaris** (basilarmembranet), som sinnescellerna vilar på. + * **lamina basilaris** (basilarplattan), som stöder membranbasilaris. + Under diagrammet står: **"Figur 4.8 Organum spirale."*** + +FORFATTAREN OCH STUDENTLITTERATUR +178 +4 ORGANA SENSUM: AURIS ET OCULUS + +Dessa semicirkulära kanaler (delar av labyrinthus osseus) innehåller, precis som cochlea, två separerade utrymmen för endolymfatisk och perilymfatisk vätska. DUCTUS SEMICIRCULARIS ANTERIOR, POSTERIOR och LATERALIS (labyrinthus membranaceus, figur 4.9) innehåller endolymfatisk vätska medan det externa utrymmet innehåller perilymfatisk vätska. Gångarna är placerade i räta vinklar mot varandra och leder ut till vestibulum. + +Sinnescellerna reagerar på rotatorisk acceleration genom att detekera relativa förflyttningar av endolymfatisk vätska och återfinns i en förtjockning av varje benig canalis semicircularis och avspeglande utvidgning av ductus semicircularis. Dessa förtjockningar benämns AMPULLA OSSEA - respektive AMPULLA MEMBRANACEA - ANTERIOR, POSTERIOR, och LATERALIS. Den struktur inuti ampulla där receptorerna sitter kallas CRISTA AMPULLARIS (figur 4.10). Sinnescellernas cilier projicerar in i en + +**Bildbeskrivning (Figur 4.9 Labyrinthus membranaceus, dorsal vy):** + +En illustration visar en detaljerad anatomisk vy av innerörat, specifikt det membrantiga labyrinten, från en dorsal vy. + +Till vänster syns: +* **utriculus** +* **ductus cochlearis** (snäckgången) +* **n. cochlearis** (hörselnerven) +* **n. vestibularis** (balansnerven) +* **sacculus** + +Från cochleat och sacculus sträcker sig en serie halvcirculära bågar uppåt och bakåt, som är de semicirkulära kanalerna och deras ampullae. Noterbara etiketter till höger om de halvcirculära bågarna är: +* **ductus semicircularis anterior** (främre semicirkulära gången) +* **ampulla membranacea anterior** (främre membrantiga ampullan) +* **ampulla membranacea lateralis** (laterala membrantiga ampullan) +* **ductus semicircularis posterior** (bakre semicirkulära gången) +* **ductus endolymphaticus** (endolymfatiska gången) +* **ductus semicircularis lateralis** (laterala semicirkulära gången) +* **ampulla membranacea posterior** (bakre membrantiga ampullan) + +**Bildbeskrivning (Figur 4.10 Crista ampullaris):** + +En illustration visar en tvärsnittsvy av en crista ampullaris, en receptorstruktur som finns i ampullan av de semicirkulära kanalerna. + +Överst i bilden finns en stor kupolformad struktur märkt **cupula ampullaris**. Under cupulan finns ett lager av celler som kallas **sinnesceller**, vilka är utrustade med cilier som sträcker sig in i cupulan. Under sinnescellerna finns en samling nervfibrer, märkta **nerv**. + +Till vänster om denna struktur finns etiketter som pekar på olika vätskerum och strukturer: +* **perilymfatisk vätska** (ytterst) +* **endolymfatisk vätska** (närmast sinnescellerna, inuti cupulan) +* **cupula ampullaris** (kupolformen) +* **sinnesceller** +* **nerv** +* **ampulla** (en referens till den större strukturen som cristan är en del av) + +© FÖRFATTAREN OCH STUDENTLITTERATUR +Här är texten från sidan i Markdown-format, där tabeller och listor har bibehållits. Bilder har ersatts med detaljerade svenska beskrivningar: + +4 ORGANA SENSUM: AURIS ET OCULUS 179 + +**[Bildbeskrivning: En detaljerad schematisk illustration av örats inre strukturer. Bilden visar hörselgången och innerörat med halvcirkelformade kanaler, hörselsnäckan (cochlea) och anslutande nerver. Olika delar är märkta med linjer och etiketter, som t.ex. "canales semicirculares" och "cochlea". Nervbanor med "n. facialis" och "n. vestibulocochlearis" är också tydligt markerade. Figurtexten under bilden anger "Auris interna", vilket indikerar att det är en illustration av örats inre del.]** +* canales semicirculares +* ductus semicircularis +* vestibulum +* membrana tympanica +* tuba auditiva +* n. acusticus +* meatus acusticus internus +* n. facialis (nc. VII) +* n. vestibulocochlearis (nc. VIII) +* n. cochlearis +* n. facialis (nc. VII) +* cochlea +* ductus cochlearis + +gelatinös substans, CUPULA AMPULLARIS, som svänger med den endolymfatiska vätskans rörelser. + +**Figur 4.11** Auris internas innervering. + +MEATUS ACUSTICUS INTERNUS (den inre hörselgången) är en cirka 10 mm lång benkanal i pars petrosa vari n. vestibulocochlearis (nc. VIII), n. facialis (nc. VII), se figur 4.11, samt a. och v. labyrinthi löper. + +## Oculus et regio orbitalis + +Ögat (OCULUS) och ögonhålans region (regio orbitalis) innehåller förutom sinnesorganet även ögonlock, tårapparat, muskulatur, nerver och kärl (se figur 4.12). Orbitas ben beskrivs på s. 110. + +**Figur 4.12** Oculus et regio orbitalis, sagittalsnitt. + +**[Bildbeskrivning: En sagittalsnittsbild (sidosnitt) av ögat och dess omgivande strukturer inom ögonhålan. Bilden visar ögat (oculus) med dess lins, iris och näthinna, samt de muskler som styr ögats rörelse, t.ex. "m. rectus superior" och "m. obliquus inferior". Även skyddande strukturer som "sclera", "cornea" och ögonlockets delar ("tarsus superior", "fissura palpebrae") är markerade. En nerv, "n. opticus", syns också. Textetiketter leder från olika strukturer till deras namn.]** +* m. levator palpebrae superioris +* m. rectus superior +* n. opticus +* dura mater +* m. rectus inferior +* fascia +* m. obliquus inferior +* m. orbicularis oculi +* sclera +* conjunctiva +* tarsus superior +* fissura palpebrae +* cornea +* oculus + +© FÖRFATTAREN OCH STUDENTLITTERATUR +# 4. ORGANA SENSUM: AURIS ET OCULUS + +PALPEBRAE (ögonlocken, figur 4.13) skyddar ögat mot skada och för starkt ljus. Genom att sprida ut tårvätska hjälper palpebrae även till att fukta cornea. Utsidan täcks av hud medan insidan täcks av slemhinnan TUNICA CONJUNCTIVA PALPEBRARUM. Öppningen mellan ögonlocken benämns RIMA PALPEBRARUM. Palpebra superior och inferior förstärks av de täta bindvävsbanden TARSUS SUPERIOR respektive INFERIOR. Inblandade mellan bindvävsstråken i tarsus ligger GLANDULAE TARSALES som utsöndrar en lipidrik vätska vilken förhindrar att palpebrae fastnar i varandra och att tårvätska inte rinner ut (vid normal tårproduktion). CILIA (ögonfransar) och vätska från GLANDULAE CILIARES skyddar ögat mot skräp. + +APPARATUS LACRIMALIS (tårapparaten, figur 4.14) huvudkomponent GLANDULA LACRIMALIS är belägen superiort och lateralt om ögat och producerar en vattnig vätska som innehåller salter, bakterienedbrytande enzymer, näring och syre (absorberas från luften). Vätskan fuktar cornea, spolar bort skräp och samlas sedan upp i LACUS LACRIMALIS ("tårsjön") i den mediala ögonvrån. Två stycken CANALICULI LACRIMALES + +**Figur 4.13 Palpebra, posterior vy.** +En detaljerad anatomisk bild av ögonlocksstrukturen, sedd bakifrån (posterior vy). Bilden visar tjocka horisontella plåtar (tarsi) som utgör ögonlockens stomme. Ögonlocksöppningen där ögonfransarna normalt är placerade ses som en horisontell linje som löper mellan en övre och en undre tarsus. Bakom och inbäddat i dessa tarsi visas ett nätverk av små vertikala strukturer, som representerar de sekretoriska körtlarna som producerar oljiga ämnen för tårfilmen. Det övre ögonlocket (tarsus superior) och det undre ögonlocket (tarsus inferior) är tydligt markerade. Mellan dessa syns körtlar benämnda "glandulae tarsales" som är ordnade i rader. + +**Figur 4.14 Orbita, apparatus lacrimalis, höger sida, anterior vy.** +En illustrerad anatomisk bild av höger öga och dess omgivande strukturer samt tårapparaten, sedd framifrån (anterior vy). Bilden visar ögat centralt med pupill och iris, omgivet av slemhinnan (conjunctiva). Runt ögat syns flera viktiga muskler, såsom m. rectus lateralis, m. rectus inferior med sin sena, m. obliquus inferior och m. obliquus superior. Skelettstrukturer som os frontale och os zygomaticum är också markerade, vilka bildar ögonhålan (orbita). Tårapparaten illustreras med glandula lacrimalis (tårkörteln) belägen superiort och lateralt om ögat. Från tårkörteln sträcker sig kanaler som leder tårvätskan över ögats yta. Vid ögats mediala sida visas tårgångarna, inklusive canaliculi lacrimales, saccus lacrimalis och ductus nasolacrimalis som mynnar i näskaviteten (anges som maxilla). Nervbanor som n. supraorbitalis, n. supratrochlearis (båda från nc. V₁) och n. infraorbitale (från nc. V₂) är också inritade. + +© FÖRFATTAREN OCH STUDENTLITTERATUR +# 4 ORGANA SENSUM: AURIS ET OCULUS 181 + +![Bild: Detta är en schematisk horisontalvy av ett öga, sedd från höger sida, med titeln "Figur 4.15 Bulbus oculi, horisontalsnitt, höger sida.". Bilden visar en detaljerad sektionsvy av ögat med olika strukturer och deras namn markerade med linjer. Linsen är centralt placerad och omges av iris och strålkroppen. På ögats framsida, mot vänster i bilden, syns hornhinnan (cornea), den främre ögonkammaren (camera anterior) och strålkroppen (corpus ciliare) med dess utskott (orbiculus ciliaris och zonula ciliaris). Tunica conjunctiva bulbi och reticulum trabeculare är också markerade i detta område. På ögats baksida, mot höger, syns glaskroppen (corpus vitreum), näthinnan (retina), åderhinnan (choroidea) och gula fläcken (macula lutea, fovea centralis) samt synnerven (discus nervi optici) som går ut från ögat. Musklerna m. sphincter pupillae och m. dilatator pupillae är också synliga. Delar av ögats yttre lager såsom scleran och limbus corneae är utritade och namngivna. Polus posterior och polus posterior bulbi är markerade i ögats bakkant. Sammantaget ger bilden en omfattande översikt av ögats inre anatomi.](Image: Detta är en schematisk horisontalvy av ett öga, sedd från höger sida, med titeln "Figur 4.15 Bulbus oculi, horisontalsnitt, höger sida.". Bilden visar en detaljerad sektionsvy av ögat med olika strukturer och deras namn markerade med linjer. Linsen är centralt placerad och omges av iris och strålkroppen. På ögats framsida, mot vänster i bilden, syns hornhinnan (cornea), den främre ögonkammaren (camera anterior) och strålkroppen (corpus ciliare) med dess utskott (orbiculus ciliaris och zonula ciliaris). Tunica conjunctiva bulbi och reticulum trabeculare är också markerade i detta område. På ögats baksida, mot höger, syns glaskroppen (corpus vitreum), näthinnan (retina), åderhinnan (choroidea) och gula fläcken (macula lutea, fovea centralis) samt synnerven (discus nervi optici) som går ut från ögat. Musklerna m. sphincter pupillae och m. dilatator pupillae är också synliga. Delar av ögats yttre lager såsom scleran och limbus corneae är utritade och namngivna. Polus posterior och polus posterior bulbi är markerade i ögats bakkant. Sammantaget ger bilden en omfattande översikt av ögats inre anatomi.) + +dränerar tårvätskan till SACCUS LACRIMALIS som i sin tur dräneras till DUCTUS NASOLACRIMALIS som för vätskan till cavitas nasi (meatus nasi inferior). Vid överproduktion bildas tårar som rinner ut ur ögonhålan och ner längs kinderna. Tårproduktion stimuleras av parasympatiskt inflöde från n. facialis (nc. VII) genom n. petrosus major (figur 3.34). + +BULBUS OCULI (ögongloben, figur 4.15) hänger i orbita, buren av de muskler som styr dess rörelser, samt av fascia. Bulbus vägg består av tre stycken lager. Det yttersta fibrösa lagret består av sclera och cornea. Det mellersta vaskulära lagret utgörs av choroidea, corpus ciliare och iris. Retina utgör det innersta lagret. + +SCLERA är den yttersta vita senhinnan som utgör fäste för ögats muskulatur. Hinnan täcks framtill på utsidan av TUNICA CONJUNCTIVA BULBI. CORNEA (hornhinnan) är den centrala, genomskinliga, främre delen av det yttre lagret. LIMBUS CORNEAE beskriver den vinkel som bildas där scleras och corneas krökningar möts. + +© FÖRFATTAREN OCH STUDENTLITTERATUR +182 4 ORGANA SENSUM: AURIS ET OCULUS + +Den kärlrika choroidea (åderhinnan) ligger djupt om sclera. Choroidea slutar anteriort i CORPUS CILIARE – muskulära och vaskulära förtjockningar som innehåller M. CILIARIS OCH PROCESSUS CILIARES. De sistnämnda producerar den vätska som fyller camera posterior med näringsrik vätska till de avaskulära cornea och lens. Vätskan dräneras i RETICULUM TRABECULARE. Området som innehåller processus ciliares kallas ZONULA CILIARIS medan de kanter av corpus ciliare som utskotten har sitt ursprung i benämns ORBICULUS CILIARIS. + +IRIS (regnbågshinnan, figur 4.16) ligger vid lens anteriora yta och dess utbredning avgör hur stor dess öppning, PUPILLA, är och därmed hur mycket ljus som släpps in. Iris anteriora respektive posteriora yta benämns FACIES ANTERIOR respektive POSTERIOR. Parasympatiskt inducerad kontraktion av cirkulärt ordnade muskelfibrer i M. SPHINCTER PUPILLAE minskar pupillas diameter, och sympatiskt inducerad kontraktion av radiärt liggande muskelfibrer i M. DILATATOR PUPILLAE ökar diametern. +Håligheten mellan cornea och iris benämns CAMERA ANTERIOR OCH håligheten mellan iris och corpus ciliare benämns CAMERA POSTERIOR. CORPUS VITREUM är den vattniga och geléliknande transparenta kula som fyller merparten av ögongloben. + +LENS är upphängd mellan pupilla och corpus vitreum och dess form ändrar ljusbrytningsförmågan. Utan nervöst inflöde är FIBRAE ZONULARES spända så att de drar ut lens, vilken blir mindre convex och objekt på långa avstånd hamnar i fokus. När m. ciliaris kontraherar genom parasympatisk aktivering från n. oculomotorius (nc. III) minskar spänningen i fibrae zonulares, vilket relaxerar lens och gör den mer konvex. Objekt på nära håll hamnar i fokus. Processen att ändra lens form kallas ackomodering. Lens båda poler benämns POLUS ANTERIOR respektive POSTERIOR (figur 4.15). + +Visas är en detaljerad illustration av ögats inre struktur, specifikt iris och corpus ciliare, sedd från en posterior vy. Bilden visar en cirkulär struktur, där den yttre delen är en mörkare, räfflad ring som representerar **corpus ciliare**. Innanför denna ring, mot mitten, finns en ljusare, mer komplex struktur märkt **procc. ciliares**, som är utskott från ciliarkroppen. Tunna trådar, **fibrae zonulares**, sträcker sig från de ciliariska processerna mot mitten av ögat, där de fäster vid linsen (som dock inte är synlig i detalj här). I mitten av bilden finns en stor cirkulär öppning som representerar pupillen, och inramande denna är **iris**, med en vikad yta som beskrivs som **plicae iridis**. Till höger om mitten finns också mörkare, mer utpräglade veck som utgör den bakre ytan av iris, benämnd **iris, facies posterior**. Överst på bilden, i den övre delen av ciliarkroppen, finns en sektion som visar **cornea, facies posterior**, alltså baksidan av hornhinnan, vilket ger en anatomisk orientering till strukturen. Överlag ger bilden en tydlig visualisering av hur de olika delarna av ögat samverkar rent anatomiskt runt linsen och pupillen. + +FORFATTAREN OCH STUDENTLITTERATUR +# 4 ORGANA SENSUM: AURIS ET OCULUS 183 +ora serrata +macula lutea + +**Figur 4.17 Oculus bakvägg, anterior vy** +En bild över ögats bakvägg, sedd framifrån. Den visar de inre delarna av ögat. En stor cirkulär röd yta representerar näthinnan. Den är omgiven av en smalare vit kant, vilket är *ora serrata*. I mitten av den röda näthinnan finns en ovalformad gulaktig fläck, *macula lutea*. Från macula lutea löper nervfibrer som samlas i ett område som leder till en struktur märkt *n. opticus* (nervus opticus, synnerven), vilken lämnar ögat mot rött. + +Oculus innersta lager utgörs av RETINA (näthinnan) som delvis består av fotoreceptorer i PARS OPTICA RETINAE (figur 4.15). Denna ljuskänsliga del består av ett lager pigmentepitel (STRATUM PIGMENTOSUM) som ökar choroideas förmåga att absorbera ljus (förhindrar att ljuset sprids för mycket i oculus) samt STRATUM NERVOSUM som framför allt utgörs av sinnes- och nervceller. Därför kallas stratum nervosum ibland för retina propria. Den mest ljuskänsliga delen av retina (högst densitet av känsliga fotoreceptorer) ser gulaktig ut vid betraktelse genom oftalmoskop och kallas därför MACULA LUTEA (”gula fläcken”). Den centrala gropen i macula lutea som är allra mest ljuskänslig benämns FOVEA CENTRALIS. + +ORA SERRATA (figur 4.15, figur 4.17) beskriver gränsen mellan den ljuskänsliga delen av retina och dess okänsliga del samt corpus ciliare. Där sensoriska fibrer i n. opticus (nc. II) och kärl kommer in i oculus medialt om macula lutea bildas DISCUS NERVI OPTICI. Då detta område inte är känsligt för ljus omtalas det som ”blinda fläcken”. + +## Musculi externi bulbi oculi +Ögats sju yttre muskler, figur 4.18, bestämmer storleken på rima palpebrabrams öppning och styr ögats riktning. M. LEVATOR PALPEBRAE SUPERIORIS höjer palpebra superior och dess antagonister är gravitationskraften samt m.orbicularis oculi (s. 114). De övriga sex musklerna är de fyra ”raka” M. RECTUS SUPERIOR, INFERIOR, MEDIALIS, och LATERALIS som fäster på ögat i enlighet med sina namn, samt de ”sneda” M. OBLIQUUS SUPERIOR respektive INFERIOR som fäster lateralt och superiort respektive lateralt och inferiort på ögats posteriora sida. De fyra raka musklerna omsluts av en gemensam sena, ANULUS TENDINEUS COMMUNIS. + +Ögats rörelser kan ske kring tre axlar: höjning och sänkning relativt en transversell axel, adduktion och abduktion kring en vertikal axel, och + +© FÖRFATTAREN OCH STUDENTLITTERATUR +184 4 ORGANA SENSUM: AURIS ET OCULUS + +**Bildbeskrivning A** +Bild A visar en lateral vy av ögats yttre muskler med den laterala väggen av ögonhålan borttagen, från höger sida. Flera anatomiska strukturer är markerade: +- Blå pil pekar på **m. rectus lateralis**: Musculus rectus lateralis, en av ögats yttre muskler. +- Orange pil pekar på **anulus tendineus communis**: Den gemensamma senskidan som omger synnerven och de flesta ögonmusklerna. +- Ljusblå pil pekar på **n. opticus (nc. II)**: Synnerven (kranialnerv II). +- Grön pil pekar på **m. rectus inferior**: Musculus rectus inferior, en annan av ögats yttre muskler. +- Grå pil pekar på **os sphenoidale, ala major**: Stora vingen av kilbenet. +- Svart pil pekar på **fissura orbitalis inferior**: Den nedre ögonhålefissuren. +- Lila pil pekar på **m. levator palpebrae superioris periorbita**: Musculus levator palpebrae superioris och dess omgivande periost. +- Gul pil pekar på **m. rectus superior**: Musculus rectus superior, återigen en av ögats yttre muskler. +- Brun pil pekar på **m. obliquus inferior**: Musculus obliquus inferior, ytterligare en ögonmuskel. +- Mörkblå pil pekar på **sinus maxillaris**: Käkhålan. + +**Bildbeskrivning B** +Bild B visar en superior vy av ögats yttre muskler, med taket av ögonhålan borttaget (M. levator palpebrae superioris borttagen på höger sida). Flera anatomiska strukturer är markerade: +- Svart pil pekar på **chiasma opticum**: Synnervskorsningen. +- Blå pil pekar på **m. obliquus superior, tendo**: Musculus obliquus superior och dess sena. +- Orange pil pekar på **glandula lacrimalis**: Tårkörteln. +- Ljusblå pil på bilden pekar på **os sphenoidale, ala major**: Stora vingen av kilbenet. +- Grön pil pekar på **m. levator palpebrae superioris**: Musculus levator palpebrae superioris. +- Grå pil pekar på **m. obliquus superior**: Musculus obliquus superior (utan sena). +- Mörkblå pil pekar på **m. rectus lateralis**: Musculus rectus lateralis. +- Gul pil pekar på **m. rectus superior**: Musculus rectus superior. +- Brun pil pekar på **m. obliquus superior**: Musculus obliquus superior (en annan del/synvinkel). +- Lila pil pekar på **m. levator palpebrae superioris**: Musculus levator palpebrae superioris (igen). +- Rosa pil pekar på **bulbus oculi**: Ögongloben. +- Ljusgrön pil pekar på **m. obliquus superior, tendo**: Musculus obliquus superior senan (igen). +- Röd pil pekar på **m. rectus medialis**: Musculus rectus medialis. +- Mörkröd pil pekar på **m. obliquus superior**: Musculus obliquus superior (ännu en del/synvinkel). +- Ljusbrun pil pekar på **m. rectus lateralis**: Musculus rectus lateralis (igen). +- Gulbrun pil pekar på **m. rectus superior**: Musculus rectus superior (igen). +- Ljuslila pil pekar på **m. levator palpebrae superioris**: Musculus levator palpebrae superioris (igen). +- Grågrön pil pekar på **n. opticus (nc. II)**: Synnerven (kranialnerv II). + + +Figur 4.18 Musculi externi bulbi oculi. a) Lateral vy efter avlägsnande av orbitas laterala vägg, höger sida. b) Superior vy efter borttagande av orbitas tak (m. levator palpebrae superioris borttagen på höger sida). + +medial samt lateral rotation kring en anteroposterior axel. Medial och lateral rotation roterar ögats superiora pol. +Den primära funktionen för m. rectus superior respektive inferior är att höja respektive sänka pupilla. Men eftersom ögats apex befinner sig något medialt om ögat som helhet och musklerna närmar sig ögat från medialsidan kan de även vrida pupilla medialt (adduktion). Då deras fästen även sträcker sig superiort respektive inferiort om den anterioposteriora axeln svarar de för medial respektive lateral rotation. +För att enbart rikta blicken strikt uppåt eller neråt från ett utgångsläge med blicken riktad framåt måste samverkan med andra muskler. + +©FÖRFATTAREN OCH STUDENTLITTERATUR + +4 Orga Sensum Auris Et Oculus +185 + +ske. M. rectus superior och m. obliquus inferior riktar pupilla rakt uppåt medan m. rectus inferior och m. obliquus superior riktar pupilla neråt. För att isolera m. rectus superior eller m. rectus inferior som ensam bidragare till höjning eller sänkning av pupilla måste abduktorn m. rectus lateralis först föra pupilla till abducerat läge. Därför ska klinisk undersökning av m. rectus superior och m. rectus inferior genomföras i abducerat läge. + +M. obliquus inferior och m. obliquus superior passerar till lateral- sidan av ögat superiort respektive inferiort om den anteroposteriora axeln. M. obliquus inferior blir därför den primära laterala rotatorn och m. obliquus superior den primära mediala rotatorn. + +Då båda passerar posteriort om den transversella axeln och posteri- ort om den vertikala axeln fungerar båda som abduktorer, m. obliquus superior sänker blicken och m. obliquus inferior höjer den. I adduce- rat läge ansvarar de ensamma för höjning och sänkning (precis som m. rectus superior och inferior gör det i abducerat läge). Dessa effekter i adducerat läge är de sneda musklernas viktigaste funktion. + +Alla ögonrörelser kräver synergistisk och antagonistisk verkan av flera muskler. Detta kan exemplifieras genom höjning av pupilla i utgångsläge med blicken riktad framåt. M. rectus superior och m. obliquus inferior verkar synergistiskt som höjare samtidigt som deras effekter är motsatta kring den anterioposteriora och den vertikala axeln och antagonistiskt tar ut varandra. Rörelserna summeras is figur 4.19 och dess figurtext. + +I utgångsläge med blicken riktad framåt +- Höjning: m. rectus superior och m. obliquus inferior +- Sänkning: m. rectus inferior och m. obliquus superior +- Abduktion: m. rectus lateralis, m. obliquus inferior och m. obliquus superior + +**Bildbeskrivning (svenska):** +Bilden visar en schematisk representation av ögonrörelser och de muskler som styr dem. Den är uppdelad i tre segment. + +**Översta högra segmentet:** +* **Figur 4.19 Ögonrörelser, schematisk representation.** + * Ol = m. obliquus inferior + * OS = m. obliquus superior + * RI = m. rectus inferior + * RS = m. rectus superior + * RL = m. rectus lateralis + * RM = m. rectus medialis + +**Nedre vänstra segmentet:** +* Rubrik: **Höger Öga** +* En central cirkulär figur som representerar ett öga, med flera pilar som indikerar musklerna och deras rörelser. + * Ögonbrynspositioner med beteckningar som: + * Ol (m. obliquus inferior) + * OS (m. obliquus superior) + * RI (m. rectus inferior) + * RS (m. rectus superior) + * RL (m. rectus lateralis) + * RM (m. rectus medialis) + * Textetiketter för rotationsriktningar: "lateral rotation", "medial rotation". + +**Nedre högra segmentet:** +* Två centrala cirkulära figurer som representerar ögon, med en linje mellan dem. De är liknande men med skillnad i rörelser. +* **Vänstra ögat:** + * Rubriker: "abduktion" och "adduktion". + * Pilar som indikerar muskelverkan: Ol, OS, RI, RS, RM, RL. + * Till vänster om ögat finns en vertikal linje med texten "sänkning" (nedåt) och "höjning" (uppåt). +* Högra ögat: + * Rubriker: "abduktion" och "adduktion". + * Pilar som indikerar muskelverkan: Ol, OS, RI, RS, RM, RL. + * Till höger om ögat finns en vertikal linje med texten "höjning" (uppåt) och "sänkning" (nedåt). + * Båda ögonen har pilar runt om som anger "adduktion" och "abduktion". + +Författaren och studentlitteratur. +186 4 ORGANA SENSUM: AURIS ET OCULUS + +- Adduktion: m. rectus medialis, m. rectus superior och m. rectus inferior +- Lateral rotation: m. obliquus inferior och m. rectus inferior +- Medial rotation: m. obliquus superior och m. rectus superior + +I ADDUCERAT LÄGE +- M. obliquus inferior höjer pupilla. M. obliquus superior sänker pupilla. + +I ABDUCERAT LÄGE +- M. rectus superior höjer pupilla. M. rectus inferior sänker pupilla. + +Innervering (se även s. 141–142) +- Nervus oculomotorius (nc. III): m. levator palpebrae superioris, m. obliquus inferior, m. rectus superior, m. rectus inferior, m. rectus medialis +- Nervus trochlearis (nc. IV): m. obliquus superior +- Nervus abducens (nc. VI): m. rectus lateralis + +Övningar +Kapitel 4 + +En liten svart kvadratisk ikon med en vit spiral inuti, placerad till vänster om texten "Övningar Kapitel 4". + +© FÖRFATTAREN OCH STUDENTLITTERATUR diff --git a/content/Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.pdf b/content/Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.pdf new file mode 100644 index 0000000..a6ea2d3 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga anatomi/4 - Organa sensum.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4c459b78d6bab64fa805d5e1738a4ed72ab5b64ea95f3b702eaf88a1059fc95 +size 4198178 diff --git a/content/Anatomi & Histologi 2/Öga anatomi/Instuderingsfrågor.md b/content/Anatomi & Histologi 2/Öga anatomi/Instuderingsfrågor.md new file mode 100644 index 0000000..87f5787 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga anatomi/Instuderingsfrågor.md @@ -0,0 +1,24 @@ + +Ögat består av tre olika lager – vilka är de, och vad heter de på svenska och latin? +Sclera övergår anteriort i – vad? +Choroidea övergår anteriort i – vad? +Retina övergår anteriort i – vad? *(makroskopiskt)* +Var finner du främre respektive bakre ögonkammare? +Vad är conjunctiva och var återfinns den? *(endast anatomisk lokalisering här)* +Hur är cornea uppbyggd på organsnivå? Jämför dess egenskaper med sclera. +Vilken vävnadstyp finns centralt i corpus ciliare och vad har den för funktion? Hur är dess funktionella koppling till processus ciliares? +Hur är linsen uppbyggd och vad har den för funktion? Vad händer vid fokus på nära respektive avlägsna objekt? +Beskriv iris uppbyggnad och dess relation till: + - ANS + - pupillen +Vad består corpus vitreum (glaskroppen) av? Funktion? +När du fokuserar på ett objekt – var på näthinnan projiceras bilden? +Vad är den anatomiska bakgrunden till den blinda fläcken? +Rita en cirkel som symboliserar näthinnan (höger öga). Var ligger: + - synnervens inträde + - gula fläcken? +Vilken kranialnerv förmedlar syn till CNS? +Till vilken struktur och därefter till vilken lob leds syninformationen? +Rita ögat i genomskärning och markera samtliga anatomiska strukturer enligt målbeskrivningen. +Identifiera och namnge anatomiska strukturer på ögonmodell. +Beskriv **anatomiskt** ljusets väg från objekt → retina → CNS → cortex cerebri. diff --git a/content/Anatomi & Histologi 2/Öga anatomi/Målbeskrivning.md b/content/Anatomi & Histologi 2/Öga anatomi/Målbeskrivning.md new file mode 100644 index 0000000..8f4f3de --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga anatomi/Målbeskrivning.md @@ -0,0 +1,13 @@ + +- Palpebrae och conjunctiva +- Ögats yttersta lager: sclera och cornea +- Ögats mellersta lager (uvea): choroidea, corpus ciliare (inkl. processus ciliares), iris, pupilla +- Linsen (lens): uppbyggnad och funktion +- Corpus vitreum (glaskroppen) +- Ögats innersta lager: retina (endast makroskopisk indelning) +- Synens koppling till CNS: + - Nervus opticus (gangliecellers axon) + - Chiasma opticum + - Tractus opticus + - Radiatio optica + - Synkortex (primära syncortex) diff --git a/content/Anatomi & Histologi 2/Öga anatomi/Slides.md b/content/Anatomi & Histologi 2/Öga anatomi/Slides.md new file mode 100644 index 0000000..f54361a --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga anatomi/Slides.md @@ -0,0 +1,160 @@ + +# Sinnesorgan – Öga +Göteborgs Universitet | Sahlgrenska Akademin +**Magnus Rudenholm** (Specialist neurologi, ST klinisk neurofysiologi) [oai_citation:0‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Ögat (lat. Oculus) +**Tre lager** +- **Yttre lager:** Sclera och cornea +- **Vaskulärt/muskulärt lager:** Choroidea, corpus ciliare och iris +- **Inre lager:** Retina och pigment +- **Corpus vitreum:** Glaskropp [oai_citation:1‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Yttre lager +### Sclera (gr. skleros = hård) +- Senhinna +- Fibrös bindväv, skyddande funktion +- ”Ögonvitan” [oai_citation:2‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +### Cornea +- Hornhinna +- Främre 1/6-delen +- Utbuktande (därav ”horn”) +- Genomskinlig [oai_citation:3‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Vaskulärt/muskulärt lager +### Choroidea +- Åderhinna +- Artärer och vener (vaskulär) +- Pigment [oai_citation:4‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +### Corpus ciliare +- Strålkropp +- Glattmuskler (ackommodation) [oai_citation:5‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +### Processus ciliare +- (Utskott) [oai_citation:6‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +### Iris +- Regnbågshinnan +- Glattmuskel (pupillstorlek) +- Pigment [oai_citation:7‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Corpus ciliare – detaljer +### Processus ciliare (utskott) +- Producerar kammarvätska +- Främre- och bakre kammaren, återkommer T3 +- Del av blod-ögonbarriären +- Förankrar lens + - Zonula ciliaris +- Glattmuskel + - M. ciliaris (parasympaticus) [oai_citation:8‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Ackommodation (obs fysiologi) +**Lens och corpus ciliare** +- Linsen vill dra ihop sig +- Corpus ciliare drar ut linsen + +**Långseende** +- Relaxation m. ciliaris +- Lens dras ut (tunnare, bryter mindre) + +**Normalläge** + +**Närseende** +- Kontraktion m. ciliaris +- Lens kontraheras (tjockare, bryter mer) + +**Parasympaticus (N.III)** [oai_citation:9‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Pupilla (pupill) [oai_citation:10‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Omgivande vävnad 1 +### Palpebrae +- Ögonlock +- Hud och broskplatta [oai_citation:11‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +### Conjunctiva +- Bindhinna +- Slemhinna +- Täcker: + - Insidan av palpebrae + - Främre del av sclera/”ögonvitan” [oai_citation:12‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +### Muskler (6 st) +- N III, IV och VI [oai_citation:13‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Omgivande vävnad 2 +### Tårapparaten +- Återkommer längre fram [oai_citation:14‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Inre lager +### Retina +- Näthinna +- Retinalt lager med stavar och tappar (fotosensitivt) +- Retinalt pigmentepitel (icke fotosensitivt) +- Övergår i Nervus opticus + - N. II, synnerven (till occipitalloben) +- Papilla nervi optici / synnervspapill (blinda fläcken) + - Täcks av meninges [oai_citation:15‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Discus/papilla nervi optici, synnervspapillen +- ”Blinda fläcken” [oai_citation:16‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Macula lutea, gula fläcken +## Fovea centralis, centralgropen +- ”Blickfokus” [oai_citation:17‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Retinas lager [oai_citation:18‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Nervus opticus +- Synnerven, N.I +- Går till Thalamus (yttre knäkropparna) +- Synnerv (1+2) +- Synnervskorsning (3) +- Synbana (4) +- Från thalamus till syncentrum +- Synstrålningen (radiatio optica) +- Lobus occipitalis (6) [oai_citation:19‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Läsning / upplägg +- Läs kap. 4 +- Läs kap. 24 +- Detaljearde målbeskrivningen anger nivå (den tenteras) +- Bägge böckerna har också med detaljer som återkommer T2 och T3 +- Instuderingsfrågor +- Modellgenomgång/gruppundervisning +- Tag med detaljerade målbeskrivningen [oai_citation:20‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) + +--- + +## Tack för uppmärksamheten +Anne och Magnus [oai_citation:21‡Slides.pdf.pdf](sediment://file_00000000c2e87243ba6e2251a0e9927a) \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Öga anatomi/Slides.pdf.pdf b/content/Anatomi & Histologi 2/Öga anatomi/Slides.pdf.pdf new file mode 100644 index 0000000..658a5c1 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga anatomi/Slides.pdf.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ddb9ea70f5a2e4259680a0abec5f45a41e3127c9f77558ebf2f56f474016bf48 +size 5544334 diff --git a/content/Anatomi & Histologi 2/Öga histologi/24 Eye.md b/content/Anatomi & Histologi 2/Öga histologi/24 Eye.md new file mode 100644 index 0000000..ecfdcd6 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/24 Eye.md @@ -0,0 +1,2829 @@ +# 24 EYE + +**OVERVIEW OF THE EYE** + +**GENERAL STRUCTURE OF THE EYE** + + +Layers of the Eye +Chambers of the Eye +Development of the Eye + + +**MICROSCOPIC STRUCTURE OF THE EYE** + + +Corneoscleral Coat + +Vascular Coat (Uvea) + +Retina + +Crystalline Lens +Vitreous Body + +**ACCESSORY STRUCTURES OF THE EYE** + + +**Folder 24.1** Clinical Correlation: Glaucoma + +**Folder 24.2** Clinical Correlation: Retinal Detachment + +**Folder 24.3** Clinical Correlation: Age-related Macular Degeneration +**Folder 24.4** Clinical Correlation: Clinical Imaging of the Retina +**Folder 24.5** Clinical Correlation: Color Blindness + +**Folder 24.6** Clinical Correlation: Conjunctivitis + + +**HISTOLOGY** + +### **OVERVIEW OF THE EYE** + + +The **eye** is a complex sensory organ that provides the sense of sight. In many +ways, the eye is similar to a digital camera. Like the optical system of a +camera, the **cornea** and **lens** of the eye capture and automatically focus light, +whereas the iris automatically adjusts the diameter of the pupil to differences +in illumination. The light detector in a digital camera, the charge-coupled +device (CCD), consists of closely spaced photodiodes that capture, collect, and +convert the light image into a series of electrical impulses. Similarly, the +**photoreceptor cells** in the **retina** of the eye detect light intensity and color +(wavelengths of visible light that are reflected by different objects) and encode +these parameters into electrical impulses for transmission to the brain via the +**optic nerve** . The retina has other capabilities beyond those of a CCD: It can +extract and modify specific impulses from the visual image before sending +them to the central nervous system (CNS). + +In other ways, the optical system of the eye is far more elaborate and +complex than a camera. For example, the eye is able to track moving objects +with coordinated eye movements. The eye can also protect, maintain, selfrepair, and clean its transparent optical system. + + +Because the eyes are paired and spatially separated, two slightly different +and overlapping views (visual fields) are sent to the brain. The brain integrates +these two slightly different images from each eye into a single **three-** +**dimensional (3D) image** in a process called **stereopsis** . The primary visual +cortex located in the occipital lobes processes the differences between the two +images to create the perception of depth. The final image is then projected onto +the visual cortex. In addition, other complex neural mechanisms coordinate +eye movements, enabling refinements in the perception of depth and distance. +Therefore, the way in which we see the world around us largely depends on +impulses processed within the retina and the analysis and interpretation of +these impulses by the CNS. + +### **GENERAL STRUCTURE OF THE EYE** + + +The eye measures approximately 25 mm in diameter. It is suspended in the +bony orbital socket by six extrinsic muscles that control its movement. A thick +layer of adipose tissue partially surrounds and cushions the eye as it moves +within the orbit. The extraocular muscles are coordinated so that the eyes +move symmetrically around their own central axes. + +### **Layers of the Eye** + + +**The wall of the eye consists of three concentric layers or coats.** + + +The eyeball is composed of three concentric structural layers (Fig. 24.1): + + +**FIGURE 24.1.** **Schematic diagram of the layers of the eye.** The wall of the +eyeball is organized in three separate concentric layers: an outer supporting + + +fbrous layer, the corneoscleral coat; a middle vascular coat or uvea; and an i +inner layer consisting of the retina. Note that the retina has two layers: a neural +retina ( _yellow_ ) and a retinal pigment epithelium ( _orange_ ). The photosensitive +and nonphotosensitive parts of the neural retina occupy different regions of the +eye. The photosensitive part of the retina is found in the posterior part of the +eye and terminates anteriorly along the ora serrata. The nonphotosensitive +region of the retina is located anterior to the ora serrata and lines the inner +aspect of the ciliary body and the posterior surface of the iris. The vitreous body +( _partially removed_ ) occupies considerable space within the eyeball. + + +The **corneoscleral coat**, the outer or fibrous layer, includes the **sclera**, the +white portion, and the **cornea**, the transparent portion. +The **vascular coat**, the middle layer, or **uvea**, includes the **choroid** and +the stroma of the **ciliary body** and **iris** . +The **retina**, the inner layer, includes an outer pigment epithelium, the inner +neural retina, and the epithelium of the ciliary body and iris. The neural +retina is continuous with the CNS through the **optic nerve** . + + +**The corneoscleral coat consists of the transparent cornea and the** +**white opaque sclera.** + + +The **cornea** covers the anterior one-sixth of the eye (see Fig. 24.1). In this +window-like region, the surface of the eye has a prominence or convexity. The +cornea is continuous with the **sclera** _[Gr. skleros, hard]_ . The sclera is +composed of dense fibrous connective tissue that provides attachment for the +extrinsic muscles of the eye. The corneoscleral coat encloses the inner two +layers, except where it is penetrated by the optic nerve. The sclera +constitutes the “white” of the eye. In children, it has a slightly blue tint +because of its thinness; in elderly people, it is yellowish because of the +accumulation of lipofuscin in its stromal cells. A noticeable feature of +patients with **jaundice** is a yellow discoloration of the sclera ( **scleral** +**icterus** ) caused by a high level of circulating bilirubin. + + +**The uvea consists principally of the choroid, the vascular layer that** +**provides nutrients to the retina.** + + +Blood vessels and melanin pigment give the **choroid** an intense dark brown +color. The pigment absorbs scattered and reflected light to minimize glare +within the eye. The choroid contains numerous venous plexuses and layers of +capillaries and is firmly attached to the retina (see Fig. 24.1). The anterior rim +of the uveal layer continues forward, where it forms the stroma of the **ciliary** +**body** and **iris** . + +The **ciliary body** is a ring-like thickening that extends inward just +posterior to the level of the corneoscleral junction. Within the ciliary body is +the **ciliary muscle**, a smooth muscle that is responsible for lens + + +**accommodation** . Contraction of the ciliary muscle changes the shape of the +lens, which enables it to bring light rays from different distances to focus on +the retina. + +The **iris** is a contractile diaphragm that extends over the anterior surface of +the lens. It also contains smooth muscle and melanin-containing pigment cells +scattered in the connective tissue. The **pupil** is the central circular aperture of +the iris. It appears black because one looks through the lens toward the heavily +pigmented back of the eye. In the process of **adaptation**, the iris contracts or +expands, changing the size of the pupil in response to the amount of light that +passes through the lens to reach the retina. + + +**The retina consists of two components: the neural retina and pigment** +**epithelium.** + + +The **retina** is a thin, delicate layer (see Fig. 24.1) consisting of two +components: + + +The **neural retina** is the inner layer that contains light-sensitive receptors +and complex neuronal networks. +The **retinal pigment epithelium (RPE)** is the outer layer composed of +simple cuboidal melanin-containing cells. + + +Externally, the retina rests on the choroid; internally, it is associated with +the vitreous body. The neural retina consists largely of **photoreceptor cells**, +called retinal **rods** and **cones**, and interneurons. Visual information encoded +by the rods and cones is sent to the brain via impulses conveyed along the +optic nerve. + +### **Chambers of the Eye** + + +**The layers of the eye and the lens serve as boundaries for three** +**chambers within the eye.** + + +The chambers of the eye are as follows: + + +The **anterior chamber** is the space between the cornea and the iris. +The **posterior chamber** is the space between the posterior surface of the +iris and the anterior surface of the lens. +The **vitreous chamber** is the space between the posterior surface of the +lens and the neural retina (Fig. 24.2). The cornea, the anterior and posterior +chambers, and their contents constitute the anterior segment of the eye. The +vitreous chamber, visual retina, RPE, posterior sclera, and uvea constitute +the posterior segment. + + +**FIGURE 24.2.** **Schematic diagram illustrating the internal structures of the** +**human eye.** This diagram shows the relationship between the layers of the eye +and internal structures. The lens is suspended between the edges of the ciliary +body. Note the posterior chamber of the eye, which is a narrow space between +the anterior surface of the lens and the posterior surface of the iris. It +communicates through the pupil with the larger anterior chamber that is +bordered by the iris and the cornea. These spaces are filled with the aqueous +humor produced by the ciliary body. The large cavity posterior to the lens, the +vitreous chamber, is filled with a transparent jelly-like substance called the +_vitreous body_ . In this figure, most of the vitreous body has been removed to +illustrate the distribution of the central retinal vessels on the surface of the +retina. The other layers of the eyeball and the attachment of two of the +extraocular muscles to the sclera are also shown. + + +**The refractile media components of the eye alter the light path to** +**focus it on the retina.** + + +As light rays pass through the components of the eye, they are refracted. +Refraction focuses the light rays on the photoreceptor cells of the retina. Four +transparent components of the eye, called the **refractile (or dioptric) media**, +alter the path of the light rays: + + +The **cornea** is the anterior window of the eye. + + +The **aqueous humor** is the watery fluid located in the anterior and +posterior chambers. +The **lens** is a transparent, crystalline, biconvex structure suspended from the +inner surface of the ciliary body by a ring of radially oriented fibers, the +**zonule of Zinn** . +The **vitreous body** is composed of a transparent gel-like substance that fills +the vitreous chamber. It acts as a “shock absorber” that protects the fragile +retina during rapid eye movement and helps maintain the shape of the eye. +The vitreous body is almost 99% water with soluble proteins, hyaluronan, +glycoproteins, widely dispersed collagen fibrils, and traces of other +insoluble proteins. The fluid component of the vitreous body is called the +**vitreous humor** . + + +The **cornea** is the chief refractive element of the eye. It is the single most +powerful focusing element of the eye and has a refractive index of 1.376 (air +has a refractive index of 1.0). The cornea provides about 80% of the eye’s +refractive power and is almost twice as powerful as the lens. The lens is +second in importance to the cornea in refracting light rays. It is responsible for +fine-tuning and focusing light onto the retina. Because of its elasticity, the +shape of the **lens** can undergo slight changes in response to the tension of the +ciliary muscle. These changes are important in **accommodation** for proper +focusing on near objects. The aqueous humor and vitreous body have only +minor roles in refraction. However, the aqueous humor plays an important role +in providing nutrients to two avascular structures, the lens and cornea. In +addition to transmitting light, the vitreous body helps maintain the position of +the lens and helps keep the neural retina in contact with the RPE. + +### **Development of the Eye** + + +To appreciate the unusual structural and functional relationships in the eye, it +is helpful to understand how it forms in the embryo. + + +**The tissues of the eye are derived from neuroectoderm, surface** +**ectoderm, and mesoderm.** + + +By the 22nd day of development, the **eyes** are evident as shallow grooves— +the **optic sulci** or **optic grooves** —located in the neural folds at the cranial +end of the embryo. As the neural tube closes, the paired grooves form +outpocketings called **optic vesicles** (Fig. 24.3a). As each optic vesicle grows +laterally, the connection to the forebrain becomes constricted into an optic +stalk, and the overlying surface ectoderm thickens and forms a **lens placode** . +These events are followed by concomitant invagination of the optic vesicles +and the lens placodes. The invagination of the optic vesicle results in the +formation of a double-layered **optic cup** (Fig. 24.3b). The inner layer + + +becomes the **neural retina** . The outer layer becomes the **RPE** . The +mesenchyme surrounding the optic cup gives rise to the **sclera** . + + +**FIGURE 24.3.** **Schematic drawing illustrating the development of the eye.** +**a.** Forebrain and developing optic vesicles as seen in a 4-mm embryo. **b.** + + +Bilayered optic cup and invaginating lens vesicle as seen in a 7.5-mm embryo. +The optic stalk connects the developing eye to the brain. **c.** The eye as seen in +a 15-week fetus. All the layers of the eye are established, and the hyaloid +artery traverses the vitreous body from the optic disc to the posterior surface of +the lens. + + +Invagination of the central region of each **lens placode** results in the +formation of the **lens vesicle** . By the fifth week of development, the lens +vesicle loses contact with the surface ectoderm and comes to lie in the mouth +of the optic cup. After the lens vesicle detaches from the surface ectoderm, this +same site again thickens to form the corneal epithelium. **Mesenchymal cells** +from the periphery then give rise to the **corneal endothelium** and the +**corneal stroma** . + +Grooves containing blood vessels derived from mesenchyme develop +along the inferior surface of each optic cup and stalk. Called the **choroid** +**fissures**, the grooves enable the hyaloid artery to reach the inner chamber of +the eye. This artery and its branches supply the inner chamber of the optic cup, +lens vesicle, and mesenchyme within the optic cup. The hyaloid vein returns +blood from these structures. The distal portions of the hyaloid vessels +degenerate, but the proximal portions remain as the **central retinal artery** and +**central retinal vein** . By the end of the seventh week, the edges of the choroid +fissure fuse, and a round opening, the future pupil, forms over the lens vesicle. + +The **outer layer of the optic cup** forms a single layer of pigmented cells +(Fig. 24.3c). Pigmentation begins at the end of the fifth week. The **inner layer** +undergoes a complex differentiation into the nine layers of the **neural retina** . +The photoreceptor cells (rods and cones) as well as the bipolar, amacrine, and +ganglion cells and nerve fibers are present by the seventh month. The macular +depression, a future site of fovea centralis, begins to develop during the eighth +month and is not complete until about 6 months after birth. + +During the third month, the growth of the optic cup gives rise to the **ciliary** +**body** and the future **iris**, which forms a double row of epithelium in front of +the lens. The mesoderm located external to this region becomes the stroma of +the ciliary body and iris. Both epithelial layers of the iris become pigmented. +In the ciliary body, however, only the outer layer is pigmented. At birth, the +iris is light blue in fair-skinned people because the pigment is usually not +present. The dilator and sphincter pupillary muscles develop during the sixth +month as derivatives of the neuroectoderm of the outer layer of the optic cup. + +The embryonic origins of the individual eye structures are summarized in +Table 24.1. + + + +**TABLE 24.1** + + + +**Embryonic Origins of the Individual Structures of the** +**Eye** + + +**Source** **Derivative** + + + +Surface + + +ectoderm + + +Neural + + +ectoderm + + + +Lens +Epithelium of the cornea, conjunctiva, and lacrimal gland and + +its drainage system + + +Vitreous body (derived partly from neural ectoderm of the optic + +cup and partly from mesenchyme) Epithelium of the retina, +iris, and ciliary body Sphincter pupillae and dilator papillae +muscles Optic nerve + + + +Mesoderm Sclera +Stroma of the cornea, ciliary body, iris, and choroids + +Extraocular muscles +Eyelids (except epithelium and conjunctiva) Hyaloid system + +(most of which degenerates before birth) Coverings of the +optic nerve Connective tissue and blood vessels of the eye, +bony orbit, and vitreous body + +### **MICROSCOPIC STRUCTURE OF THE EYE** + + +The three layers of the eye—the **corneoscleral coat**, the **vascular coat**, and +the **retina** —are in turn composed of complex molecular layers and structures +that reflect their various functions. + +### **Corneoscleral Coat** + + +The cornea is a unique tissue and the most powerful focusing element of the +eye. It forms part of the anterior segment of the eye, protecting structures +within the eye from the external environment. The most important +characteristics of the cornea include its mechanical strength and transparency +to incoming light. + + +**The cornea consists of five layers: three cellular layers and two** +**noncellular layers.** + + +The transparent **cornea** (see Figs. 24.1 and 24.2) is only 0.5 mm thick at its +center and about 1 mm thick peripherally. It consists of three cellular layers +that are distinct in both appearance and origin. These layers are separated by +two important membranes that appear homogeneous when viewed in the light +microscope. Thus, the **five layers of the cornea** seen in a transverse section +are the following: + + +**Corneal epithelium** +**Bowman membrane** (anterior basement membrane) +**Corneal stroma** + + +**Descemet membrane** (posterior basement membrane) +**Corneal endothelium** + + +**The corneal epithelium is a nonkeratinized stratified squamous** +**epithelium.** + + +The **corneal epithelium** (Fig. 24.4) represents **nonkeratinized stratified** +**squamous epithelium** that consists of approximately five layers of cells and +measures about 50 μm in average thickness. It is continuous with the +conjunctival epithelium that overlies the adjacent sclera. The epithelial cells +adhere to neighboring cells via desmosomes that are present in short +interdigitating processes. Like other stratified epithelia, such as that of the +skin, the cells proliferate from a basal layer and become squamous at the +surface. The basal cells are low columnar with round, ovoid nuclei; the surface +cells acquire a squamous or discoid shape, and their nuclei are flattened and +pyknotic (Fig. 24.4b). As the cells migrate to the surface, the cytoplasmic +organelles gradually disappear, indicating a progressive decline in metabolic +activity. The corneal epithelium has a remarkable regenerative capacity with a +turnover time of approximately 7 days. + + +**FIGURE 24.4.** **Photomicrograph of the cornea. a.** This photomicrograph of a +section through the full thickness of the cornea shows the corneal stroma and +the two corneal surfaces covered by different types of epithelia. The corneal +stroma does not contain blood or lymphatic vessels. ×140. **b.** A higher +magnification of the anterior surface of the cornea showing the _corneal stroma_ +covered by a stratified squamous (corneal) _epithelium_ . The basal cells that rest +on _Bowman membrane_, which is a homogeneous condensed layer of corneal +stroma, are low columnar in contrast to the squamous surface cells. Note that + + +one of the surface cells is in the process of desquamation ( _arrow_ ). ×280. **c.** A +higher magnification photomicrograph of the posterior surface of the cornea +covered by a thin layer of simple squamous epithelium (corneal _endothelium_ ). +These cells are in direct contact with the aqueous humor of the anterior +chamber of the eye. Note the very thick _Descemet membrane_ (basal lamina) of +the corneal endothelial cells. ×280. + + +The actual stem cells for the corneal epithelium, called **corneolimbal** +**stem cells**, reside at the **corneoscleral limbus**, the junction of the cornea +and sclera. The microenvironment of this stem cell niche is important in +maintaining the stem cell population. It also acts as a barrier that prevents +migration of conjunctival epithelial cells to the corneal surface. The +**corneolimbal stem cells** may be partially or totally depleted by +disease or extensive injury, resulting in abnormalities of the corneal +surface that lead to **conjunctivalization** of the cornea, which is +characterized by vascularization, appearance of goblet cells, and an +irregular and unstable epithelium. These changes cause ocular +discomfort and reduced vision. Minor injuries of the corneal surface +heal rapidly by inducing stem cell proliferation and migration of cells +from the corneoscleral limbus to fill the defect. + +Numerous free nerve endings in the corneal epithelium provide it with +extreme sensitivity to touch. Stimulation of these nerves (e.g., by small foreign +bodies) elicits blinking of the eyelids, flow of tears, and, sometimes, severe +pain. Microvilli present on the surface epithelial cells help retain the tear film +over the entire corneal surface. Drying of the corneal surface may cause +ulceration. + + +**DNA in the corneal epithelial cells is protected from UV light damage** +**by nuclear ferritin.** + + +Despite constant exposure of the corneal epithelium to ultraviolet (UV) light, +cancer of the corneal epithelium is extremely rare. Unlike the epidermis, which +is also exposed to UV light, melanin is not present as a defense mechanism in +the corneal epithelium. The presence of melanin in the cornea would diminish +light transmission. Instead, it has recently been shown that corneal epithelial +cell nuclei contain **ferritin**, an iron-storage protein. Experimental studies +with avian corneas have shown that **nuclear ferritin** protects the DNA +in the corneal epithelial cells from free radical damage caused by UV +light exposure. + + +**Bowman membrane is a homogeneous-appearing layer on which the** +**corneal epithelium rests.** + + +**Bowman membrane** (anterior basement membrane) is a homogeneous, +faintly fibrillar lamina that is approximately 8–10 μm thick. It lies between the + + +corneal epithelium and the underlying corneal stroma and ends abruptly at the +corneoscleral limbus. The collagen fibrils of Bowman membrane have a +diameter of about 18 nm and are randomly oriented. Bowman membrane +imparts some strength to the cornea, but more significantly, it acts as a +barrier to the spread of infections. It does not regenerate. Therefore, if +damaged, an opaque scar forms that may impair vision. In addition, +changes in Bowman membrane are associated with **recurrent corneal** +**erosions** . + + +**The corneal stroma constitutes 90% of the corneal thickness.** + + +The **corneal stroma**, also called **substantia propria**, is composed of about +60 thin lamellae. Each lamella consists of parallel bundles of collagen fibrils. +Located between the lamellae are nearly complete sheets of slender, flattened +fibroblasts. The collagen fibrils are very uniform, measuring approximately 23 +nm in diameter and as long as 1 cm in length, and are arranged at +approximately right angles to those in adjacent lamellae (Fig. 24.5). The +ground substance of cornea contains **small leucine-rich proteoglycans** +**(SLRPs)**, which comprise sulfated glycosaminoglycans—chiefly, keratan +sulfate proteoglycan ( **lumican** ) and chondroitin sulfate proteoglycan +( **decorin** ). They are responsible for the 3D organization of collagen fibrils. +Lumican regulates the normal collagen fibril assembly in the cornea and is +critical to the development of a highly organized collagenous matrix. + + +**FIGURE 24.5.** **Electron micrograph of the corneal stroma.** This electron +micrograph shows parts of three lamellae and a portion of a corneal fibroblast +( _CF_ ) between two of the lamellae. Note that the collagen fibrils in adjacent +lamellae are oriented at right angles to one another. ×16,700. + + +**Corneal transparency is achieved by the regular arrangement of small** +**collagen fibrils and the spaces between them that are smaller than** +**one-half of a wavelength of visible light.** + + +The **transparency of the cornea** is directly related to the spaces between +collagen fibrils containing glycosaminoglycans and the size of the collagen +fibrils. If these spaces are smaller than one-half of a wavelength of visible +light, the cornea is clear and transparent. The uniform spacing of type I +collagen fibrils and lamellae, as well as the **orthogonal array** of the lamellae +(alternating layers at right angles), helps maintain corneal transparency. +Proteoglycans ( **lumican** ), along with **type V collagen**, regulate the precise +diameter and spacing of the type I collagen fibrils, maintaining corneal clarity. +The necessity for uniformity of collagen fibrils explains the ratio of type V to +type I collagen, which is much higher in the corneal stroma than in other + + +tissues. **Corneal swelling** after injury to the epithelium or endothelium +disrupts this precise array and leads to translucency or opacity of the +cornea. The hazy appearance of the cornea is related to the +enlargement of the spaces between collagen fibers. Lumican is +overexpressed during the wound healing process following corneal +injury. Normally, the cornea contains no blood vessels or pigments. +During an inflammatory response involving the cornea, large numbers +of neutrophils and lymphocytes migrate from the blood vessels of the +corneoscleral limbus and penetrate the stromal lamellae. + + +**Descemet membrane is an unusually thick basal lamina.** + + +**Descemet membrane** (posterior basement membrane) is the basal lamina of +corneal endothelial cells. It is intensely positive to periodic acid–Schiff (PAS) +and can be as thick as 10 μm. Descemet membrane has a felt-like appearance +and consists of an interwoven meshwork of fibers and pores. It separates the +corneal endothelium from the adjacent corneal stroma. Unlike Bowman +membrane, Descemet membrane readily regenerates after injury. It is +produced continuously but slowly thickens with age. Descemet +membrane also contributes to the diagnosis of **Wilson disease**, a rare +inherited disorder of copper metabolism that causes excessive +deposition of copper in organs and other tissues. A common +ophthalmologic finding in individuals with Wilson disease is the +presence of **Kayser–Fleischer rings** . These are caused by increased +depositions of copper within Descemet membrane. A Kayser–Fleischer +ring usually appears as a gold brown ring located in the periphery of +the cornea. + +Descemet membrane extends peripherally beneath the sclera as a +trabecular meshwork forming the **pectinate ligament** . Strands from the +pectinate ligament penetrate the ciliary muscle and sclera and may help +maintain the normal curvature of the cornea by exerting tension on Descemet +membrane. + + +**The corneal endothelium provides for metabolic exchange between** +**the cornea and the aqueous humor.** + + +The **corneal endothelium** is a single layer of squamous cells covering the +surface of the cornea that faces the anterior chamber (Fig. 24.4c). The cells are +joined by well-developed zonulae adherentes, relatively leaky zonulae +occludentes, and desmosomes. Virtually, all of the metabolic exchanges of the +cornea occur across the endothelium. The endothelial cells contain many +mitochondria and vesicles and an extensive rough-surfaced endoplasmic +reticulum (rER) and Golgi apparatus. They demonstrate endocytotic activity +and are engaged in active transport. Na [+] /K [+] -activated ATPase is located on the +lateral plasma membrane. + + +Transparency of the cornea requires precise regulation of the water content +of the stroma. Physical or metabolic damage to the endothelium leads to +rapid **corneal swelling** and, if the damage is severe, corneal opacity. +Restoration of endothelial integrity is usually followed by deturgescence +(dehydration necessary to maintain the transparency), although +corneas can swell beyond their ability for self-repair. Such swelling can +result in permanent focal opacities caused by aggregation of collagen +fibrils in the swollen cornea. Essential sulfated glycosaminoglycans that +normally separate the corneal collagen fibers are extracted from the +swollen cornea. + +Human **corneal endothelium** has a **limited proliferative capacity** . +Severely damaged endothelium can be repaired only by transplantation +of a donor cornea. Recent studies indicate that the periphery of the +cornea represents a regenerative zone of the corneal endothelial cells. +However, soon after **corneal transplantation**, endothelial cells exhibit +contact inhibition when exposed to the extracellular matrix of Descemet +membrane. The discovery that inhibitory factors released by Descemet +membrane prevent proliferation of endothelial cells has focused current +corneal research on the reversal or prevention of this inhibition with +exogenous growth factors. + + +**The sclera is an opaque layer that consists predominantly of dense** +**connective tissue.** + + +The **sclera** is a thick fibrous layer containing flat collagen bundles that pass in +various directions and in planes parallel to its surface. Both the collagen +bundles and the fibrils that form them are irregular in diameter and +arrangement. Interspersed between the collagen bundles are fine networks of +elastic fibers and a moderate amount of ground substance. Fibroblasts are +scattered among these fibers (Plate 24.4, page 1016). + +The opacity of the sclera, like that of other dense connective tissues, is +primarily attributable to the irregularity of its structure. The sclera is pierced +by blood vessels, nerves, and the optic nerve (see Fig. 24.2). It is 1 mm thick +posteriorly, 0.3–0.4 mm thick at its equator, and 0.7 mm thick at the +corneoscleral margin or limbus. + +The sclera is divided into three rather ill-defined layers: + + +The **episcleral layer (episclera)**, the external layer, is the loose connective +tissue adjacent to the periorbital fat. +The **substantia propria** ( **sclera proper**, also called **Tenon capsule** ) is +the investing fascia of the eye and is composed of a dense network of thick +collagen fibers. +The **suprachoroid lamina (lamina fusca)**, the inner aspect of the sclera, +is located adjacent to the choroid and contains thinner collagen fibers and + + +elastic fibers as well as fibroblasts, melanocytes, macrophages, and other +connective tissue cells. + + +In addition, the **episcleral space (Tenon space)** is located between the +episcleral layer and substantia propria of the sclera. This space and the +surrounding periorbital fat allow the eye to rotate freely within the orbit. The +tendons of the extraocular muscles attach to the substantia propria of the +sclera. + + +**The corneoscleral limbus is the transitional zone between the cornea** + +**and the sclera that contains corneolimbal stem cells.** + + +At the **junction of the cornea and sclera** (Fig. 24.6 and Plate 24.4, page +1016), Bowman membrane ends abruptly. The overlying epithelium at this site +thickens from the 5 cell layers of the cornea to the 10–12 cell layers of the +conjunctiva. The surface of the limbus is composed of two distinct types of +epithelial cells: One type constitutes the conjunctival cells, and the other +constitutes the corneal epithelial cells. The basal layer of the limbus contains +the **corneolimbal stem cells** that generate and maintain the corneal +epithelium. These cells proliferate, differentiate, and migrate to the surface of +the limbus and then toward the center of the cornea to replace damaged +epithelial cells. As mentioned previously, this movement of cells at the +corneoscleral limbus also creates a barrier that prevents conjunctival +epithelium from migrating onto the cornea. At this junction, the corneal +lamellae become less regular as they merge with the oblique bundles of +collagen fibers of the sclera. An abrupt transition from the avascular cornea to +the well-vascularized sclera also occurs here. + + +**FIGURE 24.6.** **Schematic diagram of the structure of the eye.** This drawing +shows a horizontal section of the eyeball with color-coded layers of its wall. +**Upper inset.** Enlargement of the anterior and posterior chambers is shown in +more detail. Note the location of the iridocorneal angle and canal of Schlemm +(scleral venous sinus), which drains the aqueous humor from the anterior +chamber of the eye. **Lower inset.** Typical organization of the cells and nerve +fibers of the fovea. + + +The limbus region, specifically, the **iridocorneal angle**, contains the +apparatus for the outflow of aqueous humor (Fig. 24.7). In the stromal layer, +endothelium-lined channels called the **trabecular meshwork** (or **spaces of** +**Fontana** ) merge to form the **scleral venous sinus (canal of Schlemm)** . +This sinus encircles the eye (see Figs. 24.6 and 24.7). The aqueous humor is +produced by the ciliary processes that border the lens in the posterior chamber +of the eye. The fluid passes from the posterior chamber into the anterior +chamber through the valve-like potential opening between the iris and lens. +The fluid then passes through the openings in the trabecular meshwork in the +limbus region as it continues its course to enter the scleral venous sinus. +Collecting vessels in the sclera, called **aqueous veins** (of Ascher) because +they convey aqueous humor instead of blood, transport the aqueous humor to +episcleral and conjunctival (blood) veins located in the sclera. Changes in +the **iridocorneal angle** may lead to blockage in the drainage of +aqueous humor, causing **glaucoma** (see Folder 24.1, page 990). The + + +iridocorneal angle can be visualized during eye examination using a +**gonioscope**, a specialized optical device that uses mirrors or prisms to +reflect the light from the iridocorneal angle into the direction of the +observer. In conjunction with a slit lamp or operating microscope, the +ophthalmologist can examine this region to monitor various eye +conditions associated with glaucoma. The iridocorneal angle can be +also visualized using the **ultrasound biomicroscopy (UBM)** . This +high-resolution imaging technique utilizes a high-frequency ultrasound +transducer to visualize the narrowed iridocorneal angle in primary +angle-closure glaucoma. + + +**FIGURE 24.7.** **Photomicrograph of the ciliary body and iridocorneal angle.** +This photomicrograph of the human eye shows the anterior portion of the ciliary +body and parts of the _iris_ and _sclera_ . The inner surface of the ciliary body forms +radially arranged, ridge-shaped elevations, the _ciliary processes_, to which the +_zonular fibers_ are anchored. The ciliary body contains the _ciliary muscle_, +connective tissue with blood vessels of the vascular coat, and the ciliary +epithelium, which is responsible for the production of aqueous humor. Anterior +to the ciliary body, between the iris and the cornea, is the _iridocorneal angle_ . +The scleral venous sinus ( _canal of Schlemm_ ) is located in close proximity to +this angle and drains the aqueous humor to regulate intraocular pressure. +×120. The _inset_ shows that the ciliary epithelium consists of two layers, the +outer pigmented layer and the inner nonpigmented layer. ×480. + + +##### Glaucoma is a clinical condition resulting from increased intraocular + +pressure over a sustained period of time. It can be caused by excessive +secretion of aqueous humor or impedance of the drainage of aqueous humor +from the anterior chamber. The internal tissues of the eye, particularly the +retina, are nourished by the diffusion of oxygen and nutrients from the +intraocular vessels. Blood flows normally through these vessels (including the +capillaries and veins) when the hydrostatic pressure within the vessels exceeds +the intraocular pressure. If the drainage of the aqueous humor is impeded, the +intraocular pressure increases because the layers of the eye do not allow the +wall to expand. This increased pressure interferes with normal retinal +nourishment and function, causing the retinal nerve fiber layer to atrophy (Fig. +F24.1.1). + + +**FIGURE F24.1.1.** **Glaucoma.** This image shows a view of the fundus of the left +eye in a patient with advanced glaucoma. As a result of the increased +intraocular pressure, retinal nerve fibers undergo atrophy and shrink in size. +Note a pale optic disc in the _center_ of the image with a less pronounced rim +due to atrophy of nerve fibers. Enlargement of the optic nerve cup (central area +of the optic disc) is also visible and a characteristic finding for glaucoma. + + +Compare this image to a normal retina in Figure 24.15. (Courtesy of Dr. Renzo +A. Zaldivar.) There are two major types of glaucoma: + +##### Open-angle glaucoma is the most common type of glaucoma and the + +leading cause of blindness among adults. The removal of aqueous humor is +obstructed because of reduced flow through the trabecular meshwork of the +iridocorneal angle into the scleral venous sinus (canal of Schlemm). +##### Angle-closure glaucoma (acute glaucoma) is less common and is + +characterized by a narrowed iridocorneal angle that obstructs the inflow of +the aqueous humor into the scleral venous sinus. Usually, it is associated +with a sudden, painful, complete blockage of the scleral venous sinus and +can result in permanent blindness if not treated promptly. + + +Visual deficits associated with glaucoma include blurring of vision and +impaired dark adaptation (symptoms that indicate loss of normal retinal +function) and halos around lights (a symptom indicating corneal endothelial +damage). If the condition is not treated, the retina will be permanently +damaged, and blindness will occur. Treatment is directed toward lowering the +intraocular pressure by decreasing the rate of production of aqueous humor or +eliminating the cause of the obstruction of normal drainage. Topical +##### prostaglandin analogs (i.e., latanoprost, bimatoprost, travoprost) are the + +first line of treatment for open-angle glaucoma. They are very effective in +reducing intraocular pressure by increasing the drainage of aqueous humor +##### into the canal of Schlemm. Carbonic anhydrase inhibitors, which were + +used in the past to decrease the production of aqueous humor, have largely +been replaced by prostaglandin analogs that have fewer systemic side effects. + +There are two main types of laser surgery to treat glaucoma. They facilitate +drainage of aqueous humor from the iridocorneal angle. Laser +##### trabeculoplasty utilizes a laser beam to induce focal scarring of the + +trabecular meshwork. This results in mechanical stretching of the surrounding +untreated regions of the meshwork, which facilitates drainage of the aqueous +humor. Trabeculoplasty is often used in open-angle glaucoma when +##### medications are not effective or cause intolerable side effects. Iridotomy is + +used in patients with angle-closure glaucoma. The laser beam incises a small +opening at the base of the iris, which widens the iridocorneal angle to allow +better drainage of aqueous humor. + +### **Vascular Coat (Uvea)** + + +**The iris, the most anterior part of the vascular coat, forms a** +**contractile diaphragm in front of the lens.** + + +The **iris** arises from the anterior border of the ciliary body (see Fig. 24.7) and +is attached to the sclera about 2 mm posterior to the corneoscleral junction. +The **pupil** is the central aperture of this thin disc. The iris is pushed slightly +forward as it changes in size in response to light intensity. It consists of a +highly vascularized connective tissue stroma that is covered on its posterior +surface by highly pigmented cells, the **posterior pigment epithelium** (Fig. +24.8). The basal lamina of these cells faces the posterior chamber of the eye. +The degree of pigmentation is so great that neither the nucleus nor the +character of the cytoplasm can be seen in the light microscope. Located +beneath this layer is a layer of myoepithelial cells, the **anterior pigment** +**myoepithelium** . The apical (posterior) portions of these myoepithelial cells +are laden with melanin granules, which effectively obscure their boundaries +with the adjacent posterior pigment epithelial cells. The basal (anterior) +portions of myoepithelial cells possess processes containing contractile +elements that extend radially and collectively make up the **dilator pupillae** +**muscle** of the iris. The contractile processes are enclosed by a basal lamina +that separates them from the adjacent stroma. + + +**FIGURE 24.8.** **Structure of the iris. a.** This schematic diagram shows the +layers of the iris. Note that the pigmented epithelial cells are reflected as occurs +at the pupillary margin of the iris. The two layers of pigmented epithelial cells +are in contact with the dilator pupillae muscle. The incomplete layer of +fibroblasts and stromal melanocytes is indicated on the anterior surface of the +iris. **b.** Photomicrograph of the iris showing the histologic features of this +structure. The _lens_, which lies posterior to the iris, is included for orientation. +The iris is composed of a _connective tissue_ stroma covered on its posterior + + +surface by the posterior pigment epithelium. The basal lamina (not visible) +faces the posterior chamber of the eye. Because of intense pigmentation, the +histologic features of these cells are not discernible. Just anterior to these cells +is the anterior pigment myoepithelium layer (the _dashed line_ separates the two +layers). Note that the posterior portion of the myoepithelial cells contains +melanin, whereas the anterior portion contains contractile elements forming the +dilator pupillae muscle of the iris. The sphincter pupillae muscle is evident in +the stroma. The color of the iris depends on the number of _stromal melanocytes_ +scattered throughout the connective tissue stroma. At the _bottom_, note the +presence of the lens. ×570. + + +Constriction of the pupil is produced by smooth muscle cells located in the +stroma of the iris near the pupillary margin of the iris. These circumferentially +oriented cells collectively compose the **sphincter pupillae muscle** . + +The anterior surface of the iris reveals numerous ridges and grooves that +can be seen in clinical examination with the ophthalmoscope. When this +surface is examined in the light microscope, it appears as a discontinuous layer +of fibroblasts and melanocytes. The number of melanocytes in the stroma is +responsible for variation in eye color. The function of these **pigment-** +**containing cells** in the iris is to absorb light rays. If there are few +melanocytes in the stroma, the color of the iris is derived from light +reflected from the pigment present in the cells of the iris’s posterior +surface, giving it a blue appearance. With increasing amounts of +pigment present in the stroma, the iris color changes from blue to +shades of greenish blue, gray, and, finally, brown. + + +**The sphincter pupillae is innervated by parasympathetic nerves; the** +**dilator pupillae muscle is under sympathetic nerve control.** + + +The **size of the pupil** is controlled by contraction of the sphincter pupillae +and dilator pupillae muscles. The process of **adaptation** (increasing or +decreasing the size of the pupil) ensures that only the appropriate amount of +light enters the eye. Two muscles are actively involved in adaptation: + + +The **sphincter pupillae muscle**, a circular band of smooth muscle cells +(Plate 24.3, page 1014), is innervated by parasympathetic nerves carried in +the oculomotor nerve (cranial nerve III) and is responsible for reducing +pupillary size in response to bright light. Failure of the pupil to respond +when light is shined into the eye—“ **pupil fixed and dilated** ”—is an +important clinical sign showing a lack of nerve or brain function. +The **dilator pupillae muscle** is a thin sheet of radially oriented contractile +processes of pigmented myoepithelial cells constituting the anterior pigment +epithelium of the iris. This muscle is innervated by sympathetic nerves from +the superior cervical ganglion and is responsible for increasing pupillary +size in response to dim light. + + +Just before **ophthalmoscopic examination**, mydriatic agents such +as **atropine** are given as eye drops to cause dilation of the pupil. +Acetylcholine (ACh) is the neurotransmitter of the parasympathetic +nervous system (it innervates the sphincter pupillae muscle); the +addition of atropine blocks muscarinic acetylcholine receptors, +temporally blocking the action of the sphincter muscle, and leaving the +**pupil** **wide** **open** and unreactive to light originating from +ophthalmoscope. + + +**The ciliary body is the thickened anterior portion of the vascular coat** +**and is located between the iris and the choroid.** + + +The **ciliary body** extends about 6 mm from the root of the iris posterolaterally +to the **ora serrata** (see Fig. 24.2). As seen from behind, the lateral edge of the +ora serrata bears 17–34 grooves or crenulations. These grooves mark the +anterior limit of both the retina and the choroid. The anterior third of the +ciliary body has approximately 75 radial ridges or **ciliary processes** (see Fig. +24.7). The fibers of the zonule arise from the grooves between the ciliary + +processes. + +The layers of the ciliary body are similar to those of the iris and consist of +a stroma and an epithelium. The stroma is divided into two layers: + + +An **outer layer** of smooth muscle, the **ciliary muscle**, makes up the bulk +of the ciliary body. +An **inner vascular region** extends into the ciliary processes. + + +The epithelial layer covering the internal surface of the ciliary body is a +direct continuation of the two layers of the retinal epithelium (see Fig. 24.1). + + +**The ciliary muscle is organized into three functional portions or** +**groups of smooth muscle fibers.** + + +The smooth muscle of the ciliary body has its origin in the scleral spur, a +ridge-like projection on the inner surface of the sclera at the corneoscleral +junction. The muscle fibers spread out in several directions and are classified +into three functional groups on the basis of their direction and insertion: + + +The **meridional (or longitudinal) portion** consists of the outer muscle +fibers that pass posteriorly into the stroma of the choroid. These fibers +function chiefly in stretching the choroid. It also may help open the +iridocorneal angle and facilitate drainage of the aqueous humor. +The **radial (or oblique) portion** consists of deeper muscle fiber bundles +that radiate in a fan-like manner to insert into the ciliary body. Its +contraction causes the lens to flatten and thus focus on distant vision. + + +The **circular (or sphincteric) portion** consists of inner muscle fiber +bundles oriented in a circular pattern that forms a sphincter. It reduces the +tension on the lens, causing the lens to accommodate for near vision. + + +Examination of a histologic preparation does not clearly reveal the +arrangement of the muscle fibers. Rather, the organizational grouping is based +on microdissection techniques. + + +**Ciliary processes are ridge-like extensions of the ciliary body from** +**which zonular fibers emerge and extend to the lens.** + + +**Ciliary processes** are thickenings of the inner vascular region of the ciliary +body. They are continuous with the vascular layers of the choroid. Scattered +macrophages containing melanin pigment granules and elastic fibers are +present in these processes (Plate 24.3, page 1014). The processes and the +ciliary body are covered by a double layer of columnar epithelial cells, the +**ciliary epithelium**, which was originally derived from the two layers of the +optic cup. The ciliary epithelium has three principal functions: + + +Secretion of **aqueous humor** +Participation in the **blood–aqueous barrier** (part of the **blood–ocular** +**barrier** ) +Secretion and anchoring of the **zonular fibers** that form the **suspensory** +**ligament of the lens** + + +The inner cell layer of the ciliary epithelium has a basal lamina facing the +posterior and vitreous chambers. The cells in this layer are nonpigmented. The +cell layer that has its basal lamina facing the connective tissue stroma of the +ciliary body is heavily pigmented and is directly continuous with the +pigmented epithelial layer of the retina. The **double-layered ciliary** +**epithelium** continues over the iris, where it becomes the posterior pigmented +epithelium and anterior pigmented myoepithelium. The zonular fibers extend +from the basal lamina of the nonpigmented epithelial cells of the ciliary +processes and insert into the lens capsule (the thickened basal lamina of the +lens). + + +**The blood–aqueous barrier separates the interior environment of the** +**eye from the blood entering the ciliary body.** + + +The **cells of the nonpigmented layer** have all the characteristics of a fluidtransporting epithelium, including complex cell-to-cell junctions with a welldeveloped zonula occludens, extensive lateral and basal plications, and +localization of Na [+] /K [+] -ATPase in the lateral plasma membrane. In addition, +they have an elaborate rER and Golgi complex, consistent with their role in the +secretion of zonular fibers. Tight junctions (zonulae occludentes) between the + + +nonpigmented ciliary epithelial cells are responsible for maintaining the +**blood–aqueous barrier** . This barrier restricts free diffusion across the ciliary +epithelium to maintain the unique environment of the aqueous humor, which is +quite different from that of blood vessels and stroma of the ciliary body. The +blood–aqueous barrier contributes to the nutrition and function of the cornea +and the lens. **Disruption of the blood–aqueous barrier** may be +observed in ocular inflammation, intraocular surgery, trauma, or +vascular diseases. The aqueous humor becomes cloudy because of +the leakage of plasma proteins (fibrinogen) and migration of +inflammatory cells from the stroma of the ciliary body and iris into the +posterior and anterior chambers of the eye. + +The **cells of the pigmented layer** have a less developed junctional zone +and often exhibit large, irregular lateral intercellular spaces. Both desmosomes +and gap junctions hold together the apical surfaces of the two cell layers, +creating discontinuous “luminal” spaces called **ciliary channels** . + + +**The aqueous humor is derived from plasma and maintains intraocular** + +**pressure.** + + +The **aqueous humor** is secreted by the double-layered ciliary epithelium and +originates from blood capillaries. It is similar in ionic composition to plasma +but contains less than 0.1% protein (compared to 7% protein in plasma). The +main functions of the aqueous humor are to maintain **intraocular pressure** +and to provide nutrients and remove metabolites from the avascular tissues of +the cornea and lens. The aqueous humor passes from the ciliary body toward +the lens and then between the iris and the lens, before it reaches the anterior +chamber of the eye (see Fig. 24.6). In the anterior chamber of the eye, the +aqueous humor passes laterally to the angle formed between the cornea and the +iris. Here, it penetrates the tissues of the limbus as it enters the labyrinthine +spaces of the limbus’s trabecular meshwork in the iridocorneal angle and +finally reaches the **canal of Schlemm**, which communicates with the veins of +the sclera (see Folder 24.1). Normal turnover of the aqueous humor in the +human eye is approximately once every 1.5–2 hours. + + +**The choroid is the portion of the vascular coat that lies deep into the** +**retina.** + + +The **choroid** is a dark brown vascular sheet only 0.25 mm thick posteriorly +and 0.1 mm thick anteriorly. It lies between the sclera and the retina (see Fig. +24.1). + +Two layers can be identified in the choroid: + + +**Choriocapillary layer**, an inner vascular layer +**Bruch membrane**, a thin, amorphous hyaline membrane + + +The choroid is attached firmly to the sclera at the margin of the optic nerve. +A potential space, the **perichoroidal space** (between the sclera and the +retina), is traversed by thin, ribbon-like branching lamellae or strands that pass +from the sclera to the choroid. These lamellae originate from the +**suprachoroid lamina** (lamina fusca) and consist of large, flat melanocytes +scattered between connective tissue elements, including collagen and elastic +fibers, fibroblasts, macrophages, lymphocytes, plasma cells, and mast cells. +The lamellae pass inward to surround the vessels in the remainder of the +choroid layer. Free smooth muscle cells, not associated with blood vessels, are +present in this tissue. Lymphatic channels called **epichoroid lymph spaces**, +long and short posterior ciliary vessels, and nerves on their way to the front of +the eye are also present in the suprachoroid lamina. + +Most of the blood vessels decrease in size as they approach the retina. The +largest vessels continue forward beyond the ora serrata into the ciliary body. +These vessels can be seen with an ophthalmoscope. The large vessels are +mostly veins that course in whorls before passing obliquely through the sclera +as vortex veins. The inner layer of vessels, arranged in a single plane, is called +the **choriocapillary layer** . The vessels of this layer provide nutrients to the +cells of the retina. The fenestrated capillaries have lumina that are large and +irregular in shape. In the region of the fovea, the choriocapillary layer is +thicker, and the capillary network is denser. This layer ends at the ora serrata. + +**Bruch membrane**, also called the **lamina vitrea**, measures 1–4 μm in +thickness and lies between the choriocapillary layer and the pigment +epithelium of the retina. It runs from the optic nerve to the ora serrata, where it +undergoes modifications before continuing into the ciliary body. Bruch +membrane is a thin, amorphous refractile layer. The transmission electron +microscope (TEM) reveals that it consists of a multilaminar sheet containing a +center layer of elastic and collagen fibers. Five different layers are identified in +Bruch membrane: + + +The basal lamina of the endothelial cells of the choriocapillary layer +A layer of collagen fibers approximately 0.5 μm thick +A layer of elastic fibers approximately 2 μm thick +A second layer of collagen fibers (thus forming a “sandwich” around the +intervening elastic tissue layer) +The basal lamina of the RPE cells + + +At the ora serrata, the collagenous and elastic layers disappear into the +ciliary stroma, and Bruch membrane becomes continuous with the basal +lamina of the RPE of the ciliary body. + +### **Retina** + + +**The retina represents the innermost layer of the eye.** + + +The **retina**, derived from the inner and outer layers of the optic cup, is the +innermost of the three concentric layers of the eye (see Fig. 24.1). It consists of +two basic layers: + + +The **neural retina** or **retina proper** is the inner layer that contains the +photoreceptor cells. +The **retinal pigment epithelium (RPE)** is the outer layer that rests on and +is firmly attached through the Bruch membrane to the choriocapillary layer +of the choroid. + + +A potential space exists between the two layers of the retina. The two +layers may be separated mechanically in the preparation of histologic +specimens. Separation of the layers, “ **retinal detachment** ” (see Folder +24.2), also occurs in the living state because of eye disease or trauma. + + +A potential space exists in the retina as a vestige of the space between the +apical surfaces of the two epithelial layers of the optic cup. If this space +expands, the neural retina separates from the retinal pigment epithelium +(RPE), which remains attached to the choroid layer. This condition is called +**retinal detachment** . As a result of retinal detachment, the photoreceptor +cells are no longer supplied by nutrients from the underlying vessels in the +choriocapillary plexus of the choroid. + +Clinical symptoms of retinal detachment include visual sensations +commonly described as a “shower of pepper” or floaters. These are +caused by red blood cells extravasated from the capillary vessels that have +been injured during the retinal tear or detachment. In addition, some +individuals describe sudden flashes of light as well as a “web” or “veil” in +front of the eye in conjunction with the onset of floaters. A detached retina +can be observed and diagnosed during ophthalmoscopic eye examination +(Fig. F24.2.1). + + +**FIGURE F24.2.1.** **Retinal detachment.** This image shows a view of the fundus of +the right eye in a patient with retinal detachment. The central retinal vessels +emerging from the optic disc are in focus, but in the _area of the retinal detachment,_ +they appear to be out of focus. Because the area of retinal detachment is elevated +(note multiple ridges and shadows), it is located anterior to the plane of focus of the +ophthalmoscope. (Courtesy of Dr. Renzo A. Zaldivar.) Another common retinal +condition occurs with aging. As the vitreous body ages (in the sixth and seventh +decades of life), it tends to shrink and pull away from the neural retina, which +causes single or multiple tears in the neural retina. + + +If not repositioned quickly, the detached area of the retina will undergo +necrosis, resulting in blindness. An argon laser is often used to repair +retinal detachment by photocoagulating the edges of the detachment and +producing scar tissue. This method prevents the retina from further +detachment and facilitates the repositioning of photoreceptor cells. + + +In the neural retina, two regions or portions that differ in function are +recognized: + + +The **nonphotosensitive region** (nonvisual part), located anterior to the +ora serrata, lines the inner aspect of the ciliary body and the posterior +surface of the iris (this portion of the retina is described in the sections on +the iris and ciliary body). + + +The **photosensitive region** (optic part) lines the inner surface of the eye +posterior to the ora serrata, except where it is pierced by the optic nerve (see +Fig. 24.1). + + +The site where the optic nerve joins the retina is called the **optic disc** or +**optic papilla** . Because the optic disc is devoid of photoreceptor cells, it is a +blind spot in the visual field. The **fovea centralis** is a shallow depression +located about 2.5 mm lateral to the optic disc. It is the area of greatest visual +acuity. The visual axis of the eye passes through the fovea. A yellowpigmented zone called the **macula lutea** surrounds the fovea. In relative +terms, the fovea is the region of the retina that contains the highest +concentration and most precisely ordered arrangement of visual elements. The +region of the retina surrounding the macula lutea may be affected in +older individuals by **age-related macular degeneration** (see Folder +24.3). + + +**Age-related macular degeneration (ARMD)** is the most common +cause of blindness in older individuals. Although the cause of this disease +is still unknown, evidence suggests both genetic and environmental +(ultraviolet [UV] irradiation, drugs) components. The disease causes loss +of central vision, although peripheral vision remains unaffected. Two forms +of ARMD are recognized: a dry (atrophic, nonexudative) form and a wet +(exudative, neovascular) form. The latter is considered a complication of +the first. **Dry ARMD** is the most common form (90% of all cases) and +involves degenerative lesions localized in the area of the macula lutea. +The degenerative lesions include **drusen**, which are focal thickenings of +Bruch membrane, atrophy, depigmentation of the RPE, and obliteration of +capillaries in the underlying choroid layer. These changes lead to the +deterioration of the overlying photosensitive retina, resulting in the +formation of blind spots in the visual field (Fig. F24.3.1). **Wet ARMD** is a +complication of dry ARMD caused by neovascularization of blind spots of +the retina in the large drusen. These newly formed, thin, fragile vessels +frequently leak and produce exudates and hemorrhages in the space just +beneath the retina, resulting in fibrosis and scarring. These changes are +responsible for the progressive loss of central vision over a short time. The +treatment of wet ARMD includes conventional **laser photocoagulation** +therapy and pharmacologic therapy with intravitreal injection of +ranibizumab, a **vascular endothelial growth factor (VEGF) inhibitor** . +Other surgical methods, such as **macular translocation**, have been +recently introduced. In this procedure, the retina is detached, translocated, +and reattached in a new location, away from the choroid neovascular + + +tissue. Conventional laser treatment is then applied to destroy pathologic +vessels without destroying central vision. + + +**FIGURE F24.3.1.** **Photograph depicting the visual field in individuals with age-** +**related macular degeneration.** Note that central vision is absent because of the +changes in the macula region of the retina. To maximize their remaining vision, +individuals with this condition are instructed to use eccentric fixation of their eyes. + +##### **Layers of the retina** + + +**Ten layers of cells and their processes constitute the retina.** + + +Before discussing the **ten layers of the retina**, it is important to identify the +types of cells found there. This identification will aid in understanding the +functional relationships of the cells. Studies of the retina in primates have +identified at least 15 types of neurons that form at least 38 different types of +synapses. For convenience, neurons and supporting cells can be classified into + + +four groups of cells (Fig. 24.9): + + +**FIGURE 24.9.** **Schematic drawing and photomicrograph of the layers of** +**the retina.** On the basis of histologic features that are evident in the +photomicrograph _on right_, the retina can be divided into 10 layers. The layers +correspond to the diagram _on left_, which shows the distribution of major cells of +the retina. Note that light enters the retina and passes through its inner layers +before reaching the photoreceptors of the rods and cones that are closely +associated with the retinal pigment epithelium. Also, the interrelationship +between the bipolar neurons and ganglion cells that carry electrical impulses +from the retina to the brain is clearly visible. Bruch membrane (lamina vitrea) +separates the inner layer of the vascular coat (choroid) from the retinal pigment +epithelium. ×440. + + +**Photoreceptor cells** —the retinal rods and cones +**Conducting neurons** —bipolar neurons and ganglion cells +**Association neurons** and others—horizontal, centrifugal, interplexiform, +and amacrine neurons +**Supporting (neuroglial) cells** —Müller cells, microglial cells, and +astrocytes + + +The specific arrangement and associations of the nuclei and processes of +these cells form 10 retinal layers that can be seen with the light microscope. +The layers of the retina can also be imaged and examined in living +individuals using spectral-domain optical coherence tomography (see + + +Folder 24.4). The 10 layers of the retina, from outside inward, are as follows +(see Fig. 24.9): FOLDER 24.4 + +##### **CLINICAL CORRELATION: CLINICAL IMAGING OF THE** **RETINA** + + +The standard ophthalmoscopic examination of the eye has been recently +##### supplemented by a new examination technique that utilizes spectral- domain optical coherence tomography (SD OCT). This noninvasive + +and noncontact examination is not only useful in visualizing the retinal +surface, but it also provides a high-resolution cross-sectional image of the +retina in vivo. All histologic layers of the retina can be easily differentiated +with SD OCT (Fig. F24.4.1), and they can be objectively measured for tissue +thickness and change. SD OCT technology is based on comparisons of spectral +characteristics of the reflected light beam from the retina with those of the +reference beam. For this purpose, an infrared laser beam (~840 nm wavelength +with 50 nm bandwidth) is used that is able to produce images at 5-μm +resolution. The laser beam passes through the structures of the eye and is +partially absorbed and partially reflected depending on tissue characteristics. +The reflected light is detected by a multichannel spectrometer, and the +interference pattern is compared to the reference beam using complex +computer algorithms. The spectral differences are used to construct the crosssectional (line) scans as shown in Figure F24.4.1 or the three-dimensional +images of the retina as shown in Figure F24.4.2. Introduced in the 1990s, the +SD OCT has revolutionized the management and diagnosis of many eye +diseases. SD OCT established itself as an imaging modality of choice in +##### glaucoma (measurement of optic nerve and retinal nerve fiber layer) and retinal diseases. It is used for the early and accurate detection of macular degeneration, retinal detachment, macular holes, epiretinal membranes, and optic disc pits and for the detection of fluid accumulation within the retina that occurs in conditions such as diabetic retinopathy, cystoid macular edema, and central serous choroidopathy . + + +**FIGURE F24.4.1.** **Spectral-domain optical coherence tomography (SD** +**OCT) cross-sectional (line) image of the retina in a healthy eye.** The _upper_ +image represents a normal cross-sectional image of the retina containing fovea +and optic disc on the _right_ side of the image. The optically transparent vitreous +body is invisible and appears as the _black_ region in the upper part of the image. +Hyperreflective and hyporeflective bands of retinal tissue correspond to the +histologic layers of the retina. Note the photoreceptor layer containing rods and +cones as well the retinal pigment epithelium are well defined and are separated +from the choroid layer containing blood vessels. (Courtesy of Drs. Andrew J. + + +Barkmeier and Denise M. Lewison.) + + +**FIGURE F24.4.2.** **Spectral-domain optical coherence tomography (SD** +**OCT) three-dimensional image of the retina of a healthy right eye.** The +scan area is ~12 mm × 9 mm in size and includes a portion of the optic disc ( _on_ +_the left_ ) and fovea ( _on the right_ ). A three-dimensional data set is acquired from +four scans (two vertical and two horizontal), which is then processed with a +motion-correction technology (MCT) algorithm. The MCT algorithm analyzes +and compares the vascular pattern in each of the scans and reduces artifacts +and image distortions associated with eye movement. This image has two +parts. The upper false-color image (optical densities are coded in different +colors) shows the surface and thickness of all layers of the retina and +represents a motion-corrected, three-dimensional volume rendering of the +entire data set. The lower grayscale vascular map image (optical densities are +coded in grayscale) is a two-dimensional image created by summing all the +pixels in each column. It is curved to match the curvature of the eye. The letters +S (for superior) and T (for temporal) on the eye orientation icon in the _lower_ +_right corner_ provide reference to the positioning of the scan in the patient’s eye. +(Image courtesy of Dr. Pravin Dugel, Phoenix, Arizona.) + + +**1.** **Retinal pigment epithelium (RPE)** —the outer layer of the retina, + +actually not part of the neural retina but intimately associated with it + + +**2.** **Layer of rods and cones** —contains the outer and inner segments of + +photoreceptor cells +**3.** **Outer limiting membrane** —the apical boundary of Müller cells +**4.** **Outer nuclear layer** —contains the cell bodies (nuclei) of retinal rods and + + +cones +**5.** **Outer plexiform layer** —contains the processes of retinal rods and cones + +and processes of the horizontal, amacrine, and bipolar cells that connect to +them + +**6.** **Inner nuclear layer** —contains the cell bodies (nuclei) of horizontal, + +amacrine, bipolar, and Müller cells +**7.** **Inner plexiform layer** —contains the processes of horizontal, amacrine, + +bipolar, and ganglion cells that connect to each other +**8.** **Ganglion cell layer** —contains the cell bodies (nuclei) of ganglion cells +**9.** **Layer of optic nerve fibers** —contains processes of ganglion cells that + +lead from the retina to the brain +**10.** **Inner limiting membrane** —composed of the basal lamina of Müller cells + + +Each of the layers is more fully described in the following sections (see +corresponding numbers). + + +**The cells of the retinal pigment epithelium (layer 1) have extensions** +**that surround the processes of the rods and cones.** + + +The **RPE** is a single layer of cuboidal cells about 14 μm wide and 10–14 μm +tall. The cells rest on Bruch membrane of the choroid layer. The pigment cells +are tallest in the fovea and adjacent regions, which account for the darker color +of this region. + +Adjacent RPE cells are connected by a junctional complex consisting of +gap junctions and elaborate zonulae occludentes and adherentes. This +junctional complex is the site of the **blood–retina barrier** . This barrier makes +the retinal vessels impermeable to molecules larger than 20–30 kDa. + +The pigment cells have cylindrical sheaths on their apical surface that are +associated with, but do not directly contact, the tip of the photoreceptor +processes of the adjacent rod and cone cells. Complex cytoplasmic processes +project for a short distance between the photoreceptor cells of the rods and +cones. Numerous elongated melanin granules, unlike those found elsewhere in +the eye, are present in many of these processes. They aggregate on the side of +the cell nearest the rods and cones and are the most prominent feature of the +cells. The nucleus with its many convoluted infoldings is located near the +basal plasma membrane adjacent to Bruch membrane. + +The cells also contain material phagocytosed from the processes of the +photoreceptor cells in the form of lamellar debris (lipofuscin) contained in +residual bodies or phagosomes. These lipofuscin granules reside in the basal +cytoplasm of the RPE cell and are relatively difficult to detect in routine + + +hematoxylin and eosin (H&E) preparation. Because the lipofuscin pigment is +fluorescent, it can be clearly seen in the UV fluorescent microscope. A +supranuclear Golgi apparatus and an extensive network of smooth-surfaced +endoplasmic reticulum (sER) surround the melanin granules and residual +bodies that are present in the cytoplasm. + +The **RPE** serves several important functions, including the following: + + +It **absorbs light** passing through the neural retina to **prevent reflection** +and resultant glare. +It isolates the retinal cells from blood-borne substances. It serves as a major +component of the **blood–retina barrier** via tight junctions between RPE +cells. +It participates in **restoring photosensitivity** to visual pigments that were +dissociated in response to light. The metabolic apparatus for visual pigment +resynthesis is present in the RPE cells. +It **phagocytoses and disposes of membranous discs** from the rods +and cones of the retinal photoreceptor cells. + + +**The rods and cones of the photoreceptor cell (layer 2) extend from the** +**outer layer of the neural retina to the pigment epithelium.** + + +The **rods** and **cones** are the outer segments of photoreceptor cells whose +nuclei form the outer nuclear layer of the retina (Figs. 24.9 and 24.10). The +light that reaches the photoreceptor cells must first pass through all of the +internal layers of the neural retina. The rods and cones are arranged in a +palisade manner; therefore, in the light microscope, they appear as vertical +striations. + + +**FIGURE 24.10.** **Schematic diagram of the ultrastructure of rod and cone** +**cells.** The outer segments of the rods and cones are closely associated with +the adjacent pigment epithelium. + + +The retina contains approximately **120 million rods** and **7 million** +**cones** . They are not distributed equally throughout the photosensitive part of +the retina. The **highest density of cones** is detected in the **fovea centralis**, +which corresponds to the highest visual acuity and best color vision (Fig. +24.11). The highest density of rods is outside the fovea centralis, and their +density steadily decreases toward the periphery of the retina. Rods are not +present in the fovea centralis nor at the optic disc, which is devoid of any +photoreceptors (see Fig. 24.11). The rods are about 2 μm thick and 50 μm long +(ranging from about 60 μm at the fovea to 40 μm peripherally). The cones vary +in length from 85 μm at the fovea to 25 μm at the periphery of the retina. + + +**FIGURE 24.11.** **Distribution of rods and cones in the human eye.** This +graph shows the density of rods and cones per mm [2] across the retina. The +peak number of cones occurs in the fovea centralis, where it reaches ~150,000 + + +cones/mm [2] . Rod density peaks about 20 degrees from the visual axis and is +roughly the same as that of cones. Rods density decreases toward the +periphery of the retina. Note that there are no photoreceptors at the optic disc. + + +**Rods are sensitive in low light and produce black-and-white images;** +**cones are less sensitive in low light and produce color images.** + + +Functionally, the **rods** are more **sensitive to light** and are the receptors used +during periods of low light intensity (e.g., at dusk or at night). The rod +pigments have a maximum absorption at 496 nm of visual spectrum, and the +image provided is one composed of gray tones (a “black-and-white picture”). +In contrast, the **cones** exist in **three classes** : **L, M, and S** (long-, middle-, +and short-wavelength sensitive, respectively) that cannot be distinguished +morphologically. They are less sensitive to low light but more sensitive to red, +green, and blue regions of the visual spectrum. Each class of cones contains a +different visual pigment molecule that is activated by the absorption of light at +the **blue** (420 nm), **green** (531 nm), and **red** (588 nm) ranges in the color +spectrum. Cones provide a visual image composed of color by mixing the +appropriate proportion of red, green, and blue light. For a description of +different types of color blindness, see Folder 24.5. + + +In individuals with normal color vision, the three primary colors (red, green, +and blue) are combined to achieve the full spectrum of color vision. These +individuals are called **trichromats** and possess three independent +channels for conveying color information that are derived from three +different classes of cones (L—red sensitive; M—green sensitive; and S— +blue sensitive). Approximately 90% of trichromats can apperceive any +given color from impulses generated in all three classes of cones. Some +individuals have an impairment of normal color vision, which occurs when +one of the cones is altered in its spectral sensitivity. For example, about +6% of trichromats matches colors with an unusual proportion of red and +green. These individuals are called **anomalous trichromats** . + +**Color blindness** is a condition in which individuals are missing or +have a defect in a specific class of cones. True color-blind individuals are +**dichromats** and have a defect either in the L, M, or S cones. In this +condition, the affected cones are completely missing. Dichromats can only +distinguish different colors by matching the impulses generated by the two +remaining normal classes of cones. + +Three major types of color blindness have been identified: + + +**Protanopia** is characterized as a defect affecting the long-wavelength +L cones responsible for red vision. The genes encoding L cone +photoreceptor proteins are located on the X chromosome; therefore, + + +protanopia is a sex-linked disorder affecting mainly males (1% of the +male population). These individuals have difficulty distinguishing +between blue and green as well as red and green colors; thus, this color +vision deficiency is a serious risk factor in driving (Fig. F24.5.1). + + +**FIGURE F24.5.1.** **Color blindness.** This chart shows the six-color spectrum in +normal color vision and in individuals with the three types of color blindness. + + +**Deuteranopia** is characterized as a defect affecting the middlewavelength M cones responsible for green vision. Deuteranopia is the +most common form of color blindness, affecting about 5% of the male +population. It is also a sex-linked disorder because the genes encoding +M cone photoreceptor proteins are located in the same region of the X +chromosome as the genes for L cones. Similar to protanopia, red and +green are the main problem colors (see Fig. F24.5.1). +**Tritanopia** is characterized as a defect affecting the short-wavelength +S cones responsible for blue vision (see Fig. F24.5.1). The defect is +autosomal and involves mutation of a single gene encoding S cone +photoreceptor proteins that reside on chromosome 7. This color +blindness occurs very rarely (1 in 10,000) and affects women and men +equally. + + +Each rod and cone photoreceptor consists of three parts: + + +The **outer segment** of the photoreceptor is roughly cylindrical or conical +(hence, the descriptive name **rod** or **cone** ). This portion of the +photoreceptor is intimately related to microvilli projecting from the adjacent +pigment epithelial cells. +The **connecting stalk** contains a cilium composed of nine peripheral +microtubule doublets extending from a basal body. The connecting stalk +appears as the constricted region of the cell that joins the inner to the outer +segment. In this region, a thin, tapering process called the **calyceal** +**process** extends from the distal end of the inner segment to surround the +proximal portion of the outer segment (see Fig. 24.10). +The **inner segment** is divided into an outer **ellipsoid** and an inner **myoid** +**portion** . This segment contains a typical complement of organelles +associated with a cell that actively synthesizes proteins. A prominent Golgi +apparatus, rER, and free ribosomes are concentrated in the myoid region. +Mitochondria are most numerous in the ellipsoid region. Microtubules are +distributed throughout the inner segment. In the outer ellipsoid portion, +cross-striated fibrous rootlets may extend from the basal body among the +mitochondria. + + +The outer segment is the site of photosensitivity, and the inner segment +contains the metabolic machinery that supports the activity of the +photoreceptor cells. The outer segment is considered a highly modified cilium +because it is joined to the inner segment by a short connecting stalk containing +a basal body (Fig. 24.12a). + + +**FIGURE 24.12.** **Electron micrographs of portions of the inner and outer** +**segments of cones and rods. a.** This electron micrograph shows the junction +between the inner and outer segments of the rod cell. The outer segments +contain the horizontally flattened discs. The plane of this section passes +through the connecting stalk and cilium. A centriole, a cilium and its basal body, +and a calyceal process are identified. ×32,000. **b.** Another electron micrograph +shows a similar section of a cone cell. The interior of the discs in the outer +segment of the cone is continuous with the extracellular space ( _arrows_ ). +×32,000. (Courtesy of Dr. Toichiro Kuwabara.) With the TEM, 600–1,000 +regularly spaced horizontal **membranous discs** are seen in the outer segment +(Fig. 24.12). In rods, these discs are membrane-bound structures measuring +about 2 μm in diameter. They are enclosed within the plasma membrane of the +outer segment (see Fig. 24.12a). The parallel membranes of the discs are +about 6 nm thick and are continuous at their ends. The central enclosed space +is about 8 nm across. In both rods and cones, the membranous discs are + + +formed from repetitive transverse infolding of the plasma membrane in the +region of the outer segment near the cilium. Autoradiographic studies have +demonstrated that rods form new discs by infolding of the plasma membrane +throughout their life span. Discs are formed in cones in a similar manner but +are not replaced on a regular basis. + + +Rod discs lose their continuity with the plasma membrane from which they +are derived soon after they are formed. They then pass like a stack of plates, +proximally to distally, along the length of the cylindrical portion of the outer +segment until they are eventually shed and phagocytosed by the pigment +epithelial cells. Thus, each rod disc is a membrane-enclosed compartment +within the cytoplasm. Discs within the cones retain their continuity with the +plasma membrane (Fig. 24.12b). + + +**Rod cells contain the visual pigment rhodopsin; cone cells contain** +**the visual pigment iodopsin.** + + +**Rhodopsin** (also called **visual purple** ) is a 39-kDa protein in rod cells that +initiates the visual stimulus when it is bleached by light. Rhodopsin is present +in globular form on the outer surface of the lipid bilayer (on the cytoplasmic +side) of the membranous discs. In the cone cells, the visual pigment protein on +the membranous discs is the photopigment **iodopsin** . Each cone cell is +specialized to respond maximally to one of three colors: red, green, or blue. +Both rhodopsin and iodopsin contain a membrane-bound subunit called an +**opsin** and a second small light-absorbing component called a **chromophore** . +The opsin of rods is **scotopsin** ; the opsins of cones are **photopsins** . The +chromophore of rods is a vitamin A–derived carotenoid called **retinal** . Thus, +an adequate intake of **vitamin A** is essential for normal vision. +Prolonged dietary deficiency of vitamin A leads to the inability to see in +dim light ( **night blindness** ). + + +**The interior of the discs of cones is continuous with the extracellular** + +**space.** + + +The basic difference in the structure of the rod and cone discs—that is, +continuity with the plasma membrane—is correlated with the slightly different +means by which the visual pigments are renewed in rods and cones. Newly +synthesized rhodopsin is incorporated into the membrane of the rod disc as the +disc is being formed at the base of the outer segment. It then takes several days +for the disc to reach the tip of the outer segment. In contrast, although visual +proteins are constantly produced in retinal cones, the proteins are incorporated +into cone discs located anywhere in the outer segment. + + +**Vision is a process by which light striking the retina is converted into** +**electrical impulses that are transmitted to the brain.** + + +The impulses produced by light reaching the photoreceptor cells are conveyed +to the brain by an elaborate network of nerves. The conversion of the incident +light into electrical nerve impulses is called **visual processing** and involves +several steps: + + +A photochemical reaction occurs in the outer segment of the rods and cones. +In the dark, **rhodopsin** molecules contain a chromophore called retinal in +its isometric form of **11-** _**cis**_ **-retinal** . When rods are exposed to light, the 11_cis_ -retinal undergoes a conformational change from a bent to a more linear +molecule called **all** _**-trans-**_ **retinal** . The conversion of 11- _cis_ -retinal to all_trans_ -retinal activates opsin, which results in the release of all- _trans_ -retinal +into the rod’s cytoplasm (a reaction called **bleaching** ). +The activated **opsin** interacts with a G-protein called **transducin**, which +subsequently activates phosphodiesterase that breaks down **cyclic** +**guanosine monophosphate (cGMP)** . In the dark, high levels of cGMP +molecules produced in the photoreceptor cells by guanylyl cyclase are +bound to the cytoplasmic surface of **cGMP-gated Na** **[+]** **channels**, causing +them to stay open. Steady influx of Na [+] into the cells results in +**depolarization** of the plasma membrane and continuous **release of the** +**neurotransmitter (glutamate)** at the synaptic junction with the bipolar +neurons (Fig. 24.13). + + +**FIGURE 24.13.** **Schematic diagram of visual processing in the** +**photoreceptor cell. a.** In the dark, high levels of cGMP generated by + + +guanylyl cyclase are present in the cytoplasm of the rod. Some of the cGMP +molecules are bound to the cytoplasmic surface of cGMP-gated Na [+] + +channels, causing them to stay open and resulting in continuous influx of Na [+] + +and depolarization of the plasma membrane. This results in a steady release +of glutamate, a neurotransmitter, in the synaptic junctions with bipolar +neurons. Also in the dark, rhodopsin molecules that contain 11- _cis_ -retinal are +inactive. **b.** After exposure to light, 11- _cis_ -retinal undergoes a conformational +change to all- _trans_ -retinal. This conversion activates opsin (a reaction called +_bleaching_ ) and releases all- _trans_ -retinal into the rod’s cytoplasm. The +activated opsin interacts with G-protein, which subsequently activates +phosphodiesterase that breaks down cGMP, effectively lowering the +concentration of cGMP in the cell. In this condition, cGMP molecules +dissociate from Na [+] channels, resulting in their closing and hyperpolarization +of the plasma membrane. This results in a decrease in glutamate secretion, +which is detected by the bipolar neurons and conveyed as electrical +impulses to the brain. The released retinal from opsin is converted to its +original conformation in retinal pigment epithelial ( _RPE_ ) cells by the RPE65 +enzymatic complex and is recycled to the photoreceptor cell. _cGMP_, cyclic +guanosine monophosphate; _GDP_, guanosine diphosphate; _GMP_, guanosine +monophosphate; _GTP_, guanosine triphosphate. + + +A decrease in the concentration of cGMP within the cytoplasm of the inner +segment of the photoreceptor cells is due to the action of phosphodiesterase. +Dissociation of cGMP from Na [+] channels effectively closes the channels +and reduces the influx of Na [+] into the cell, resulting in **hyperpolarization** +of the plasma membrane. The hyperpolarization causes a **decrease of** +**glutamate secretion** at the synapses with bipolar cells, which is detected +and conveyed as electrical impulses (see Fig. 24.13). + + +**Released retinal from opsin is converted back to its original** +**conformation in the RPE cells and Müller cells.** + + +After release, all- _trans_ -retinal is converted to all- _trans_ -retinol in the cytoplasm +of rods and cones and then transported to the cytoplasm of RPE cells (from +rods) or both RPE cells and Müller cells (from cones). The energy for this +process is provided by the mitochondria located in the inner segment of these +photoreceptors. Both Müller cells and RPE cells participate in a multistep +conversion of all- _trans_ -retinol to 11- _cis_ -retinal, which is transported back to +the photoreceptor cells for the resynthesis of rhodopsin. The **retinal pigment** +**epithelium–specific protein 65 kDa (RPE65)** is involved in this +conversion; thus, the visual cycle can begin again. + +During the normal functioning of the photoreceptor cells, the membranous +discs of the outer segment are shed and phagocytosed by the pigment epithelial +cells (Fig. 24.14). It is estimated that each of these cells is capable of +phagocytosing and disposing of about 7,500 discs per day. The discs are + + +constantly turning over, and the production of new discs must equal the rate of +disc shedding. + + +**FIGURE 24.14.** **Electron micrograph of the retinal pigment epithelium in** +**association with the outer segments of rods and cones.** Retinal pigment +epithelial ( _RPE_ ) cells contain numerous elongated _melanin granules_ that are +aggregated in the apical portion of the cell, where the _microvilli_ extend from the +surface toward the outer segments of the rod and cone cells. The _retinal_ +_pigment epithelial_ cells contain numerous mitochondria and _phagosomes_ . The +_arrow_ indicates the location of the junctional complex between two adjacent +cells. ×20,000. (Courtesy of Dr. Toichiro Kuwabara.) Discs are shed from both +rods and cones. + + +In rods, after a period of sleep, a burst of **disc shedding** occurs as light first +enters the eye. The time of disc shedding in cones is more variable. The +shedding of discs in cones also enables the receptors to eliminate superfluous +membrane. Although not fully understood, the shedding process in cones also +alters the size of the discs so that the conical form is maintained as discs are + +released from the distal end of the cone. + + +**The outer limiting membrane (layer 3) is formed by a row of zonulae** +**adherentes between Müller cells.** + + +The **outer limiting membrane** is not a true membrane. It is a row of zonulae +adherentes that attaches the apical ends of Müller cells (i.e., the end that faces +the pigment epithelium) to each other and to the rods and cones (see Fig. +24.9). Because Müller cells end at the base of the inner segments of the +receptors, they mark the location of this layer. Thus, the supporting processes +of Müller cells, on which the rods and cones rest, are pierced by the inner and +outer segments of the photoreceptor cells. This layer is thought to be a + + +metabolic barrier that restricts the passage of large molecules into the inner +layers of the retina. + + +**The outer nuclear layer (4) contains the nuclei of the retinal rods and** + +**cones.** + + +The region of the rod cytoplasm that contains the nucleus is separated from the +inner segment by a tapering process of the cytoplasm. In cones, the nuclei are +located close to the outer segments, and no tapering is seen. The cone nuclei +stain lightly and are larger and more oval than rod nuclei. Rod nuclei are +surrounded by only a thin rim of cytoplasm. In contrast, a relatively thick +investment of cytoplasm surrounds the cone nuclei (see Fig. 24.10). + + +**The outer plexiform layer (5) is formed by the processes of the** +**photoreceptor cells and neurons.** + + +The **outer plexiform layer** is formed by the processes of retinal rods and +cones and the processes of horizontal, interplexiform, amacrine, and bipolar +cells. The processes allow the electrical coupling of photoreceptor cells to +these specialized interneurons via synapses. A thin process extends from the +region of the nucleus of each rod or cone to an inner expanded portion with +several lateral processes. The expanded portion is called a **spherule** in a rod +and a **pedicle** in a cone. Normally, many photoreceptor cells converge onto +one bipolar cell and form interconnecting neural networks. Cones located in +the fovea, however, synapse with a single bipolar cell. The fovea is also unique +in that the compactness of the inner neural layers of the retina causes the +photoreceptor cells to be oriented obliquely. Horizontal cell dendritic +processes synapse with photoreceptor cells throughout the retina and further +contribute to the elaborate neuronal connections in this layer. + + +**The inner nuclear layer (6) consists of the nuclei of horizontal,** +**amacrine, bipolar, interplexiform, and Müller cells.** + + +**Müller cells** form the scaffolding for the entire retina. Their processes invest +the other cells of the retina so completely that they fill most of the extracellular +space. The basal and apical ends of Müller cells form the inner and outer +limiting membranes, respectively. Microvilli extending from their apical +border lie between the photoreceptor cells of the rods and cones. Capillaries +from the retinal vessels extend only to this layer. The rods and cones carry out +their metabolic exchanges with extracellular fluids transported across the +blood–retina barrier of the RPE. + +The four types of conducting cells—bipolar, horizontal, interplexiform, +and amacrine—found in this layer have distinct orientations (see Fig. 24.9): + + +**Bipolar cells** and their processes extend to both the inner and outer +plexiform layers. In the peripheral regions of the retina, the axons of bipolar + + +cells pass to the inner plexiform layer where they synapse with several +ganglion cells. Through these connections, the bipolar cells establish +communication with multiple cells in each layer, except in the fovea, where +they may synapse only with a single ganglion cell to provide greater visual +acuity in this region. +**Horizontal cells** and their processes extend to the outer plexiform layer +where they intermingle with processes of bipolar cells. The cells have +synaptic connections with rod spherules, cone pedicles, and bipolar cells. +This electrical coupling of cells is thought to affect the functional threshold +between rods and cones and bipolar cells. +**Amacrine cells’** processes pass inward, contributing to a complex +interconnection of cells. Their processes branch extensively to provide sites +of synaptic connections with axonal endings of bipolar cells and dendrites +of ganglion cells. Besides bipolar and ganglion cells, the amacrine cells +synapse in the inner plexiform layer with interplexiform and other amacrine +cells (see Fig. 24.9). +**Interplexiform cells** and their processes have synapses in both inner and +outer plexiform layers. These cells convey impulses from the inner +plexiform to the outer plexiform layer. + + +**The inner plexiform layer (7) consists of a complex array of** +**intermingled neuronal cell processes.** + + +The **inner plexiform layer** consists of synaptic connections between axons of +the bipolar neurons and dendrites of ganglion cells. It also contains synapses +between intermingling processes of amacrine cells and bipolar neurons, +ganglion cells, and interplexiform neurons. The course of these processes is +parallel to the inner limiting membrane, thus giving the appearance of +horizontal striations to this layer (see Fig. 24.9). + + +**The ganglion cell layer (8) consists of the cell bodies of large** +**multipolar neurons.** + + +The cell bodies of large **multipolar nerve cells**, measuring as much as 30 μm +in diameter, constitute the ganglion cell layer. These nerve cells have lightly +staining round nuclei with prominent nucleoli and Nissl bodies in their +cytoplasm. An axonal process emerges from the rounded cell body, passes into +the **nerve fiber layer**, and then enters **the optic nerve** . The dendrites extend +from the opposite end of the cell to ramify in the inner plexiform layer. In the +peripheral regions of the retina, a single ganglion cell may synapse with 100 +bipolar cells. In marked contrast, in the macular region surrounding the fovea, +the bipolar cells are smaller (some authors refer to them as _midget bipolar_ +_cells_ ), and they tend to make one-to-one connections with ganglion cells. Over +most of the retina, the ganglion cells are only a single layer of cells. At the + + +macula, however, they are piled as many as eight deep, although they are +absent over the fovea itself. Scattered among the ganglion cells are small +neuroglial cells with densely staining nuclei (see Fig. 24.9). + + +**The layer of optic nerve fibers (9) contains axons of the ganglion** +**cells.** + + +The axonal processes of the ganglion cells form a flattened layer running +parallel to the retinal surface. This layer increases in depth as the axons +converge at the **optic disc** (Fig. 24.15). The axons are thin, nonmyelinated +processes measuring as much as 5 μm in diameter (see Fig. 24.9). The retinal +vessels, including the superficial capillary network, are primarily located in +this layer. + + +**FIGURE 24.15.** **Normal view of the fundus in ophthalmoscopic** +**examination of the right eye.** The site where the axons converge to form the +optic nerve is called the _optic disc_ . Because the optic disc is devoid of +photoreceptor cells, it is a blind spot in the visual field. From the center of the +optic nerve (clinically called the _optic cup_ ), _central retinal vessels_ emerge. The +artery divides into upper and lower branches, each of which further divides into +nasal and temporal branches (note the nasal and temporal directions on the +image). Veins have a similar pattern of tributaries. Approximately 17 degree or +2.5 times optic disc diameters lateral to the disc, the slightly oval-shaped, blood +vessel–free, and pigmented area represents the macula lutea. The _fovea_ +_centralis_, a shallow depression in the center of the _macula lutea_, is also visible. + + +(Courtesy of Dr. Renzo A. Zaldivar.) The inner limiting membrane (layer 10) +consists of a basal lamina separating the retina from the vitreous body. + + +The **inner limiting membrane** forms the innermost boundary of the retina. It +serves as the basal lamina of Müller cells (see Fig. 24.9). In younger +individuals, reflections from the internal limiting membrane produce a +**retinal sheen** that is seen during ophthalmoscopic examination of the +eye. In older individuals, a semitranslucent sheet of cells and +extracellular matrix can be formed on the inner surface of the retina in +conjunction with the inner limiting membrane. This condition is called +**epiretinal membrane (ERM)** or **macular pucker** and is responsible for +variable clinical symptoms, including optical distortion and blurred +vision. ERM is initially formed by cells from within the retina (RPE cells, +Müller cells, and astrocytes) that begin proliferating and migrating onto +the surface of the internal limiting membrane. Later, the membrane is +infiltrated by macrophages, fibroblasts, and myofibroblasts. To prevent +damage to the underlying retina, surgical removal of the ERM may be +performed. + +##### **Specialized regions of the retina** + + +The **fovea (fovea centralis)** appears as a small (1.5 mm in diameter), +shallow depression located at the posterior pole of the visual axis of the eye. +Its central region, known as the **foveola**, is about 200 μm in diameter (see Fig. +24.15). Except for the photoreceptor layer, most of the layers of the retina are +markedly reduced or absent in this region (see Fig. 24.6). Here, the +photoreceptor is composed entirely of cones (~4,000) that are longer and more +slender and rod like than they are elsewhere. The fovea is the area of the retina +specialized for the discrimination of details and color vision. The ratio +between cones and ganglion cells is close to 1:1. Retinal vessels are absent in +the fovea, allowing light to pass unobstructed into the cones’ outer segments. +The adjacent pigment epithelial cells and choriocapillaris are also thickened in +this region. + +The **macula lutea** is the area surrounding the fovea and is approximately +5.5 mm in diameter. It is yellowish because of the presence of yellow pigment +(xanthophyll). The macula lutea contains approximately 17,000 cones and +gains rods at its periphery. Retinal vessels are also absent in this region. Here, +the retinal cells and their processes, especially the ganglion cells, are heaped +up on the sides of the fovea so that light may pass unimpeded to this most +sensitive area of the retina. + +##### **Vessels of the retina** + + +The **central retinal artery** and **central retinal vein**, the vessels that can be +seen and assessed with an ophthalmoscope, pass through the center of the + + +optic nerve to enter the bulb of the eye at the optic disc (see Fig. 24.2 and +pages 982-983, the section on the development of the eye). The central retinal +artery provides nutrients to the inner retinal layers. The artery branches +immediately into the upper and lower branches, each of which divides again +into nasal and temporal branches (see Fig. 24.15). Veins undergo a similar +pattern of branching. The vessels initially lie between the vitreous body and +the inner limiting membrane. As the vessels pass laterally, they also move +deeper within the inner retinal layers. Branches from these vessels form a +capillary plexus that reaches the inner nuclear layer and, therefore, provides +nutrients to the inner retinal layers (layers 6–10; see pages 993-994). Nutrients +to the remaining layers (layers 1–5) are provided by diffusion from the +vascular choriocapillary layer of the choroid. The branches of the **central** +**retinal artery** do not anastomose and, therefore, are classified as +**anatomic end arteries** . Evaluation of the retinal vessels and +appearance of the optic disc during ophthalmoscopy not only gives +important information on the state of the eye but also may reveal early +clinical signs of a number of conditions, including increased +**intracranial pressure**, **hypertension**, **glaucoma**, and **diabetes** . + +### **Crystalline Lens** + + +**Like the lens in a camera, the basic function of the eye lens is to** +**transmit and focus light onto the retina.** + + +The **lens** is a transparent, biconvex structure that has no vessels or nerves and +is almost totally devoid of connective tissue, except for an enveloping capsule +of basal lamina. It is suspended between the edges of the ciliary body by the +**zonular fibers** . The pull of the zonular fibers keeps the lens in a flattened +condition. Release of tension causes the lens to widen or **accommodate** to +bend light rays originating close to the eye so that they focus on the retina. + + +The lens has three principal components (Fig. 24.16): + + +**FIGURE 24.16.** **Structure of the lens. a.** This schematic drawing of the lens +suspended from ciliary processes by zonular fibers indicates its structural +components. Note that the capsule of the lens is formed by the basal lamina of +the lens fibers and the subcapsular epithelium located on the anterior surface +of the lens. A strip of capsule was removed on this drawing to show underlying +epithelium. Also note the location of the germinal zone ( _yellow_ ) at the lens +equator, where cells divide and differentiate into the lens fiber cells. The +organelle-free center of the lens is occupied by the lens nucleus. **b.** This highmagnification photomicrograph of the germinal zone of the lens (near its +equator) shows the active process of lens fiber formation from the _subcapsular_ +_epithelium_ . Note the thick _lens capsule_ and the underlying layer of nuclei of +lens fibers during their differentiation. The _mature lens fibers_ do not possess +nuclei. ×570. + + +The **lens capsule** is a thick basal lamina that surrounds the outer surface of +the lens. It originates as the basal lamina of the embryonic lens vesicle. The +anterior part of the capsule is thick, measuring approximately 10–20 μm, +and is produced by the anterior lens cells. The posterior part of the capsule +is much thinner, measuring approximately 5–10 μm. The lens capsule, +composed primarily of type IV collagen and proteoglycans (i.e., laminin, +entactin, perlecan), is elastic. It is thickest at the equator where the zonular +fibers attach to it. +The **subcapsular epithelium** is derived from the epithelial cells of the +anterior part of the embryonic lens vesicle. It represents a single cuboidal +layer of **lens epithelial cells** present only on the anterior surface of the +lens. The epithelial cells of the posterior part of the vesicle elongate + + +anteriorly and form the **primary lens fibers** that fill the cavity of the optic +vesicle. +**Secondary lens fibers (lens fiber cells)** are formed at the periphery near +the **lens equator** . Here, epithelial cells proliferate and migrate along the +posterior lens capsule to differentiate into mature lens fiber cells. In the +center of the lens, epithelial cells are quiescent. As lens fiber cells +differentiate, they undergo massive elongation and lose all of their +organelles, including nuclei, forming the **organelle-free zone** . + + +**Gap junctions** connect the cuboidal cells of the subcapsular epithelium. +They have few cytoplasmic organelles and stain faintly. The apical region of +the cell is directed toward the internal aspect of the lens and the **lens fibers**, +with which they form **junctional complexes** . The lens increases in size +during normal growth and then continues to produce new lens fibers at an +ever-decreasing rate throughout life. The new lens fibers develop from the +subcapsular epithelial cells located near the equator (see Fig. 24.16) are laid +down peripherally as concentric lamellae in an onion-like arrangement. Cells +in this region increase in height and then differentiate into lens fibers. + +As the lens fibers develop, they become highly elongated and appear as +thin, flattened structures. They lose their nuclei and other organelles as they +become filled with proteins called **crystallins** . Mature lens fibers attain a +length of 7–10 mm, a width of 8–10 μm, and a thickness of 2 μm. In the adult +lens, only lens fibers in the outermost region maintain their nuclei and +organelles. Near the center, in the **lens nucleus**, the fibers are compressed +and condensed to such a degree that individual fibers are impossible to +recognize. The lens nucleus is an organelle-free zone and is composed of +primary lens fiber cells laid down during embryonic and fetal development. +The lens fibers are joined at their apical and basal ends by specialized +junctions called **sutures** . Despite its density and protein content, the lens is +normally transparent (see Fig. 24.16). The high density of lens fibers makes it +difficult to obtain routine histologic sections of the lens that are free from +artifacts. + + +**Changes in the lens are associated with aging.** + + +With increasing age, the lens gradually loses its elasticity and ability to +accommodate. This condition, called **presbyopia**, usually occurs in the +fourth decade of life. It is easily corrected by wearing reading glasses +or using a magnifying lens. + +Loss of transparency of the lens or its capsule is also a relatively +common condition associated with aging. This condition, called +**cataract**, may be caused by conformational changes or cross-linking of +proteins. The development of a cataract may also be related to disease +processes, metabolic or hereditary conditions, trauma, or exposure to a + + +deleterious agent (such as ultraviolet radiation). Cataracts that +significantly impair vision can usually be corrected surgically by +removing the lens and replacing it with a plastic lens implanted in the +posterior chamber. + +### **Vitreous Body** + + +**The vitreous body is the transparent jelly-like substance that fills the** +**vitreous chamber in the posterior segment of the eye.** + + +The **vitreous body** is loosely attached to the surrounding structures, including +the inner limiting membrane of the retina. The main portion of the vitreous +body is a homogeneous gel containing approximately 99% water (the vitreous +humor), collagen, glycosaminoglycans (principally hyaluronan), and a small +population of cells called **hyalocytes** . These cells are believed to be +responsible for the synthesis of collagen fibrils and glycosaminoglycans. +Hyalocytes in routine H&E preparations are difficult to visualize. Often, they +exhibit a well-developed rER and Golgi apparatus. Fibroblasts and tissue +macrophages are sometimes seen in the periphery of the vitreous body. The +**hyaloid canal** (or **Cloquet canal** ), which is not always visible, runs through +the center of the vitreous body from the optic disc to the posterior lens capsule. +It is the remnant of the pathway of the hyaloid artery of the developing eye. + +### **ACCESSORY STRUCTURES OF THE EYE** + + +**The primary functions of the eyelids are to cover, protect, and** +**lubricate the eyes.** + + +The **eyelids** represent folds of modified skin containing highly modified +epidermal appendages to cover, protect, and lubricate the anterior portions of +the eyes. The anterior surface of the eyelid is covered by thin **skin**, and its +posterior surface is lined by a specialized mucous membrane, the +**conjunctiva** . The skin of the eyelids is loose and elastic to accommodate their +movement. Within each eyelid is a flexible support, the **tarsal plate**, +consisting of dense fibrous and elastic tissue. In the upper eyelid, the lower +free edge of the tarsal plate extends to the lid margin, and its superior border +serves for the attachment of smooth muscle fibers of the **superior tarsal** +**muscle (of Müller)** . The undersurface of the tarsal plate is covered by the +conjunctiva (Fig. 24.17). The striated **orbicularis oculi muscle**, a facial +expression muscle, forms a thin oval sheet of circularly oriented skeletal +muscle fibers overlying the tarsal plate. In addition, the connective tissue of +the upper eyelid contains tendon fibers of the **levator palpebrae superioris** +**muscle** that open the eyelid (see Fig. 24.17). A mucocutaneous junction + + +between eyelid skin and conjunctiva occurs near the lid margin. The +**eyelashes** emerge from the most anterior edge of the lid margin. They are +short, stiff, curved hairs and may occur in double or triple rows. The lashes on +the same eyelid margin may have different lengths and diameters. + + +**FIGURE 24.17.** **Structure of the eyelid. a.** This schematic drawing of the +eyelid shows the skin, associated skin appendages, muscles, tendons, +connective tissue, and conjunctiva. Note the distribution of multiple small +glands associated with the eyelid and observe the reflection of the palpebral +conjunctiva in the fornix of the lacrimal sac to become the bulbar conjunctiva. **b.** +Photomicrograph of a sagittal section of the eyelid stained with picric acid for +better visualization of epithelial components of the skin and the numerous +glands. In this preparation, muscle tissue (i.e., _orbicularis oculi muscle_ ) stains +_yellow_, and the epithelial cells of the skin, conjunctiva, and glandular epithelium +are _green_ . Note the presence of numerous glands within the eyelid. The _tarsal_ +_(Meibomian) gland_ is the largest gland, and it is located within the dense +connective tissue of the tarsal plates. This sebaceous gland secretes into ducts +opening onto the eyelids. ×20. **Inset.** Higher magnification of a tarsal gland +from the _boxed area_ showing the typical structure of a holocrine gland. ×60. + + +**The conjunctiva lines the space between the inner surface of the** +**eyelids and the anterior surface of the eye without covering the** + +**cornea.** + + +The **conjunctiva** is a thin, transparent mucous membrane that extends from +the corneoscleral limbus located on the peripheral margin of the cornea across +the sclera ( **bulbar conjunctiva** ) and covers the internal surface of the eyelids +( **palpebral conjunctiva** ). The palpebral conjunctiva merges with the bulbar + + +conjunctiva at the fornices of the conjunctival sac; this part is called the +**forniceal conjunctiva** (Fig. 24.18). Bulbar, palpebral, and forniceal +conjunctiva form a conjunctival sac, a space between the eyelid and eyeball +that opens anteriorly at the palpebral fissure. The conjunctival sac can hold +fluid up to 30 µL. Because a standard eyedropper dispenses about 50 +µL of suspended medicine per drop, one drop is more than enough to +overfill the conjunctival sac. + + +**FIGURE 24.18.** **Conjunctiva and conjunctival sac.** This photograph of the +lower part of the eyeball with a reflected lower eyelid shows different regions of +the conjunctiva that line the conjunctival sac. The area shown is located +between the inner surface of the eyelid and the anterior surface of the eye. The +bulbar conjunctiva extends from the corneoscleral limbus covering the sclera of +the eye (it does not cover the cornea) to its reflections onto the internal surface +of the eyelid, at which point it is called the _palpebral conjunctiva_ . This +photograph shows the inferior point of reflection onto the lower eyelid (called +the _inferior fornix_ of the conjunctival sac). The conjunctiva in these regions is +recognized as the forniceal conjunctiva. + + +The conjunctiva consists of a **stratified columnar epithelium** containing +numerous **goblet cells** and rests on a lamina propria composed of loose +connective tissue. The goblet cells secrete a component of the tears that bathe +the eye. Melanocytes are present in the basal epithelial layer and, like +melanocytes in the skin, transfer melanosomes into neighboring epithelial +cells. Accumulation of diffuse lymphatic tissue is evident, especially deep to + + +the forniceal conjunctiva (Fig. 24.19). These specialized collections of T and B +lymphocytes underlying the conjunctiva are called **conjunctiva-associated** +**lymphatic tissue (CALT)** (Fig. 24.20). It functions to recognize and process +antigens and trigger an appropriate immune response against the microbial +invasion of the ocular surface. The conjunctiva is supplied with blood by the +branches of arteries of the eyelid (marginal tarsal arcades) and from the +eyeball (anterior ciliary arteries). The conjunctiva receives sensory innervation +from the branches of the trigeminal nerve. **Conjunctivitis**, an inflammation +of the conjunctiva, commonly called **pinkeye**, is characterized by +redness, irritation, and watering of the eyes. For more clinical +information about this condition, see Folder 24.6. + + +**FIGURE 24.19.** **Superior fornix of the conjunctival sac.** This lowmagnification hematoxylin and eosin (H&E)-stained specimen was obtained +from the superior fornix of the conjunctival sac as indicated by the _rectangle_ in +the inset. The palpebral conjunctiva lines the inner surface of the eyelid, and in +the superior fornix of the conjunctival sac, it reflects onto the eyeball (bulbar +conjunctiva). This reflection is identified as the forniceal conjunctiva and is +composed of stratified columnar epithelium containing numerous goblet cells. +Accumulations of lymphatic tissue called _conjunctiva-associated lymphatic_ +_tissue_ ( _CALT_ ) are clearly visible. There are numerous blood vessels ( _BV_ ) +underlying the palpebral conjunctiva. ×120. (Courtesy of Dr. Nick Mamalis, + + +University of Utah, Moran Clinical Ophthalmology Resource for Education + +[CORE], Salt Lake City, Utah.) + + +**FIGURE 24.20.** **Forniceal conjunctiva.** This high-magnification hematoxylin +and eosin (H&E)-stained specimen shows the fornix of the conjunctival sac. +The forniceal conjunctiva shows a typical pattern of the stratified columnar +epithelium containing goblet cells that rests on a lamina propria composed of +loose connective tissue. The stratified columnar epithelium farther away from +the fornix may change into columnar stratified or squamous stratified +nonkeratinized epithelium ( _lower right corner of conjunctival sac_ ). Note the +accumulations of diffuse lymphatic tissue deep into the conjunctiva known as +_conjunctiva-associated lymphatic tissue_ ( _CALT_ ). ×220. (Courtesy of Dr. Nick +Mamalis, University of Utah, Moran Clinical Ophthalmology Resource for +Education [CORE], Salt Lake City, Utah.) FOLDER 24.6 + +##### **CLINICAL CORRELATION: CONJUNCTIVITIS** + + +**Conjunctivitis**, otherwise known as pinkeye, is an inflammation of the +conjunctiva. It may be localized in either the palpebral conjunctiva or the +bulbar conjunctiva. Individuals may present with relatively nonspecific +symptoms and signs that include redness, irritation, and watery discharge +from the eye (Fig. F24.6.1). The symptoms can also mimic a foreign-body +sensation. Extended use of contact lenses can cause allergic or bacterial +conjunctivitis and may be the first sign of more serious ocular disease (i.e., +corneal ulcer). In general, symptoms that last <4 weeks are classified as + + +**acute conjunctivitis**, and those extending for a longer period are +referred to as **chronic conjunctivitis** . + + +**FIGURE F24.6.1.** **Conjunctivitis.** This photograph of the lower part of the eyeball +with reflected lower eyelid shows an infected conjunctiva. The enlarged blood +vessels of the conjunctiva are responsible for moderate redness of the eye with +conjunctival swelling. Moderately, clear (in allergic conjunctivitis) or purulent (in +bacterial conjunctivitis) discharge is visible. (Courtesy of Dr. Renzo A. Zaldivar.) +Acute conjunctivitis is most commonly caused by bacteria; a variety of viruses, +including HIV, varicella-zoster virus (VZV), and herpes simplex virus (HSV); or +allergic reactions. Bacterial conjunctivitis often causes an opaque purulent +discharge containing white cells and desquamated epithelial cells. On eye +examination, the purulent discharge and conjunctival papillae help differentiate +between bacterial and viral etiology. Viral conjunctivitis is most common in adults. +Clinically, it presents as a diffuse pinkness of the conjunctiva with particularly +numerous lymphoid follicles on the palpebral conjunctiva, often accompanied by +enlarged preauricular lymph nodes. Viral conjunctivitis is very contagious and +usually associated with a recent upper respiratory infection. Patients need to be +advised to avoid touching their eyes, to wash their hands frequently, and to avoid +sharing towels and washcloths. + + +Bacterial conjunctivitis is usually treated with antibiotic eye drops or +ointments. For viral conjunctivitis, no antimicrobial therapy is needed. +However, conservative management with artificial tears to keep the eye +lubricated may relieve symptoms. For severe cases, topical corticosteroid +drops may be prescribed to reduce the discomfort of inflammation. +However, prolonged use of corticosteroid drops increases the risk of side +effects. Antibiotic drops may also be used for the treatment of secondary + + +infections. Viral conjunctivitis usually resolves within 3 weeks. However, in +the worst cases, it may take more than a month. + + +**Secretions from modified glands in the eyelid provide additional** +**protection to the eye.** + + +In addition to eccrine sweat glands, which discharge their secretions directly +onto the skin, the eyelid contains four other major types of glands (see Fig. +24.17): + + +The **tarsal glands (Meibomian glands)**, long sebaceous glands embedded +in the tarsal plates, appear as vertical yellow streaks in the tissue deep into +the conjunctiva. Their elongated ducts open at the lid margin behind rows of +eyelashes. About 25 tarsal glands are present in the upper eyelid, and 20 are +present in the lower eyelid. The sebaceous secretion of the tarsal glands +produces an oily layer on the surface of the tear film that retards the +evaporation of the normal tear layer. Blockage of the tarsal gland +secretion leads to **chalazion** (tarsal gland lipogranuloma), an +inflammation of the tarsal gland. It presents as a painless cyst usually +on the upper eyelid that disappears after a few months without +therapeutic intervention. +**Sebaceous glands of eyelashes (glands of Zeis)** are small, modified +sebaceous glands that are connected with and empty their secretion into the +follicles of the eyelashes. Bacterial infection of these sebaceous glands +causes a **stye** (also called a **hordeolum** ), a painful tenderness and +redness of the affected area of the eyelid. +**Apocrine glands of eyelashes (glands of Moll)** are small sweat glands +with unbranched sinuous tubules that begin as a simple spiral. +**Accessory lacrimal glands** are compound serous tubuloalveolar glands +that have distended lumina. They are located on the inner surface of the +upper eyelids ( **glands of Wolfring** ) and in the fornix of the conjunctival +sac ( **glands of Krause** ). + + +All glands of the human eyelid are innervated by neurons of the autonomic +nervous system, and their secretion is synchronized with the lacrimal glands +by a common neurotransmitter, vasoactive intestinal polypeptide (VIP). + + +**The lacrimal gland produces tears that moisten the cornea and flow to** +**the nasolacrimal duct.** + + +Tears are produced by the **lacrimal glands** and, to a lesser degree, by the +accessory lacrimal glands. The lacrimal gland is located beneath the +conjunctiva on the upper lateral side of the orbit (Fig. 24.21). The lacrimal +gland consists of several separate lobules of tubuloacinar serous glands. The + + +acini have large lumina lined with columnar cells. Myoepithelial cells, located +below the epithelial cells within the basal lamina, aid in the release of tears +(Fig. 24.22). Approximately 12 ducts drain from the lacrimal gland into the +reflection of conjunctiva just beneath the upper eyelid, known as the **fornix of** +**the conjunctival sac** . + + +**FIGURE 24.21.** **Schematic diagram of the eye and lacrimal apparatus.** This +drawing shows the location of the lacrimal gland and components of the +lacrimal apparatus, which drains the lacrimal fluid into the nasal cavity. + + +**FIGURE 24.22.** **Photomicrograph of lacrimal gland.** The lacrimal gland +consists of tubuloacinar serous secretory units. The acini are lined with serous +secretory columnar cells. Myoepithelial cells ( _MEp_ ) are present below the +epithelial cells within the basal lamina. Cytoplasm of the secretory cells +contains small lipid droplets and mucin-containing granules. Intralobular ducts +( _D_ ) lined by serous cells also contain myoepithelial cells. Occasional plasma +cells ( _P_ ) and lymphocytes are present between acini of the lacrimal gland. _BV_, +blood vessels. ×450. + + +Tears drain from the eye through **lacrimal puncta**, the small openings of +the **lacrimal canaliculi**, located at the medial angle. The upper and lower +canaliculi join to form the **common canaliculus**, which opens into the +lacrimal sac. The sac is continuous with the **nasolacrimal duct**, which opens +into the nasal cavity below the inferior nasal conchae. A pseudostratified +ciliated epithelium lines the lacrimal sac and the nasolacrimal duct. +**Dacryocystitis** is an inflammation of the lacrimal sac that is frequently +caused by an obstruction of the nasolacrimal duct. It can be acute, +chronic, or congenital. It usually affects older individuals and is most +often secondary to stenosis (narrowing) of the lacrimal canaliculi. + + +**Tears protect the corneal epithelium and contain antibacterial and UV-** +**protective agents.** + + +**Tears** keep the conjunctiva and corneal epithelium moist and wash foreign +material from the eye as they flow across the corneal surface toward the medial +angle of the eye (see Fig. 24.21). The thin film of tears covering the corneal +surface is not homogeneous but a mixture of products secreted by the lacrimal +glands, the accessory lacrimal glands, the goblet cells of the conjunctiva, and +the tarsal glands of the eyelid. The tear film contains proteins (tear albumins +and lactoferrin), enzymes (lysozyme), lipids, metabolites, electrolytes, and +medications, the latter secreted during therapy. + +The tear cationic protein lactoferrin increases the activity of various natural +antimicrobial agents, such as lysozyme. + + +**The eye is moved within the orbit by coordinated contraction of** +**extraocular muscles.** + + +Six muscles of the eyeball (also called **extraocular** or **extrinsic muscles** ) +attach to each eye. These are the medial, lateral, superior, and inferior rectus +muscles and the superior and inferior oblique muscles. The superior oblique +muscle is innervated by the trochlear nerve (cranial nerve IV). The lateral +rectus muscle is innervated by the abducens nerve (cranial nerve VI). All of +the remaining extraocular muscles are innervated by the oculomotor nerve +(cranial nerve III). The combined, precisely controlled action of these muscles +allows vertical, lateral, and rotational movement of the eye. Normally, the +actions of the muscles of both eyes are coordinated so that the eyes +move in parallel (called **conjugate gaze** ). + +## EYE + + +**OVERVIEW OF THE EYE** + + +The **eye** is a paired, specialized sensory organ that provides the sense of +sight. +The tissues of the eye are derived from **neuroectoderm** (retina), +**surface ectoderm** (lens, corneal epithelium), and **mesoderm** (sclera, +corneal stroma, vascular coat). +The eyeball is composed of three structural layers: the outer +**corneoscleral (fibrous) coat** consisting of the transparent cornea and + + +the opaque white sclera; the middle **vascular coat** consisting of the +choroid, ciliary body, and iris; and the inner layer, the **retina** . +The layers of the eye and the lens serve as boundaries for three chambers: +the **anterior chamber** and **posterior chamber**, which are filled with +**aqueous humor**, and the **vitreous chamber**, which is occupied by a +transparent gel, the **vitreous body** . +**Aqueous humor** is secreted by the ciliary processes into the posterior +chamber. From there it flows through the pupil into the anterior chamber, +where it drains inside the **iridocorneal angle** to the **scleral venous** +**sinus (canal of Schlemm)** . + + +**COATS IN THE WALL OF THE EYE** + + +The **cornea** +is transparent and consists of five layers (beginning from the +anterior surface): **corneal** **epithelium** (nonkeratinized stratified +squamous epithelium), **Bowman membrane** (anterior basement +membrane for corneal epithelium), a thick avascular **corneal stroma**, +**Descemet membrane** (posterior basement membrane for corneal +endothelium), and **corneal endothelium** . +The **sclera** is opaque and consists predominantly of dense connective +tissue. It communicates with the cornea at the **corneoscleral limbus**, +which contains **corneolimbal stem cells** . +The **iris** arises from the ciliary body, and the diameter of its opening +( **pupil** ) is controlled by smooth muscle fibers of the **sphincter pupillae** +**muscle** and the myoepithelial cell layer of the **dilator pupillae muscle** . +Its posterior surface is covered by pigment epithelium and contains a +stroma that is abundant with melanocytes. +The **ciliary body** is located between the iris and the choroid. It contains +**ciliary processes** that secrete aqueous humor, anchors **zonular fibers** +that suspend the lens, and contains **ciliary muscle** that alters the shape of +the lens during **lens accommodation** . +The **lens** is a transparent, avascular, biconvex structure that is suspended +between the edges of the ciliary body. It consists of a **lens capsule**, +**subcapsular epithelium**, and **lens fiber cells** . +The **choroid** is part of the vascular coat and has an inner +**choriocapillary layer** containing blood vessels that provide nutrients to +the retina and an outer **Bruch membrane** that serves as the basal lamina + +for both the endothelial and RPE cells. + +The **retina** is derived from the inner and outer layers of the optic cup. It +consists of two basic layers: the **neural retina** is the inner layer +containing photoreceptor cells, and the **retinal pigment epithelium** +**(RPE)** is the outer layer that attaches to the choroid. + + +**RETINA** + + +The **retina** contains 10 layers of cells and their processes. Major cells in +the retina include **photoreceptors** (rods and cones), **conducting** +**neurons** (bipolar neurons and ganglion cells), **association neurons**, +and **supporting cells** (e.g., Müller cells). +**Retinal pigment epithelium** (layer 1) is the outermost layer of the +retina and **absorbs scattered light**, contributes to the **blood–retina** +**barrier,** **restores** **photosensitivity** to visual pigments, and +**phagocytoses membranous discs** from the rods and cones. +**Rods** (layer 2) are most numerous (120 million) in the retina and detect +light intensity with their cylindrical outer segments. **Cones** (layer 2) are +less numerous (7 million) and, with their conical outer segment, detect +three different wavelengths of light corresponding to the primary colors: +blue, green, and red. +Rods contain the visual pigment **rhodopsin** that consists of **opsin** and a +small light-absorbing compound, **retinal** . Cone cells contain the visual +pigment **iodopsin** . +Conversion of light into nerve impulses in the photoreceptors is called +**visual processing** . It involves a photochemical reaction based on the +conversion of **11-cis-retinal** into **all-trans-retinal** in the rhodopsin. This +results in the activation of opsin, which, in turn, activates G-protein and +initiates hyperpolarization of the photoreceptor cell membrane that is +detected by the bipolar neurons as a nerve impulse. +The **outer limiting membrane** (layer 3) is formed by a row of zonulae +adherentes between Müller cells. + +The **outer nuclear layer** (layer 4) contains the nuclei of rods and cones, +and the **outer plexiform layer** (layer 5) contains their processes, which +synapse with the horizontal, amacrine, and bipolar cells (the nuclei of +which reside in the **inner nuclear layer** [layer 6]). +Axons from cells in the outer plexiform layer synapse in the **inner** +**plexiform layer** (layer 7) with ganglion cells, the cell bodies of which +reside in the **ganglion cell layer** (layer 8). These cells send axons to the +**layer of optic nerve fibers** (layer 9), which forms the optic nerve. +The **inner limiting membrane** (layer 10) consists of a basal lamina +separating the retina from the vitreous body. + + +**ACCESSORY STRUCTURES OF THE EYE** + + +The **eyelids** consist of skin, tarsal plates, part of the **orbicularis oculi** +**muscle**, tendon fibers of the **levator palpebrae superioris muscle** (in +the upper eyelid), and the palpebral conjunctiva. + + +The **conjunctiva** consists of **stratified columnar epithelium** with +**goblet cells** . It lines the space between the inner surface of the eyelid +and the anterior surface of the eye lateral to the cornea. +A diffuse lymphatic tissue called **conjunctiva-associated lymphatic** +**tissue (CALT)** is underlying conjunctiva at the superior and inferior +fornices of the conjunctival sac. +The **tarsal glands (Meibomian glands)** are long sebaceous glands +embedded in the tarsal plates of the upper and lower eyelids. +The **lacrimal gland** produces tears that moisten the cornea and flow to +the nasolacrimal duct and into the nasal cavity. + + + + +##### Modified drawing of human eye, meridional perspective by E. Sobotta. + +The innermost layer is the **retina** ( _R_ ), which consists of several +layers of cells. Among these are receptor cells (rods and cones), +neurons (e.g., bipolar and ganglion cells), supporting cells, and a +pigment epithelium (see Plate 24.2, page 1012). The receptor components of the retina +are situated in the posterior three-fifths of the eyeball. At the anterior boundary of the +receptor layer, the **ora serrata** ( _OS_ ), the retina becomes reduced in thickness, and +nonreceptor components of the retina continue forward to cover the posterior or inner +surface of the **ciliary body** ( _CB_ ) and the **iris** ( _I_ ). This anterior nonreceptor extension + + +of the inner layer is highly pigmented, and the pigment (melanin) is evident as the +black inner border of these structures. + + +The **uvea**, the middle layer of the eyeball, consists of the choroid, the ciliary body, +and the iris. The choroid is a vascular layer; it is relatively thin and difficult to +distinguish in the accompanying figure, except by location. On this basis, the **choroid** +( _Ch_ ) is identified as being just external to the pigmented layer of the retina. It is also +highly pigmented; the choroidal pigment is evident as a discrete layer in several parts +of the section. + + +Anterior to the ora serrata, the uvea is thickened; here, it is called the ciliary body +( _CB_ ). This contains the ciliary muscle (see Plate 24.3, page 1014), which brings about +adjustments of the lens to focus light. The ciliary body also contains processes to which +the zonular fibers are attached. These fibers function as suspensory ligaments of the +lens ( _L_ ). The iris ( _I_ ) is the most anterior component of the uvea and contains a central +opening, the pupil. + +The outermost layer of the eyeball, the **fibrous layer**, consists of the **sclera** ( _S_ ) +and the **cornea** ( _C_ ). Both of these contain collagenous fibers as their main structural +element; however, the cornea is transparent, and the sclera is opaque. The extrinsic +muscles of the eye insert into the sclera and affect the movements of the eyeball. These +are not included in the preparation, except for two small pieces of a muscle insertion +( _arrows_ ) in the _lower left_ and _top center_ of the illustration. Posteriorly, the sclera is +pierced by the emerging **optic nerve** ( _ON_ ). A deep depression in the neural retina +lateral to the optic nerve (above the _ON_ in this figure) is the fovea centralis ( _FC_ ), the +thinnest and most sensitive portion of the neural retina. + + +The lens is considered in Plate 24.4 (page 1016). Just posterior to the lens is the +large cavity of the eye, the **vitreous cavity** ( _V_ ), which is filled with a thick jelly-like +material, the vitreous humor or body. Anterior to the lens are two additional, fluid-filled +chambers of the eye, the **anterior chamber** ( _AC_ ) and the **posterior chamber** +( _PC_ ), separated by the iris. + + +**AC,** anterior chamber **C,** cornea +**CB,** ciliary body +**Ch,** choroid +**FC,** fovea centralis **I,** iris +**L,** lens +**ON,** optic nerve +**OS,** ora serrate +**PC,** posterior chamber **R,** retina +**S,** sclera +**V,** vitreous cavity +**arrows,** muscle insertions + + +**layer** (between the rods and cones and the intermediate neuronal layer) and the +**inner plexiform layer** (between the intermediate layer and the ganglion cells), +resulting in summation and neuronal integration. Finally, the ganglion cells send +their axons to the brain as components of the optic nerve. + +##### Optic disc and nerve, eye, human, hematoxylin and eosin (H&E) ×65. + + +The site where the optic nerve leaves the eyeball is called the +**optic disc** ( _OD_ ). It is characteristically marked by a depression, +evident here. Receptor cells are not present at the optic disc, and +because it is not sensitive to light stimulation, it is sometimes +referred to as the _blind spot_ . +The fibers that give rise to the optic nerve originate in the retina, more specifically, +in the ganglion cell layer (see later). They traverse the sclera through a number of +openings ( _arrows_ ) to form the **optic nerve** ( _ON_ ). The region of the sclera that +contains these openings is called the **lamina cribrosa** ( _LC_ ) or cribriform plate. The +optic nerve contains a central artery and vein (not seen here) that also traverse the +lamina cribrosa. Branches of these blood vessels ( _BV_ ) supply the inner portion of the +retina. + +##### Retina, eye, human, H&E ×325. + + +On the basis of structural features that are evident in histologic +sections, the retina is divided into 10 layers, from posterior to +anterior, as listed herein and labeled in this figure: + +##### 1. Retinal pigment epithelium ( RPE ), the outermost layer of the retina 2. Layer of rods and cones ( R&C ), the photoreceptor layer of the + +retina +##### 3. External limiting membrane ( ELM ), a line formed by the junctional + +complexes of the photoreceptor cells +##### 4. Outer nuclear layer ( ONL ), containing nuclei of rod and cone cells 5. Outer plexiform layer ( OPL ), containing neural processes and + +synapses of rod and cone cells with bipolar, amacrine, interplexiform, and +horizontal cells + + +##### 6. Inner nuclear layer ( INL ), containing nuclei of bipolar, horizontal, + +interplexiform, amacrine, and Müller cells +##### 7. Inner plexiform layer ( IPL ), containing processes and synapses of + +bipolar, horizontal, interplexiform, amacrine, and ganglion cells +##### 8. Layer of ganglion cells ( GC ), containing cell bodies and nuclei of + +ganglion cells +##### 9. Nerve fiber layer ( NFL ), containing axons of ganglion cells 10. Internal limiting membrane ( ILM ), consisting of the external (basal) + +lamina of Müller cells + + +This figure also shows the innermost layer of the choroid ( _Ch_ ), a cell-free +membrane, the lamina vitrea ( _LV_ ), also called Bruch membrane. Electron micrographs +reveal that it corresponds to the basement membrane of the pigment epithelium. +Immediately external to the lamina vitrea is the capillary layer of the choroid (lamina +choriocapillaris). These vessels supply the outer part of the retina. + + +**BV,** blood vessels +**Ch,** choroid +**ELM,** external limiting membrane **GC,** layer of ganglion cells **ILM,** internal + +limiting membrane **INL,** inner nuclear layer (nuclei of bipolar, horizontal, +amacrine, and Müller cells) **IPL,** inner plexiform layer **LC,** lamina +cribrosa **LV,** lamina vitrea +**NFL,** nerve fiber layer **OD,** optic disc +**ON,** optic nerve +**ONL,** outer nuclear layer (nuclei of rod and cone cells) **OPL,** outer + +plexiform layer **RPE,** retinal pigment epithelium **R&C,** layer of rods and +cones **arrows,** openings in sclera (lamina cribrosa) + + +#### **PLATE 24.3 EYE III: ANTERIOR SEGMENT** + +The **anterior segment** is that part of the eye anterior to the **ora serrata**, the most +anterior extension of the neural retina, and includes the **anterior** and **posterior** + + +**chambers** and the structures that define them. These include the cornea and +sclera, the iris, the lens, the ciliary body, and the connections between the basal +lamina of the ciliary processes and the lens capsule (thick basal lamina of the +lens epithelium) that form the suspensory ligament of the lens, the **zonular** +**fibers** . The posterior chamber is bounded posteriorly by the anterior surface of +the lens and anteriorly by the posterior surface of the iris. The ciliary body forms +the lateral boundary. Aqueous humor flows through the pupil into the anterior +chamber, which occupies the space between the cornea and the iris, and drains +into the **canal of Schlemm** . + +##### Anterior segment, eye, human, hematoxylin and eosin (H&E) ×45; inset ×75. + + +A portion of the **anterior segment** of the eye, shown in this +figure, includes parts of the cornea ( _C_ ), sclera ( _S_ ), iris ( _I_ ), ciliary +body ( _CB_ ), anterior chamber ( _AC_ ), posterior chamber ( _PC_ ), lens ( _L_ ), +and zonular fibers ( _ZF_ ). + + +The relationship of the cornea to the sclera is illustrated to +advantage here. The junction between the two ( _arrows_ ) is marked by a change in +staining, with the substance of the cornea appearing lighter than that of the sclera. The +**corneal epithelium** ( _CEp_ ) is continuous with the **conjunctival epithelium** +( _CjEp_ ) that covers the sclera. Note that the epithelium thickens considerably at the +corneoscleral junction and resembles that of the oral mucosa. The conjunctival +epithelium is separated from the dense fibrous component of the sclera by a loose +vascular connective tissue. Together, this connective tissue and the epithelium +constitute the conjunctiva ( _Cj_ ). The epithelial–connective tissue junction of the +conjunctiva is irregular; in contrast, the undersurface of the corneal epithelium presents +an even profile. + +Just lateral to the junction of the cornea and sclera is the **canal of Schlemm** ( _CS_ ; +see also the next figure). This canal takes a circular route about the perimeter of the +cornea. It communicates with the anterior chamber through a loose trabecular +meshwork of tissue, the spaces of Fontana. The canal of Schlemm also communicates +with episcleral veins. By means of its communications, the canal of Schlemm provides +a route for the fluid in the anterior and posterior chambers to reach the bloodstream. + + +The _inset_ shows the tip of the iris. Note the heavy pigmentation on the posterior +surface of the iris, which is covered by the same double-layered epithelium as the +ciliary body and ciliary processes. In the ciliary epithelium, the outer layer is pigmented +and the inner layer is nonpigmented. In the iris, both layers of the iridial epithelium +( _IEp_ ) are heavily pigmented. A portion of the iridial constrictor muscle ( _M_ ) is seen +beneath the epithelium. + +##### Anterior segment, eye, human, H&E ×90; inset ×350. + + +Immediately internal to the anterior margin of the sclera ( _S_ ) is the +**ciliary body** ( _CB_ ). The **iris** ( _I_ ) arises from the anterior border of +the ciliary body. The inner surface of the ciliary body forms radially +arranged, ridge-shaped elevations, the **ciliary processes** ( _CP_ ), to +which the zonular fibers ( _ZF_ ) are anchored. From the outside, the +components of the ciliary body are the ciliary muscle ( _CM_ ), the +connective tissue (vascular) layer ( _VL_ ) containing small arteries ( _A,_ +_inset_ ) and veins ( _V, inset_ ) representing the choroid coat in the ciliary +body, the lamina vitrea ( _LV, inset_ ), and the ciliary epithelium ( _CiEp_, _inset_ ). The ciliary +epithelium consists of two layers ( _inset_ ), the pigmented layer ( _PE_ ) and the +nonpigmented layer ( _npE_ ). The lamina vitrea is a continuation of the same layer of the +choroid; it is the basement membrane of the pigmented ciliary epithelial cells. + + +The **ciliary muscle** is arranged in three patterns. The outer layer is immediately +deep into the sclera and contains the meridionally arranged fibers of Brücke. The +outermost of these fibers continues more posteriorly into the choroid and is referred to +as the _tensor muscle of the choroid_ . The middle layer is the radial group. It radiates +from the region of the sclerocorneal junction into the ciliary body. The innermost layer +of muscle cells is circularly arranged. These are seen in cross section. The circular +artery ( _CA_ ; barely discernible) and vein ( _CV_ ) for the iris, also cut in cross section, are +just anterior to the circular group of muscle cells. + + +**A,** artery +**AC,** anterior chamber **C,** cornea +**CA,** circular artery **CB,** ciliary body +**CEp,** corneal epithelium **CiEp,** ciliary epithelium **Cj,** conjunctiva +**CjEp,** conjunctival epithelium **CM,** ciliary muscle +**CP,** ciliary processes **CS,** canal of Schlemm **CV,** circular vein +**I,** iris +**IEp,** iridial epithelium **L,** lens +**LV,** lamina vitrea +**M,** iridial constrictor muscle **npE,** nonpigmented layer of ciliary epithelium + +**PC,** posterior chamber **PE,** pigmented layer of ciliary epithelium **S,** +sclera + +**V,** vein +**VL,** vascular layer (of ciliary body) **ZF,** zonular fibers +**arrows,** junction between cornea and sclera + + +#### **PLATE 24.4 EYE IV: SCLERA, CORNEA, AND LENS** + +The transparent **cornea** is the primary dioptric (refractive element) of the eye and +is covered with nonkeratinized stratified squamous epithelium. Its stroma consists + + +of alternating lamellae of collagen fibrils and fibroblasts ( **keratocytes** ). The fibrils +in each lamella are extremely uniform in diameter and uniformly spaced; fibrils in +adjacent lamellae are arranged at approximately right angles to each other. This +orthogonal array of highly regular fibrils is responsible for the transparency of the +cornea. The posterior surface is covered with a single layer of low cuboidal cells, +the **corneal endothelium**, which rests on a thickened basal lamina called +**Descemet membrane** . Nearly all of the metabolic exchanges of the avascular +cornea occur across the endothelium. Damage to this layer leads to corneal +swelling and can produce temporary or permanent loss of transparency. + +The **lens** is a transparent, avascular, biconvex epithelial structure suspended +by the zonular fibers. Tension on these fibers keeps the lens flattened; reduced +tension allows it to fatten or **accommodate** to bend light rays originating close to +the eye to focus them on the retina. + +##### Corneoscleral junction, eye, human, hematoxylin and eosin (H&E) ×130. + + +This low-magnification micrograph shows the full thickness of the +sclera just lateral to the **corneoscleral junction** or limbus. To the +_left_ of the _arrow_ is sclera; to the _right_ is a small amount of corneal +tissue. The **conjunctival epithelium** ( _CjEp_ ) is irregular in thickness and rests on a +loose vascular connective tissue. Together, this epithelium and underlying connective +tissue represent the **conjunctiva** ( _Cj_ ). The white opaque appearance of the sclera is +due to the irregular dense arrangement of the collagen fibers that make up the stroma +( _S_ ). The **canal of Schlemm** ( _CS_ ) and small blood vessels ( _BV_ ) are seen at the _left_ +close to the inner surface of the sclera near the border with anterior chamber ( _AC_ ) of +the eye. + +##### Corneoscleral junction and canal of Schlemm, eye, human, H&E ×360. + + +Uppermost figure is a higher magnification micrograph showing the +transition from the corneal epithelium ( _CEp_ ) to the irregular and thicker +conjunctival epithelium ( _CjEp_ ) covering the sclera. Note that Bowman +membrane ( _B_ ), lying under the corneal epithelium, is just discernible but disappears +beneath the conjunctival epithelium. The next figure shows a higher magnification of +the canal of Schlemm ( _CS_ ) than does the _top left_ figure. That the space shown here is +not an artifact is evidenced by the endothelial lining cells ( _En_ ) that face the lumen. + +##### Cornea, eye, human, H&E ×175. + + +This low-magnification micrograph shows the full thickness of the **cornea** ( _C_ ) and +can be compared with the sclera shown in the figure at the _left_ . The **corneal** + + +**epithelium** ( _CEp_ ) presents a uniform thickness, and the underlying +stroma ( _S_ ) has a more homogeneous appearance than the stroma of the +sclera (the white spaces seen here and in the figure at the _left_ are +artifacts). Nuclei ( _N_ ) of the keratocytes of the stroma lie between +lamellae. The corneal epithelium rests on a thickened anterior basement +membrane called **Bowman membrane** ( _B_ ). The posterior surface of +the cornea facing the anterior chamber ( _AC_ ) is lined by a simple squamous epithelium +called the **corneal endothelium** ( _CEn_ ); its thick posterior basement membrane is +called **Descemet membrane** ( _D_ ). + +##### Corneal epithelium and endothelium, eye, human, H&E ×360. + + +Uppermost is a higher magnification micrograph showing the +**corneal epithelium** ( _CEp_ ) with its squamous surface cells, the very +thick homogeneous-appearing **Bowman membrane** ( _B_ ), and the +underlying stroma ( _S_ ). Note that the stromal tissue has a homogeneous appearance, a +reflection of the dense packing of its collagen fibrils. The flattened nuclei belong to the +keratocytes. Lowermost figure shows the posterior surface of the cornea. Note the thick +homogeneous **Descemet membrane** ( _D_ ) and the underlying **corneal** +**endothelium** ( _CEn_ ). + +##### Lens, eye, human, H&E ×360. + + +This micrograph shows a portion of the lens near its equator. The +lens consists entirely of epithelial cells surrounded by a homogeneousappearing **lens capsule** ( _LC_ ) to which the zonular fibers attach. The +lens capsule is a very thick basal lamina of the epithelial cells. Simple +cuboidal lens epithelial cells are present on the anterior surface of the lens, but at the +lateral margin, they become extremely elongated and form layers that extend toward +the center of the lens. These elongated columns of epithelial cytoplasm are referred to +as **lens fibers** ( _LF_ ). New cells are produced at the margin of the lens and displace the +older cells inwardly. Eventually, the older cells lose their nuclei, as evidenced by the +deeper portion of the cornea in this micrograph. + + +**AC,** anterior chamber **B,** Bowman membrane +**BV,** blood vessels +**C,** cornea +**CEn,** corneal endothelium **CEp,** corneal epithelium **Cj,** conjunctiva +**CjEp,** conjunctival epithelium **CS,** canal of Schlemm **D,** Descemet + +membrane **En,** endothelial lining cells **LC,** lens capsule +**LF,** lens fibers + + +**N,** nuclei +**S,** stroma + + diff --git a/content/Anatomi & Histologi 2/Öga histologi/24 Eye.pdf b/content/Anatomi & Histologi 2/Öga histologi/24 Eye.pdf new file mode 100644 index 0000000..2da0cca --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/24 Eye.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a8851dc298cae5d51158cab7118c3405d623b356f1766aa17b5e6d2db9cc517c +size 4539391 diff --git a/content/Anatomi & Histologi 2/Öga histologi/Instuderingsfrågor.md b/content/Anatomi & Histologi 2/Öga histologi/Instuderingsfrågor.md new file mode 100644 index 0000000..be6002a --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/Instuderingsfrågor.md @@ -0,0 +1,12 @@ + +Vad är conjunctiva? Beskriv dess **histologiska uppbyggnad**. +Avseende retina: + a. Vilka histologiska lager finns? Vad heter de, och vad finns i respektive lager? + b. Vilken funktion har retinala pigmentepitelet? + c. Redogör för synnervspapillen (discus opticus). + d. Redogör för macula lutea och fovea centralis. + e. Vad är stavar och tappar, och var återfinns de? +Beskriv **histologiskt** ljusets väg genom retina: + - vilka celler aktiveras + - signalflöde till ganglieceller + - övergång till nervus opticus \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Öga histologi/Målbeskrivning.md b/content/Anatomi & Histologi 2/Öga histologi/Målbeskrivning.md new file mode 100644 index 0000000..81134e6 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/Målbeskrivning.md @@ -0,0 +1,13 @@ +- Retina: histologiska lager +- Retinas celltyper: + - Fotoreceptorer (stavar, tappar) + - Bipolära celler + - Ganglieceller + - Horisontalceller + - Amakrina celler + - Müller-celler +- Specialiserade områden: + - Papilla / discus opticus + - Macula lutea + - Fovea centralis +- Koppling mellan retina och nervus opticus på cellnivå diff --git a/content/Anatomi & Histologi 2/Öga histologi/Slides.md b/content/Anatomi & Histologi 2/Öga histologi/Slides.md new file mode 100644 index 0000000..9681716 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/Slides.md @@ -0,0 +1,161 @@ + +# Ögats histologi – översikt + +glaskropp + +## Lagerindelning +1. **Yttersta lagret** + - Cornea (hornhinnan) + - Sclera (senhinnan) + - Conjunctiva + +2. **Mellanlagret** + - Choroidea (åderhinnan) + - Ciliarkropp och ciliarutskott + - Iris + +3. **Innersta lagret** + - Retina + - Retinala pigmentepitelet (RPE) + - Neuronala retina + +4. **Linsen och glaskroppen** + - Lins + - Glaskropp + +--- + +## 1. Ögats yttersta lager + +### Sclera +- Omger ögat och optisk nerv +- Övergår anteriort i cornea +- Stram oregelbunden bindväv → opakt (vitt) +- Innehåller elastiska fibrer, blodkärl och nerver +- Främre del bekläds av conjunctiva + - Flerskiktat epitel + - Fortsätter på ögonlockets insida + - Flerskiktat cylinderepitel med gobletceller + +### Cornea +- 0,5–1 mm tjock +- Måste vara genomskinlig +- Saknar blodkärl +- Specifik stromauppbyggnad +- Mycket känslig (innerverad) +- Lager: + - Flerskiktat oförhornat skivepitel + - Bowmans membran + - Stroma (organiserade kollagenfibrer, platta fibroblaster) + - Descemets membran + - Endotel +- Främre kammaren angränsar + +--- + +## 2. Ögats mellanlager + +### Choroidea +- Vaskulärt lager +- Förser retina med metaboliter +- Bindväv med rikligt med kärl/kapillärer och melanocyter +- Fäster mot sclera +- Avgränsas mot retina av Bruchs membran + - Cellfritt + - Separerar kapillärer från retina + +### Ciliarkropp +- Innehåller glatt muskulatur + - Ackommodation av linsen +- Har ciliarutskott + - Producerar kammarvätska +- Har zonulatrådar + - Fäster linsen (kollagen) + +### Iris +- Glatt muskulatur + - Reglerar pupillstorlek +- Bindvävsstroma med melanocyter + - Ger ögonfärg +- Inget epitel mot yttre kammaren +- Två lager epitel på insidan + - Fortsättning av retina + +--- + +## 3. Ögats innersta lager – retina + +- Består av 10 lager +- Ljuskänslig del posteriort om ora serrata + +### Lager (1–10) +1. Retinala pigmentepitelet (RPE) +2. Stavar och tappars ljuskänsliga segment +3. Membrana limitans externa +4. Yttre kärnlagret (stavar/tappar) +5. Yttre plexiforma skiktet (synapser) +6. Inre kärnlagret (bipolära neuron, Müllerglia) +7. Inre plexiforma skiktet (synaps bipolär–ganglie) +8. Gangliecellslagret +9. Nervfiberlagret (gangliecellers axon) +10. Membrana limitans interna + +### Celler +- Fotoreceptorer: stavar och tappar +- Bipolära neuron +- Ganglieceller +- Stödjeceller (Müllerglia) + +--- + +## Fotoreceptorer +- Yttre segment med veckade membran +- Innehåller ljuskänsliga proteiner (opsiner) + +--- + +## 4. Linsen och glaskroppen + +### Linsen +- Bikonvex och transparent +- Saknar kärl och nerver +- Nästan inget bindväv + +**Uppbyggnad** +- Linskapsel = tjock basal lamina +- Kubiskt epitel under kapseln + - Endast anteriort +- Linsfiberceller: + - Långa och platta + - Förlorar kärna och organeller + - Fyllda med crystalliner + - Lager-på-lager (“lökstruktur”) + +### Glaskroppen +- Transparant gelé +- ~99 % vatten +- Enstaka celler +- Kollagen och grundsubstans + +--- + +## Sammanfattning – strukturer +- Palpebrae +- Conjunctiva +- Sclera +- Cornea +- Choroidea +- Corpus ciliare +- Processus ciliares +- Iris +- Pupilla +- Corpus vitreum +- Retina +- Synnervspapillen +- Macula lutea +- Fovea centralis + +### Synens koppling till CNS +- N. opticus +- Thalamus +- Syncentrum (occipitalloben) \ No newline at end of file diff --git a/content/Anatomi & Histologi 2/Öga histologi/Slides.pdf.pdf b/content/Anatomi & Histologi 2/Öga histologi/Slides.pdf.pdf new file mode 100644 index 0000000..1268035 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/Slides.pdf.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3043e48beec7aa2e57b8082e38214b1274df64b4fcd31b033cb656bd0d9aa1a4 +size 6931167 diff --git a/content/Anatomi & Histologi 2/Öga histologi/Ögat histologi handout.pptx b/content/Anatomi & Histologi 2/Öga histologi/Ögat histologi handout.pptx new file mode 100644 index 0000000..9466cd2 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öga histologi/Ögat histologi handout.pptx @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3f2fbb9fe63df5fd5b24a7d7a12e670918402cee719ec327493b525cbef955c +size 31265162 diff --git a/content/Anatomi & Histologi 2/Öra anatomi/Slides.pdf.pdf b/content/Anatomi & Histologi 2/Öra anatomi/Slides.pdf.pdf new file mode 100644 index 0000000..3ff6dc3 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öra anatomi/Slides.pdf.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:75e65d91926178a4ceca82149977eeabf92ae89c50d8cb389ad63a968d7e8992 +size 5277512 diff --git a/content/Anatomi & Histologi 2/Öra histologi/25 Ear.md b/content/Anatomi & Histologi 2/Öra histologi/25 Ear.md new file mode 100644 index 0000000..8fa96c5 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öra histologi/25 Ear.md @@ -0,0 +1,1639 @@ +# 25 EAR + +**OVERVIEW OF THE EAR** + +**EXTERNAL EAR** + +**MIDDLE EAR** + +**INTERNAL EAR** + + +Structures of the Bony Labyrinth + + +Structures of the Membranous Labyrinth +Sound Perception + +Innervation of the Internal Ear + +Blood Vessels of the Membranous Labyrinth + +**Folder 25.1** Clinical Correlation: Otosclerosis + +**Folder 25.2** Clinical Correlation: Hearing Loss—Vestibular + +Dysfunction +**Folder 25.3** Clinical Correlation: Vertigo + + +**HISTOLOGY** + +### **OVERVIEW OF THE EAR** + + +The **ear** is a three-chambered sensory organ that functions as an **auditory** +**system** for sound perception and as a **vestibular system** for balance. +Each of the three divisions of the ear—the **external ear**, **middle ear**, and +**internal ear** —is an essential part of both systems (Fig. 25.1). The external +and middle ears collect and conduct acoustic energy to the internal ear, +where auditory sensory receptors convert that energy into electrical +impulses. The sensory receptors of the vestibular system respond to gravity +and movement of the head. They are responsible for the sense of balance +and equilibrium and help coordinate movements of the head and eyes. + + +**FIGURE 25.1.** **Three divisions of the ear.** The three divisions of the ear are +represented by different colors and consist of the external ear (auricle and +external acoustic meatus; _pink_ ), the middle ear (tympanic cavity, auditory +ossicles, tympanic membrane, and auditory tube; _green_ ), and the internal ear +containing the bony labyrinth (semicircular canals, vestibule, and cochlea; +_blue_ ) and the membranous labyrinth (not visible). + + +**The ear develops from surface ectoderm and components of the** +**first and second pharyngeal arches.** + + +The internal ear is the first of the three ear divisions to begin development. +At the end of the third week, a thickening of **surface ectoderm** that +appears on each side of the myelencephalon develops into the **otic placode** . +Early in the fourth week, the otic placode invaginates and then pinches off +to form the **otic vesicle (otocyst)**, which sinks deep to the surface +ectoderm into the underlying mesenchyme (Fig. 25.2). The otic vesicle +serves as a primordium for the development of the epithelia that line the +membranous labyrinth of the internal ear. Later, development of the first and +part of the second pharyngeal arch provides structures that augment hearing. +The endodermal component of the **first pouch** gives rise to the +**tubotympanic recess**, which ultimately develops into the **auditory tube** +**(Eustachian tube)** and the **middle ear** and its epithelial lining. The +corresponding ectodermal outgrowth of the **first pharyngeal groove** gives +rise to the **external acoustic meatus** and its epithelial lining (see Fig. + + +25.2). The connective tissue part of the pharyngeal arches produces the +ossicles (“ear bones”). The **malleus** and **incus** develop from the first +pharyngeal arch and the **stapes** from the second pharyngeal arch. The +sensory epithelia of the membranous labyrinth that originates from the otic +vesicle link with cranial nerve VIII, which is an outgrowth of the central +nervous system. The auricle of the external ear develops from six **auricular** +**hillocks** located at the dorsal ends of the first and second pharyngeal arches +surrounding the first pharyngeal cleft. The cartilaginous, bony, and muscular +structures of the ear develop from the mesenchyme surrounding these early +epithelia. + + +**FIGURE 25.2.** **Schematic drawings showing development of the ear. a.** +This drawing shows the relationship of the surface ectoderm–derived otic +vesicle to the first pharyngeal arch during the fourth week of development. **b.** +The otic vesicle sinks deep into the mesenchymal tissue and develops into +the membranous labyrinth. Note the development of the tubotympanic recess +lined by endoderm into the future middle ear cavity and auditory tube. In +addition, accumulation of mesenchyme from the first and second pharyngeal +arches gives rise to the auditory ossicles. **c.** At this later stage of +development, the first pharyngeal groove grows toward the developing +tubotympanic recess. The auditory ossicles assume a location inside the +tympanic cavity. **d.** This final stage of development shows how the tympanic + + +membrane develops from all three germ layers: surface ectoderm, +mesoderm, and endoderm. Note that the wall of the otic vesicle develops into +the membranous labyrinth. + +### **EXTERNAL EAR** + + +**The auricle is the external component of the ear that collects and** +**amplifies sound.** + + +The **auricle (pinna)** is the oval appendage that projects from the lateral +surface of the head. The characteristic shape of the auricle is determined by +an internal supporting structure of elastic cartilage. Thin skin with hair +follicles, sweat glands, and sebaceous glands cover the auricle. The auricle +is considered a nearly vestigial structure in humans, compared with its +development and function in other animals. Nevertheless, it is essential in +collecting the sound and directing it into the external acoustic meatus. + + +**The external acoustic meatus conducts and amplifies sounds on** +**the way to the tympanic membrane.** + + +The **external acoustic meatus** is an air-filled tubular space that follows a +slightly S-shaped course for about 25 mm to the **tympanic membrane** +**(eardrum)** . Because of its length, the external acoustic meatus can amplify +sounds with frequencies of 2,000–5,000 Hz. By passively conducting +sounds at this frequency and acting as a **resonator**, the external acoustic +meatus increases the sound pressure at the tympanic membrane by +approximately a **factor of 2** . + +The wall of the meatus is continuous externally with the auricle. The +wall of the lateral one-third of the meatus is cartilaginous and is continuous +with the elastic cartilage of the auricle. The medial two-thirds of the meatus +are contained within the temporal bone. Both parts of the meatus are lined +by skin, which is also continuous with that of the auricle. + +The skin in the lateral part of the meatus contains hair follicles, +sebaceous glands, and **ceruminous glands**, but no eccrine sweat glands. +The coiled tubular ceruminous glands closely resemble the apocrine glands +found in the axillary region. Their secretion mixes with that of the +sebaceous glands and desquamated cells to form **cerumen**, or **earwax** . +Because the external acoustic meatus is the only blind pouch of the skin in +the body, the earwax provides the means to evacuate desquamating cells +from the stratum corneum, thus preventing their accumulation in the meatus. +The **cerumen** lubricates the skin and coats the meatal hairs to +impede the entry of foreign particles into the ear. It also provides +some antimicrobial protection from bacteria, fungi, and insects. + + +Excessive accumulation of cerumen ( **impacted cerumen** ) can plug +the meatus, resulting in **conductive hearing loss** . The medial part of +the meatus located within the temporal bone has thinner skin and +fewer hairs and glands. + +### **MIDDLE EAR** + + +**The middle ear is an air-filled space that contains three small** +**bones, the ossicles.** + + +The **middle ear** is located in an air-filled space, called the **tympanic** +**cavity**, within the temporal bone (Fig. 25.3). It is spanned by three small +bones, the **auditory ossicles**, which are connected by two movable joints. +The middle ear also contains the **auditory tube (Eustachian tube)**, which +opens to the nasopharynx as well as the muscles that attach to the ossicles. + + +**FIGURE 25.3.** **Horizontal section of a human temporal bone.** The +relationships of the three divisions of the ear within the petrous part of the +temporal bone are shown. Note the orientation icon that shows the plane of +section. The _tympanic membrane_ separates the _external acoustic meatus_ +from the tympanic cavity. Within the tympanic cavity, sections of the malleus + + +( _M_ ) and incus ( _I_ ) can be seen. The posterior wall of the tympanic cavity is +associated with the mastoid air cells ( _AC_ ). The lateral wall of the cavity is +formed principally by the tympanic membrane. The opening to the internal +ear or oval window ( _OW_ ) is seen in the medial wall of the cavity (the stapes +has been removed). The facial nerve ( _F_ ) can be observed near the oval +window. The _cochlea_, vestibule, and a portion of the lateral semicircular +canal ( _LSC_ ) of the bony labyrinth are identified. The _cochlear_ and _vestibular_ +_nerves_ are divisions of cranial nerve VIII and can also be observed within the +_internal acoustic meatus_ . _Inset_ in the upper left of the photomicrograph +shows the plane of the section through the bony labyrinth. ×65. + + +The tympanic cavity has a roof, floor, and four walls: anterior, posterior, +lateral, and medial. The tympanic cavity contains an opening of the auditory +tube and is bound anteriorly by a thin layer of bone that separates it from the +internal carotid artery. The posterior wall of the tympanic cavity is formed +by the spongy bone of the **mastoid process**, which contains the **mastoid** +**antrum** and other, smaller, air-filled spaces called **mastoid air cells** . The +middle ear is bound laterally by the **tympanic membrane** and medially by +the bony wall of the internal ear. The floor and roof of the tympanic cavity +are both formed by a thin layer of bone, which separates them from the +internal jugular vein and middle cranial fossa, respectively. + +The middle ear is a mechanical energy transformer. Its primary function +is to convert sound waves (air vibrations) arriving from the external acoustic +meatus into mechanical vibrations that are transmitted to the internal ear. +Two openings in the medial wall of the middle ear, the **oval (vestibular)** +**window** and the **round (cochlear) window**, are essential components in +this conversion process. + + +**The tympanic membrane separates the external acoustic meatus** +**from the middle ear.** + + +The intact **tympanic membrane** is a semitransparent, thin (about 0.1 mm) +membrane approximately 1 cm in diameter that has an average surface area +in humans of about 65 mm [2] . It is shaped like an irregular flat cone, the apex +of which is located at the **umbo** that corresponds to the tip of the +manubrium of the malleus. The tympanic membrane at the end of the +external acoustic meatus is tilted anteriorly and inferiorly. Thus, orientation +of the tympanic membrane has been compared to the position of a miniature +satellite dish tuned to receive signals coming from the ground in front of the +body and to the side of the head. During otoscopic examination of a normal +ear, the tympanic membrane is a semitransparent light gray color and has a +visible concavity toward the external acoustic meatus. Owing to its +concavity, light from the otoscope reflects off the tympanic membrane as a + + +triangular **cone of light** (light reflex) that radiates anteriorly and inferiorly +from the umbo (Fig. 25.4). The malleus is one of three small auditory +ossicles residing in the middle ear and is the only one that attaches to the +tympanic membrane (see Fig. 25.1). + + +**FIGURE 25.4.** **The tympanic membrane in otoscopic examination of the** +**external ear.** This diagram and photograph show the left tympanic +membrane seen with an otoscope during examination of the external +acoustic meatus. The landmarks of the tympanic membrane include the +manubrium of the malleus with its visible attachment to the tense part of the +membrane, umbo at the tip of the manubrium, and projecting lateral process +of the malleus. A small, flaccid part of the tympanic membrane is located +above the lateral process of the malleolus. Note the cone of light (light reflex) +that is usually seen extending anteroinferiorly from the umbo of the tympanic +membrane. (Courtesy of Dr. Eric J. Moore.) + + +The **tympanic membrane** forms the medial boundary of the external +acoustic meatus and the lateral wall of the middle ear (Fig. 25.5). From +outside to inside, the three layers of the tympanic membrane are + + +**FIGURE 25.5.** **Cross section through a human tympanic membrane.** This +photomicrograph shows the _tympanic membrane_, _external acoustic meatus_, +and _tympanic cavity_ . ×9. **Inset.** Higher magnification of the tympanic +membrane. The outer epithelial layer of the membrane consists of stratified +squamous keratinized epithelium ( _SSE_ ), and the inner epithelial layer of the +mucous membrane consists of low simple cuboidal epithelium ( _SCE_ ). A +middle layer of connective tissue core ( _CTC_ ) lies between the two epithelial +layers. The dense irregular connective tissue core is formed by two layers: +the outer layer in which fibers are radially arranged ( _rad_ ) and the inner layer +with circumferentially arranged fibers ( _cir_ ). ×190. + + +the skin of the external acoustic meatus (epidermis composed of stratified +squamous keratinized epithelium) +a core of connective tissue with an outer layer of radially and inner layer +of circularly arranged collagen fibers, and +the mucous membrane of the middle ear (composed of simple cuboidal +epithelium). + + +The larger, lower part of the tympanic membrane ( **tense part** or **pars** +**tensa** ) is tightly stretched and has a thick middle core that contains radial +and circular collagen fibers and gives the membrane its shape and smooth +appearance. The smaller, upper part of the tympanic membrane that lies +superior to the lateral process of the malleolus is loose ( **flaccid part** or +**pars flaccida** ) and lacks a prominent middle fibrous layer (see Fig. 25.4). +Sound waves cause the tympanic membrane to vibrate, and these vibrations + + +are transmitted through the ossicular chain of three small bones that link the +external ear to the internal ear. + +**Tympanic membrane perforations** are caused by a rupture in +the tympanic membrane that creates a connection between the +external auditory meatus and the middle ear. This rapture can be +attributed to infections, mechanical injury, or rapid changes in +pressure, leading to sudden ear pain (otalgia), ear discharge +(otorrhea), ringing in the ears (tinnitus), and a sensation of feeling offbalance (vertigo). Most perforations resolve spontaneously without +complications; however, some may cause transient or permanent + +. +**hearing impairment** + + +**The auditory ossicles connect the tympanic membrane to the oval** +**window.** + + +The **three auditory ossicles** or bones—the malleus, the incus, and the +stapes—cross the space of the middle ear in series and connect the tympanic +membrane to the oval window (Fig. 25.6). These bones work like a lever +system that increases the force transmitted from the vibrating tympanic +membrane to the stapes by decreasing the ratio of their oscillation +amplitudes. The ossicles help convert sound waves to mechanical vibrations +(hydraulic waves) in tissues and fluid-filled chambers. Movable synovial +joints connect the bones, which are named according to their approximate +shape: + + +**FIGURE 25.6.** **Photograph of the three articulated human auditory** +**ossicles** . The three ossicles are the malleus, the incus, and the stapes. ×30. + + +The **malleus (hammer)** attaches to the tympanic membrane and +articulates with the incus. + + +The **incus (anvil)** is the largest of the ossicles and links the malleus to +the stapes. +The **stapes (stirrup)**, the footplate of which fits into the oval window. +The footplate in the human stapes measures approximately 3 mm × 1 mm +and has an average surface area of 3 mm [2] . It acts like a small piston on +the cochlear fluid, creating hydraulic waves to represent the air-pressure +fluctuations of the sound wave. + + +Diseases that affect the external acoustic meatus, tympanic +membrane, or ossicles are responsible for **conductive hearing loss** +(see Folders 25.1 and 25.2). + + + + + +**FOLDER 25.2** + + +**Two muscles attach to the ossicles and affect their movement.** + + +The **tensor tympani muscle** lies in a bony canal above the auditory tube; +its tendon inserts on the malleus. Contraction of this muscle increases +tension on the tympanic membrane. The **stapedius muscle** lies in a bony +eminence on the posterior wall of the middle ear; its tendon inserts on the +stapes. Contraction of the stapedius tends to dampen the movement of the +stapes at the oval window. The stapedius is only a few millimeters long and +is the smallest skeletal muscle. + +The two muscles of the middle ear are responsible for a protective reflex +called the **attenuation reflex** or **acoustic reflex** . In response to intense +sound, involuntary contraction of the muscles makes the chain of ossicles +more rigid, thus reducing the transmission of vibrations to the internal ear. +The muscles will contract on both sides, regardless of which ear is +stimulated. This reflex protects the internal ear from the damaging effects of +very loud sounds. In certain conditions, such as impulse noise (i.e., +fireworks or gun fire), the attenuation reflex is ineffective. + + +**The auditory tube connects the middle ear to the nasopharynx.** + + +The **auditory (Eustachian) tube** is a narrow flattened channel +approximately 3.5 cm long. This tube is lined with ciliated pseudostratified +columnar epithelium, about one-fifth of which is composed of goblet cells. +It vents the middle ear to nasopharynx, equalizing the pressure of the middle +ear with atmospheric pressure. In addition, the auditory tube is responsible +for draining the secretion produced by the mucous membrane of the middle +ear towards the nasopharynx with the aid of the ciliated pseudostratified +columnar epithelium. The auditory tube is normally closed; its walls are +pressed together but they separate during yawning, chewing, +swallowing, and when individual holds the nose and blows. Children +are more vulnerable to the middle ear infections, due to the immature +development of their auditory tubes which are shorter, narrower, and +more horizontal than in the adults. It is common for infections to +spread from the pharynx to the middle ear via the auditory tube +(causing **otitis media** ). A small mass of lymphatic tissue, the **tubal** +**tonsil**, is often found at the pharyngeal orifice of the auditory tube. + + +**The mastoid air cells extend from the middle ear into the temporal** +**bone.** + + +A system of **air cells** projects into the mastoid portion of the temporal bone +from the middle ear. The epithelial lining of these air cells is continuous +with that of the tympanic cavity and rests on periosteum. This continuity +allows infections in the middle ear to spread into **mastoid air cells**, + + +causing **mastoiditis** . Before the development of antibiotics, repeated +episodes of otitis media and mastoiditis usually led to deafness. + + +**The middle ear contributes to the amplification of mechanical** +**forces generated by the vibration of the tympanic membrane.** + + +All three ossicles in the tympanic cavity are involved in the **amplification** +**of the mechanical force** that vibrates the tympanic membrane in two + +ways: + + +The main amplification comes from **differences in the surface area** +between the tympanic membrane and the footplate of the stapes. The +**tympanic membrane** has a surface area of approximately **65 mm** **[2]**, +whereas the footplate of the **stapes** has a surface area of about **3 mm** **[2]** . +Sound waves apply force to every square millimeter of the tympanic +membrane, and this energy is transferred via the chain of ossicles to the +much smaller area of the footplate. Therefore, the pressure applied to the +cochlear fluid by the footplate is **about 22 times** the pressure applied to +the tympanic membrane (Fig. 25.7). + + +**FIGURE 25.7.** **Summary of amplification of sound entering the ear.** +This drawing shows the external and middle ear structures and their +contributions to the amplification of sound entering the ear. Note that the +largest amplification comes from the difference in the surface area + + +between the tympanic membrane (65 mm [2] ) and the footplate of the stapes +(3 mm [2] ). This surface area difference results in ~22 times the amplification +of the pressure applied by the footplate of the stapes. Another source of +amplification comes from the external acoustic meatus and middle ear. +The external acoustic meatus acts as a resonator that increases the sound +pressure acting on the tympanic membrane by _2 times. Finally, the_ +_arrangement of auditory ossicles resembles a basic lever that multiplies_ +_the applied mechanical force acting on the footplate of the stapes by_ 1.3 +times. By multiplying these three amplification factors, the acoustic energy +entering the ear is amplified ~60 times. + + +Additional amplification comes from the arrangement of **auditory** +**ossicles** that act as **levers** that multiply the mechanical force applied to +the stapes. Because the pivot point of the ossicle chain is located farther +from the tympanic membrane than from the stapes, the amplification of +the mechanical force at the oval window is increased by a factor of +**approximately 1.3** . This lever system is adjustable by the action of +muscles in the tympanic cavity and may attenuate loud sounds to protect +the ear (see Fig. 25.7). + + +Under normal conditions, the acoustic energy entering the ear is +amplified **approximately 60 times**, allowing humans to detect frequencies +between 2,000 and 5,000 Hz. The degree of amplification is calculated by +multiplying the amplification factors contributed by the external acoustic +meatus (~2 times) as described earlier on pages 1018-1019, the surface area +differences between the tympanic membrane and the footplate of stapes +(~22 times), and the basic lever action of ossicles (~1.3 times). However, +this calculation (2 × 22 × 1.3 = 57.2) must be used with caution owing to +variability in the mechanical function of the middle ear and its components, +such as ossicular joints, ligaments, muscles, and air volumes, as well as +varying frequencies of sound. + +### **INTERNAL EAR** + + +**The internal ear consists of two labyrinthine compartments, one** +**contained within the other.** + + +The **bony labyrinth** is a complex system of interconnected cavities and +canals in the petrous part of the temporal bone. The **membranous** +**labyrinth** lies within the bony labyrinth and consists of a complex system of +small sacs and tubules that also form a continuous space enclosed within a +wall of epithelium and connective tissue. + + +There are three fluid-filled spaces in the internal ear: + + +**Endolymphatic spaces** are contained within the membranous labyrinth. +The **endolymph** of the membranous labyrinth is similar in composition +to **intracellular fluid** (it has a high K [+] concentration and a low Na [+] +concentration). The endolymph is produced in the stria vascularis, a +specialized area of the cochlear duct (see pages 1032-1034). It drains via +the endolymphatic duct to the endolymphatic sac, which terminates in the +epidural space of the posterior cranial fossa. +The **perilymphatic space** lies between the wall of the bony labyrinth +and the wall of the membranous labyrinth. The **perilymph** is similar in +composition to **extracellular fluid** and **cerebrospinal fluid** (it has a low +K [+] concentration and a high Na [+] concentration). Perilymph is produced as +an ultrafiltrate from the periosteal microvasculature within the bony +labyrinth. It drains via a narrow channel within the temporal bone, called +the _cochlear aqueduct_, directly into the cerebrospinal fluid contained +within the subarachnoid space of the cranial cavity. +The **cortilymphatic space** lies within the tunnels of the organ of Corti +of the cochlea. It is a true intercellular space. The cells surrounding the +space loosely resemble an absorptive epithelium. The cortilymphatic +space is filled with **cortilymph**, which has a composition similar to that +of **extracellular fluid** . + +### **Structures of the Bony Labyrinth** + + +**The bony labyrinth consists of three connected spaces within the** +**temporal bone.** + + +The three spaces of the bony labyrinth, as illustrated in Figure 25.8, are the + + +**FIGURE 25.8.** **Photograph of a cast of the bony labyrinth of the internal** +**ear.** The cochlear portion of the bony labyrinth appears _blue green_ ; the +vestibule and semicircular canals appear _orange red_ . (Courtesy of Dr. Merle +Lawrence.) + + +**semicircular canals**, +**vestibule**, and +**cochlea** . + + +**The vestibule is the central space that contains the utricle and** +**saccule of the membranous labyrinth.** + + +The **vestibule** is the small oval chamber located in the center of the bony +labyrinth. The **utricle** and **saccule** of the membranous labyrinth lie in +elliptical and spherical recesses, respectively. The **semicircular canals** +extend from the vestibule posteriorly, and the **cochlea** extends from the +vestibule anteriorly. The oval window into which the footplate of the stapes +inserts lies in the lateral wall of the vestibule. + + +**The semicircular canals are tubes within the temporal bone that lie** +**at right angles to each other.** + + +**Three semicircular canals**, each forming about three-quarters of a circle, +extend from the wall of the vestibule and return to it. The semicircular + + +canals are identified as anterior, posterior, and lateral and lie within the +temporal bone at approximately right angles to each other. They occupy +three planes in space—sagittal, frontal, and horizontal. The end of each +semicircular canal closest to the vestibule is expanded to form the **ampulla** +(Fig. 25.9a and b). The three canals open into the vestibule through five +orifices; the anterior and posterior semicircular canals join at one end to +form the **common bony limb** (see Fig. 25.9a). + + +**FIGURE 25.9.** **Diagrams and photograph of the human internal ear. a.** +This lateral view of the left bony labyrinth shows its divisions: the vestibule, +cochlea, and three semicircular canals. The openings of the oval window and +the round window can be observed. **b.** This photograph of a cast obtained by +injection of polyester resin into the human internal ear shows an authentic +shape of the bony labyrinth. Note that the cast material is pouring out of the +cochlea through the oval and round windows. Also, in this image, the cast of +the facial canal that contains the facial nerve is visible. ×5. (Courtesy of Dr. +Elsa Erixon.) **c.** Diagram of a membranous labyrinth of the internal ear lying +within the bony labyrinth. The cochlear duct can be seen spiraling within the +bony cochlea. The saccule and utricle are positioned within the vestibule, +and the three semicircular ducts are lying within their respective canals. This +view of the left membranous labyrinth allows the endolymphatic duct and sac +to be observed. **d.** This view of the left membranous labyrinth shows the +sensory regions of the internal ear for equilibrium and hearing. These regions +are the macula of the saccule and macula of the utricle, the cristae + + +ampullares of the three semicircular ducts, and the spiral organ of Corti of +the cochlear duct. + + +**The cochlea is a cone-shaped helix connected to the vestibule.** + + +The spiral lumen of the **cochlea**, called the **cochlear canal** (like the +semicircular canals), is continuous with that of the vestibule. It connects to +the vestibule via two openings, the **round window** and the **oval window**, +both of which are located on the side opposite the openings of the +semicircular canals. Between its base and the apex, the cochlear canal makes +approximately 2.75 turns around a central core of spongy bone called the +**modiolus** (Plate 25.1, page 1042). A sensory ganglion, the **spiral** +**ganglion**, lies in the modiolus. A thin membrane (the secondary tympanic +membrane) covers the round window, whereas the footplate of the stapes is +positioned within the oval window. These two openings are located at the +base of the cochlear canal. + +### **Structures of the Membranous Labyrinth** + + +**The membranous labyrinth contains the endolymph and is** +**suspended within the bony labyrinth.** + + +The **membranous labyrinth** consists of a series of communicating sacs +and ducts containing endolymph. It is suspended within the bony labyrinth +(Fig. 25.9c), and the remaining space is filled with perilymph. The +membranous labyrinth is composed of two divisions: the **cochlear** +**labyrinth** and the **vestibular labyrinth** (Fig. 25.9d). + +The vestibular labyrinth contains the following: + + +Three **semicircular ducts** lie within the semicircular canals and are + +continuous with the utricle. + +The **utricle** and the **saccule**, which are contained in recesses in the +vestibule, are connected by the membranous **utriculosaccular duct** . + + +The cochlear labyrinth contains the **cochlear duct**, which is contained +within the cochlea and is continuous with the saccule (see Fig. 25.9c and d). + +###### **Sensory cells of the membranous labyrinth** + + +**Specialized sensory cells are located in six regions in the** +**membranous labyrinth.** + + +Six sensory regions of membranous labyrinth are composed of sensory **hair** +**cells** and accessory **supporting cells** . These regions project from the wall + + +of the membranous labyrinth into the endolymphatic space in each internal +ear (see Fig. 25.9d): + + +Three **cristae ampullares (ampullary crests)** are located in the +membranous ampullae of the semicircular ducts. They are sensitive to the +angular acceleration of the head (i.e., turning the head). +Two maculae, one in the utricle ( **macula of utricle** ) and the other in the +saccule ( **macula of saccule** ), sense the position of the head and its +linear movement. +The **spiral organ of Corti** projects into the endolymph of the cochlear +duct. It functions as a sound receptor. + + +**Hair cells are epithelial mechanoreceptors of the vestibular and** +**cochlear labyrinth.** + + +The **hair cells** of the vestibular and cochlear labyrinths function as +**mechanoelectrical transducers** ; they convert mechanical energy into +electrical energy that is then transmitted via the vestibulocochlear nerve to +the brain. The hair cells derive their name from the organized bundle of +rigid projections at their apical surface. This surface holds a **hair bundle** +that is formed by rows of stereocilia called _sensory hairs_ . The rows increase +in height in one particular direction across the bundle (Fig. 25.10). In the +vestibular system, each hair cell possesses a single true cilium called a +**kinocilium**, which is located behind the row of longest stereocilia (Fig. +25.11). In the auditory system, the hair cells lose their cilium during +development but retain the **basal body** . The position of the kinocilium (or +basal body) behind the longest row of stereocilia defines the polarity of this +asymmetric hair bundle. Therefore, movement of the stereocilia toward the +kinocilium is perceived differently than movement in the opposite direction +(see later). + + +**FIGURE 25.10.** **Electron micrographs of the kinocilium and stereocilia** +**of a vestibular sensory hair cell. a.** Scanning electron micrograph of the +apical surface of a sensory hair cell from the macula of the utricle. Note the +relationship of the kinocilium ( _K_ ) to the stereocilia ( _S_ ). ×47,500. **b.** +Transmission electron micrograph of the kinocilium ( _K_ ) and stereocilia ( _S_ ) of +a vestibular hair cell in cross section. The kinocilium has a larger diameter +than the stereocilia. ×47,500. ( **a.** Reprinted with permission from Rzadzinska +AK, Schneider ME, Davies C, _et al._ An actin molecular treadmill and myosins +maintain stereocilia functional architecture and self-renewal. _J Cell Biol_ . +2004;164:887–897. **b.** Reprinted with permission from Hunter-Duvar IM, +Hinojosa R. Vestibule: sensory epithelia. In: Friedmann I, Ballantyne J, eds. +_Ultrastructural Atlas of the Inner Ear_ . Butterworth; 1984.) + + +**FIGURE 25.11.** **Diagram of two types of sensory hair cells in the** +**sensory areas of the membranous labyrinth.** The type I hair cell has a +flask-shaped structure with a rounded base. The base is enclosed in a +chalice-like afferent nerve ending containing several ribbon synapses in +addition to several synaptic boutons for efferent nerve endings. Note the +apical surface specializations of this cell, which include a kinocilium and hair +bundle. The apical cytoplasm of hair cells contains basal bodies for the +attachment of the kinocilium and a terminal web for the attachment of +stereocilia. The type II hair cell is cylindrical and possesses several nerve +terminals at its base for both afferent and efferent nerve fibers. The apical +surface specializations are identical to those of the type I cell. The molecular +organization of the stereocilia is depicted in the diagram on the _right_ . The top +link connects the lateral plasma membrane of the stereocilium shaft (where +K [+] transduction channels are located) with the tip of the shorter stereocilium +(where the mechanoelectrical transduction [ _MET_ ] channel protein is located). +Movement of the stereocilia toward the kinocilium opens the _MET_ channels, +causing depolarization of the hair cell, whereas movement in the opposite +direction (away from the kinocilium) causes hyperpolarization. Note that the +proximal end of each stereocilium is tapered and its narrow rootlets are +anchored within the terminal web (cuticular plate) of the hair cell. Several +other fibrillar connectors between neighboring stereocilia are also shown. + + +**Stereocilia of hair cells are rigid structures that contain** +**mechanoelectrical transducer channel proteins at their distal ends.** + + +The **stereocilia of hair cells** have a molecular structure similar to those +described on pages 127-128. Tightly packed **actin filaments** cross-linked +by **fimbrin** and **espin** (actin-bundling proteins) form their internal core +structure. Espins provide the most rigid cross-linking for stereocilia; +mutations that alter their structure cause cochlear and vestibular +dysfunction. The high density of actin filaments and the extensive crosslinking pattern impart rigidity and stiffness to the shaft of the stereocilium. +The shaft tapers at its proximal end near the apical surface of the cell, where +the core filaments of each stereocilium are anchored within the terminal web +(cuticular plate). When stereocilia are deflected, they pivot at their proximal +ends like stiff rods (see Fig. 25.11). + +Transmission electron microscope examination of the distal free end of +the stereocilium reveals an electron-dense plaque at the cytoplasmic site of +the plasma membrane. This plaque represents the **mechanoelectrical** +**transducer (MET) channel complex** . A fibrillar cross-link called the **tip** +**link** connects the tip of the stereocilium with the shaft of an adjacent longer +stereocilium (see Fig. 25.11). These tip links are anchored to mechanically +gated ion channels on both ends. The upper insertion of the tip link to the +shaft of neighboring stereocilium contains a cluster of motor proteins +(unconventional myosin VIIa) that maintains a resting tension on the tip +link. The lower insertion to the distal free end of the stereocilium is +connected to the MET channel complex. The tip link is composed of +**cadherin-23** (CDH23) and **protocadherin-15** (PCDH15); however, the +molecular composition of the MET channel complex remains elusive. +Recently, two transmembrane channel-like (TMC) proteins, TMC1 +and TMC2, have been identified in the MET channels that are +expressed in developing hair cells. Mutations in the genes encoding +TMC1 cause **deafness** in humans. + +The tip link plays an important role in activating the MET channel +complex at the tip of the stereocilia and opening additional transduction K [+] + +channels at the site of its attachment to the shaft of neighboring stereocilium +(see Fig. 25.11). The molecular structure of the transduction K [+] channels is +unknown. + +A mutation that disrupts the gene that encodes the actin-bundling +protein **espin** causes cochlear and vestibular symptoms in +experimental mice. They lose their hearing early in life; these animals +also spend most of their time walking or spinning in circles. The +stereocilia of these animals do not maintain the rigidity necessary for +the proper functioning of the **MET channels** . In humans, mutations in +a gene located on chromosome 1 that encodes espin are associated +with deafness without vestibular involvement. + + +**All hair cells use mechanically gated ion channels to generate** +**action potentials.** + + +All hair cells of the internal ear appear to function by moving (pivoting) +their rigid stereocilia. Mechanoelectrical transduction occurs in stereocilia +that are deflected toward its tallest edge (toward the kinocilium, if present). +This movement exerts tension on the fibrillar tip links, and the generated +force is used to open **mechanically gated ion channels** near the tip of the +stereocilium. This allows for an influx of K [+], causing depolarization of the +receptor cell. This depolarization results in the opening of voltage-gated +Ca [2+] channels in the basolateral surface of the hair cells and the secretion of +a neurotransmitter that generates an action potential in afferent nerve +endings. Movement in the opposite direction (away from the kinocilium) +closes the MET channels, causing hyperpolarization of the receptor cell. The +means by which stereocilia are deflected varies from receptor to receptor; +these are discussed in the sections describing each receptor area. + + +**Hair cells communicate with afferent nerve fibers through ribbon** +**synapses, a specialized type of chemical synapse.** + + +Deflection of the stereocilia on hair cells generates a high rate of prolonged +impulses that are quickly transmitted to the afferent nerve fibers. To ensure +rapid release of the glutamate neurotransmitter from synaptic vesicles, hair +cells possess specialized **ribbon synapses** that contain unique organelles +called **ribbons** . In electron microscopy, ribbons appear as ovoid, 30-nmthick, electron-dense plates that are anchored to the presynaptic membrane +by electron-dense structures (Fig. 25.12). This arrangement allows the +ribbons to float just above the presynaptic plate like balloons on a short +leash. The ribbons tether a large number of synaptic vesicles on their surface +that are primed for fusion with the presynaptic membrane, which contains a +high density of voltage-gated Ca [2+] channels (see Fig. 25.12). After +activation of the Ca [2+] channels, the ribbon serves as a fast-moving conveyor +belt, delivering the vesicles to the presynaptic membrane for fusion. The +tethered pool of synaptic vesicles is approximately fivefold greater than the +pool of the remaining vesicles. The ribbons contain several proteins, +including the active-zone protein RIM that interacts with rab3, a GTPase +enzyme expressed on the surface of synaptic vesicles. Other proteins of the +ribbon complex include presynaptic matrix proteins, such as RIBEYE, +Bassoon, and Piccolo. A hair cell typically contains about 10–20 ribbons. +These ribbon synapses are also found in the photoreceptors and bipolar cells +of the retina. + + +**FIGURE 25.12.** **Diagram and electron micrograph of a ribbon synapse in** +**a hair cell.** Diagram on the _left_ shows a type I hair cell with several ribbon +synapses that are specialized for transmitting long-lasting and high-volume +impulses to the afferent nerve cell endings ( _yellow_ ). **a.** This schematic view +of a ribbon synapse shows the ribbon protein complex that contains several +presynaptic matrix proteins (RIM, RIBEYE, and Piccolo) and is anchored into +the presynaptic plate by another protein called _Bassoon_ . The surface of the +ribbon serves as the tethering platform for multiple synaptic vesicles. Note +the presence of voltage-sensitive Ca [2+] channels in the presynaptic +membrane next to the attachment of the ribbon. Upon influx of Ca [2+], the +ribbon accelerates movement of the attached vesicles toward the +presynaptic membrane for fusion (similar to the action of a fast-moving +conveyor belt). **b.** This electron micrograph of a ribbon synapse from a +mouse cochlear hair cell shows the ribbon protein complex with attached +synaptic vesicles. ×27,400. (Reprinted with permission from Neef A, Khimich +D, Pirih P, _et al._ Probing the mechanism of exocytosis at the hair cell ribbon +synapse. _J Neurosci_ . 2007;27:12933–12944.) + + +**Two types of hair cells are present in the vestibular labyrinth.** + + +Both **hair cell** types are associated with **afferent** and **efferent nerve** +**endings** (see Fig. 25.11). **Type I hair cells** are flask shaped, with a +rounded base and thin neck, and are surrounded by an afferent nerve chalice +and a few efferent nerve fibers. **Type II hair cells** are cylindrical and have +afferent and efferent bouton nerve endings at the base of the cell (see Fig. +25.11). + +###### **Sensory receptors of the membranous labyrinth** + + +**The crista ampullaris senses angular movements of the head.** + + +Each ampulla of the semicircular duct contains a **crista ampullaris**, which +is a sensory receptor for angular movements of the head (Figs. 25.13 and +25.14). The crista ampullaris is a thickened transverse epithelial ridge that is +oriented perpendicularly to the long axis of the semicircular canal and +consists of the epithelial hair cells and supporting cells (Plate 25.1, page +1042). + + +**FIGURE 25.13.** **Diagram of function and structure of the crista** +**ampullaris within a semicircular duct. a.** As shown in this drawing, the +crista ampullaris functions as the sensor for angular movement of the head. +For example, when the head of the individual shown in this diagram rotates +toward the left side, the bony labyrinth also rotates at the same speed +together with the head. However, the endolymph lags behind due to its own +fluid inertia. Because the crista ampullaris is attached to the wall of the bony +labyrinth, it will be swayed by the lagging endolymph in the opposite direction +to the movement of the head. **b.** The structure of the crista ampullaris +includes sensory epithelium and large cupula made of a gelatinous protein– + + +polysaccharide mass that projects toward the nonsensory wall of the +ampulla. Note that the membranous ampulla is filled with endolymph and is +surrounded by perilymph. **c.** The sensory epithelium of the crista ampullaris +is composed of both type I and type II hair cells and supporting cells. The +stereocilia and kinocilium of each hair cell are embedded in the cupula. Their +mechanical deflection opens the K [+] channels, causing depolarization of the +cell. + + +**FIGURE 25.14.** **Photomicrograph of the crista ampullaris and macula of** +**the utricle of the internal ear. a.** This low-magnification view of a horizontal +section of the temporal bone reveals several regions of the internal ear. The +prominent _cochlea_ contains a well-preserved cochlear duct with a _cochlear_ +_nerve_ emerging from the base of the modiolus. Note the cross section of the +_stapedius muscle_ and _facial nerve_ . The central cavity of the slide represents +the vestibule that contains three parts of the membranous labyrinth: the +_utricle_, _saccule_, and _ampulla of the anterior semicircular canal_ . The locations +of sensory receptors (macula of utricle, macula of saccule, and crista +ampullaris) are enclosed within the rectangles. ×20. **b.** This highmagnification view of the crista ampullaris from the anterior semicircular +canal shows a thick _sensory epithelium_ that contains two types of cells: the +_hair cells_ in the upper layer and the _supporting cells_ in the basal layer. Note +that the sensory hair processes of the cells are barely discernable and are + + +covered by the _cupula_ . The underlying loose _connective tissue_ extends to the +wall of the bony labyrinth and contains nerve fibers with associated Schwann +cells, fibroblasts, capillaries, and other connective tissue cells. ×380. **c.** This +high-magnification view of the macula of the utricle shows _sensory epithelium_ +similar to that of the crista ampullaris. The sensory epithelium is overlaid by +the _otolithic membrane_ containing a darker stained layer of _otoconia_ (otoliths) +on its surface. ×380. (Copyright 2010 Regents of the University of Michigan. +Reprinted with permission.) + + +A gelatinous protein–polysaccharide mass, known as the **cupula**, is +attached to the hair cells of each crista (see Fig. 25.13). The cupula projects +into the lumen and is surrounded by endolymph. During rotational +movement of the head, the walls of the semicircular canal and the +membranous semicircular ducts move, but the endolymph contained within +the ducts tends to lag behind because of inertia. The cupula, projecting into +the endolymph, is swayed by the movement differential between the crista +fixed to the wall of the duct and the endolymph. Deflection of the stereocilia +in the narrow space between the hair cells and the cupula generates nerve +impulses in the associated nerve endings. + + +**The maculae of the saccule and utricle are sensors of gravity and** +**linear acceleration.** + + +The **maculae** of the saccule and utricle are innervated sensory thickenings +of the epithelium that face the endolymph of the saccule and utricle (see +Figs. 25.14 and 25.15). As in the cristae, each macula consists of **type I** and +**type II hair cells**, supporting cells, and nerve endings associated with the +hair cells. The maculae of the utricle and saccule are oriented at right angles +to each another. When a person is standing, the macula of the utricle is in a +horizontal plane and the macula of the saccule is in a vertical plane. + + +**FIGURE 25.15.** **Diagram of function and structure of the macula within** +**the utricle. a.** As shown in this drawing, the macula of the utricle (as well as +macula of the saccule) functions as a sensor for gravity and linear +acceleration. For example, when the head of the individual shown in this +diagram is tilted forward, tiny crystals of calcium carbonate called _otoconia_ +are shifted on the surface of the otolithic membrane. This movement is +detected by the underlying hair cells. **b.** The macula is composed of a +sensory epithelium containing both type I and type II hair cells. The hair cell +processes are embedded in the gelatinous polysaccharide otolithic +membrane. The luminal surface of the membrane is covered by otoconia that +are heavier than endolymph. **c.** As visible on the map below the macula, the +hair cells are polarized with respect to the striola, an imaginary plane that +curves through the center of each macula. Note that on each side of the +striola, the kinocilia of the hair cells are oriented in opposite directions facing +toward the striola (see direction of the _blue_ and _green arrows_ on the +polarization map of the utricle). This arrangement is only seen in the utricle +because in the macula of the saccule, the kinocilia of the hair cells are turned +away from the striola. + + +Hair cells are polarized with respect to the **striola**, an imaginary plane +that curves through the center of each macula (see Fig. 25.15). On each side +of the striola, the kinocilia of the hair cells are oriented in opposite +directions, facing toward the striola in the utricle and turning away from the +striola in the saccule. Owing to polarization of the hair cells, the maculae of +the saccule and utricle are sensitive to multiple directions of linear +accelerations. + + +The gelatinous polysaccharide material that overlies the maculae is +called the **otolithic membrane** (see Fig. 25.15). Its outer surface contains +3-to 5-μm crystalline bodies of calcium carbonate and a protein (Fig. 25.16). +**Otoliths**, also called **otoconia**, are heavier than endolymph. The outer +surface of the otolithic membrane lies opposite the surface in which the +stereocilia of the hair cells are embedded. The otolithic membrane moves on +the macula in a manner analogous to that by which the cupula moves on the +crista. Stereocilia of the hair cells are deflected by gravity in the stationary +individual when the otolithic membrane and its otoliths pull on the +stereocilia. They are also displaced during linear movement when the +individual is moving in a straight line and the otolithic membrane drags on +the stereocilia because of inertia. In both cases, movement of the otolithic +membrane causes the stereocilia to move toward the kinocilium, activating +MET channels. This depolarizes hair cells and generates an action potential. +Displacement of stereocilia in the opposite direction away from the +kinocilium causes hyperpolarization of hair cells and inhibits the generation +of the action potential. + + +**FIGURE 25.16.** **Scanning electron micrograph of human otoconia.** Each +otoconium has a long cylindrical body with a three-headed facet on each +end. ×5,000. + + +**The spiral organ of Corti is the sensor of sound vibrations.** + + +The **cochlear duct** divides the cochlear canal into three parallel +compartments or scalae: + + +**Scala media**, the middle compartment in the cochlear canal +**Scala vestibule** +**Scala tympani** + + +The **cochlear duct** itself is the **scala media** (Fig. 25.17). The scala +vestibuli and scala tympani are the spaces above and below, respectively, the +scala media. The scala media is an **endolymph-containing space** that is +continuous with the lumen of the saccule and contains the spiral organ of +Corti, which rests on its lower wall (see Fig. 25.17). + + +**FIGURE 25.17.** **Schematic diagram and photomicrograph of the** +**cochlear canal. a.** Cross section of the basal turn of the cochlear duct is + + +shown in the _box_ on the smaller orientation view. This view of a midmodiolar +section of the cochlea illustrates the position of the cochlear duct within the +2.75 turns of the bony cochlea. Observe that at the top of the cochlea, the +scala vestibuli and scala tympani communicate with each other at the +helicotrema. The scala media and the osseous spiral lamina divide the +cochlea into the scala vestibuli and the scala tympani, which are filled with +perilymph. The scala media (the space within the cochlear duct) is filled with +endolymph and contains the organ of Corti. **b.** This photomicrograph shows +a section of the basal turn of the cochlear canal. The osseous spiral lamina +( _OSL_ ) and its membranous continuation, the basilar membrane ( _BM_ ) as well +as the vestibular membrane ( _VM_ ) are visible. Note the location of the _scala_ +_vestibuli_, the scala media ( _SM_ ) or cochlear duct, and the _scala tympani_ . The +three walls of the scala media are formed by the basilar membrane inferiorly, +the stria vascularis ( _SV_ ) and underlying spiral ligament ( _SL_ ) laterally, and the +vestibular membrane superiorly. The spiral organ of Corti resides on the +inferior wall of the cochlear duct. Dendrites of the cochlear nerve ( _CN_ ) that +originate in the spiral ganglion ( _SG_ ) enter the spiral organ of Corti. The axons +of the spiral ganglion cells form the cochlear part of the vestibulocochlear +nerve. ×65. + + +The **scala vestibuli** and the **scala tympani** are **perilymph-** +**containing spaces** that communicate with each other at the apex of the +cochlea through a small channel called the **helicotrema** (see Fig. 25.17b). +The scala vestibuli begins at the **oval window**, and the scala tympani ends +at the **round window** . + + +**The scala media is a triangular space with its acute angle attached** +**to the modiolus.** + + +In transverse section, the **scala media** appears as a triangular space with its +most acute angle attached to a bony extension of the modiolus, the **osseous** +**spiral lamina** (see Fig. 25.17). The upper wall of the scala media, which +separates it from the scala vestibuli, is the **vestibular (Reissner)** +**membrane** (Fig. 25.18). The lateral or outer wall of the scala media is +bordered by a unique epithelium, the **stria vascularis** . It is responsible for +the production and maintenance of endolymph. The stria vascularis encloses +a complex capillary network and contains three types of cells (Fig. 25.19). +The marginal cells, primarily involved in K [+] transport, line the +endolymphatic space of the scala media. Intermediate pigment-containing +cells are scattered among capillaries. The basal cells separate stria vascularis +from the underlying spiral ligament. The lower wall or floor of the scala +media is formed by a relatively flaccid **basilar membrane** that increases in +width and decreases in stiffness as it coils from the base to apex of the + + +cochlea. The spiral organ of Corti rests on the basilar membrane and is +overlain by the **tectorial membrane** . + + +**FIGURE 25.18.** **Transmission electron micrograph of the vestibular** +**(Reissner) membrane.** Two cell types can be observed: a mesothelial cell, +which faces the scala vestibuli and is bathed by perilymph, and an epithelial +cell, which faces the scala media and is bathed by endolymph. ×8,400. + + +**FIGURE 25.19.** **Transmission electron micrograph of the stria** +**vascularis.** The apical surfaces of the marginal cells ( _M_ ) of the stria are +bathed by endolymph ( _E_ ) of the scala media. Intermediate cells ( _I_ ) are +positioned between the marginal cells and the basal cells ( _B_ ). The basal cells +separate the other cells of the stria vascularis from the spiral ligament ( _SpL_ ). +×4,700. + + +**The spiral organ of Corti is composed of hair cells, phalangeal** +**cells, and pillar cells.** + + +The **spiral organ of Corti** is a complex epithelial layer on the floor of the +scala media (Fig. 25.20 and Plate 25.2, page 1044). It is formed by the +following: + + +**FIGURE 25.20.** **Photomicrograph of the vestibular duct and spiral organ** +**of Corti.** This higher magnification photomicrograph of the cochlear duct +shows the structure of the spiral organ of Corti. Relate this structure to the +_inset_, which labels the structural features of the spiral organ. ×180. **Inset.** +Diagram of the sensory and supporting cells of the spiral organ of Corti. The +sensory cells are divided into an inner row of sensory hair cells and three +rows of outer sensory hair cells. The supporting cells are the inner and outer +pillar cells, inner and outer (Deiters) phalangeal cells, outer border cells +(Hensen cells), inner border cells, Claudius cells, and Böttcher cells. + + +**Inner hair cells** (close to the spiral lamina) and **outer hair cells** (farther +from the spiral lamina) +**Inner phalangeal (supporting) cells** and **outer phalangeal cells** +**Pillar cells** + + +Several other named cell types of unknown function are also present in +the spiral organ. + + +**The hair cells are arranged in inner and outer rows of cells.** + + +The **inner hair cells** form a single row of cells throughout all 2.75 turns of +the cochlear duct. The number of cells forming the width of the continuous +row of **outer hair cells** is variable. Three ranks of hair cells are found in +the basal part of the coil (Fig. 25.21). The width of the row gradually +increases to five ranks of cells at the apex of the cochlea. + + +**FIGURE 25.21.** **Scanning electron micrograph of the spiral organ of** +**Corti.** This electron micrograph illustrates the configuration of stereocilia on +the apical surfaces of the inner row and three outer rows of the cochlear +sensory hair cells. ×3,250. + + +**The phalangeal and pillar cells provide support for the hair cells.** + + +**Phalangeal cells** are supporting cells for both rows of hair cells. The +phalangeal cells associated with the inner hair cells surround the cells +completely (Fig. 25.22a). The phalangeal cells associated with the outer hair +cells surround only the basal portion of the hair cell completely and send +apical processes toward the endolymphatic space (Fig. 25.22b). These +processes flatten near the apical ends of the hair cells and collectively form a +complete plate surrounding each hair cell (Fig. 25.23). + + +**FIGURE 25.22.** **Electron micrograph of an inner and outer hair cell. a.** +Observe the rounded base and constricted neck of the inner hair cell. Nerve +endings ( _NE_ ) from afferent nerve fibers ( _AF_ ) to the inner hair cells are seen +basally. _IP_, inner pillar cell; _IPH_, inner phalangeal cell. ×6,300. **b.** Afferent +( _AF_ ) and efferent ( _EF_ ) nerve fiber endings on the base of an outer sensory +hair cell are evident. Outer phalangeal cells ( _OPH_ ) surround the outer hair +cells basally. Their apical projections form the apical cuticular plate ( _ACP_ ). +Note that the lateral domains in the middle third of the outer hair cells are not +surrounded by supporting cells. ×6,300. (Reprinted with permission from +Kimura RS. Sensory and accessory epithelia of the cochlea. In: Friedmann I, +Ballantyne J, eds. _Ultrastructural Atlas of the Inner Ear_ . Butterworth; 1984.) + + +**FIGURE 25.23.** **Structure of the outer phalangeal cell. a.** This scanning +electron micrograph illustrates the architecture of the outer phalangeal +(Deiters) cells. Each phalangeal cell cups the basal surface of an outer hair +cell and extends its phalangeal process apically to form an apical cuticular +plate that supports the outer sensory hair cells. ×2,400. **b.** Schematic +drawing showing the relationship of an outer phalangeal cell to an outer hair +cell. + + +The apical ends of the phalangeal cells are tightly bound to one another +and to the hair cells by elaborate tight junctions. These junctions form the +**reticular lamina** that separates the endolymphatic compartment from the +true intercellular spaces of the organ of Corti (see Figs. 25.20 and 25.22b). +The extracellular fluid in this intercellular space is **cortilymph** . Its +composition is similar to that of other extracellular fluids and to perilymph. + +**Pillar cells** have broad apical and basal surfaces that form plates and a +narrowed cytoplasm. The inner pillar cells rest on the tympanic lip of the +spiral lamina; the outer pillar cells rest on the basilar membrane. Between +them, they form a triangular tunnel, the **inner spiral tunnel** (see Fig. +25.20). + + +**The tectorial membrane extends from the spiral limbus over the** +**cells of the spiral organ of Corti.** + + +The **tectorial membrane** is attached medially to the modiolus. Its lateral +free edge projects over and attaches to the organ of Corti by the stereocilia +of the hair cells. It is formed from the radially oriented bundles of collagen +types II, V, and IX embedded in a dense amorphous ground substance. +Glycoproteins unique to the internal ear, called **otogelin** and **tectorin**, are +associated with the collagen bundles. These proteins are also present in the + + +otolithic membranes overlying the maculae of the utricle and saccule as well +as in the cupulae of the cristae in the semicircular canals. + +### **Sound Perception** + + +As described on pages 1018-1019, sound waves striking the tympanic +membrane are translated into simple mechanical vibrations. The ossicles of +the middle ear convey these vibrations to the cochlea. + + +**In the internal ear, the vibrations of the ossicles are transformed** +**into waves in the perilymph.** + + +Movement of the stapes in the oval window of the vestibule sets up +vibrations or traveling waves in the perilymph of the scala vestibuli. The +vibrations are transmitted through the vestibular membrane to the scala +media (cochlear duct), which contains endolymph, and are also propagated +to the perilymph of the scala tympani. Pressure changes in this closed +perilymphatic–endolymphatic system are reflected in movements of the +membrane that covers the round window in the base of the cochlea. + +As a result of **sound vibrations** entering the internal ear, a traveling +wave is set up in the basilar membrane (Fig. 25.24). A sound of a specified +frequency causes displacement of a relatively long segment of the basilar +membrane, but the region of maximal displacement is narrow. The point of +maximal displacement of the basilar membrane is specified for a given +frequency of sound and is the morphologic basis of frequency +discrimination. High-frequency sounds cause maximal vibration of the +basilar membrane near the base of the cochlea; low-frequency sounds cause +maximal displacement nearer the apex. Amplitude discrimination (i.e., +perception of sound intensity or loudness) depends on the degree of +displacement of the basilar membrane at any given frequency range. Thus, +coding acoustic information into nerve impulses depends on the vibratory +pattern of the basilar membrane. + + +**FIGURE 25.24.** **Schematic diagram illustrating the dynamics of the three** +**divisions of the ear.** The cochlear duct is shown here as if straightened. +Sound waves are collected and transmitted from the external ear to the +middle ear, where they are converted into mechanical vibrations. The +mechanical vibrations are then converted at the oval window into fluid +vibrations within the internal ear. Fluid vibrations cause displacement of the +basilar membrane (traveling wave) on which rest the auditory sensory hair +cells. Such displacement leads to stimulation of the hair cells and a +discharge of neural impulses from them. Note that high-frequency sounds +cause vibrations of the narrow, thick portion of the basilar membrane at the +base of the cochlea, whereas low-frequency sounds displace basilar +membrane toward the apex of the cochlea near its helicotrema. + + +**Movement of the stereocilia of the hair cells in the cochlea initiates** + +**neuronal transduction.** + + +**Hair cells** are attached through the **phalangeal cells** to the basilar +membrane, which vibrates during sound reception. The **stereocilia** of these +hair cells are, in turn, attached to the tectorial membrane, which also +vibrates. However, the **tectorial membrane** and the **basilar membrane** +are hinged at different points. Thus, a shearing effect occurs between the +basilar membrane (and the cells attached to it) and the tectorial membrane +when sound vibrations impinge on the internal ear. + +Because they are inserted into the tectorial membrane, the stereocilia of +the hair cells are the only structures that connect the basilar membrane and +its complex epithelial layer to the tectorial membrane. The shearing effect +between the basilar membrane and the tectorial membrane deflects the +stereocilia and thus the apical portion of the hair cells. This deflection +activates **MET channels** located at the tips of stereocilia and generates +action potentials that are conveyed to the brain via the **cochlear nerve** +(cochlear division of the vestibulocochlear nerve, cranial nerve VIII). + + +### **Innervation of the Internal Ear** + +**The vestibular nerve originates from the sensory receptors** +**associated with the vestibular labyrinth.** + + +The **vestibulocochlear nerve (cranial nerve VIII)** is a special sensory +nerve and is composed of two divisions: a vestibular division called the +_vestibular nerve_ and a cochlear division called the _cochlear nerve_ . The +**vestibular nerve** is associated with equilibrium and carries impulses from +the sensory receptors located within the vestibular labyrinth. The **cochlear** +**nerve** is associated with hearing and conveys impulses from the sensory +receptors within the cochlear labyrinth (Fig. 25.25). + + +**FIGURE 25.25.** **Diagram illustrating the innervation of the sensory** +**regions of the membranous labyrinth.** Note that cochlear and vestibular +nerves form the vestibulocochlear nerve (cranial nerve VIII). The cochlear +nerve carries the sound impulses from the spiral organ of Corti located within +the cochlear duct; the vestibular nerve carries balance information from the +three cristae ampullares of the semicircular canals, utricle, and saccule. The +cell bodies of these sensory fibers are located in the spiral ganglion (for +hearing) and vestibular ganglion (for equilibrium). + + +The cell bodies of the bipolar neurons of the **vestibular nerve** are +located in the **vestibular ganglion (of Scarpa)** in the internal acoustic + + +meatus. Dendritic processes of the vestibular ganglion cells originate in the +cristae ampullares of the three semicircular ducts, the macula of the utricle, +and the macula of the saccule. They synapse at the base of the vestibular +sensory hair cells, either as a chalice around a type I hair cell or as a bouton +associated with a type II hair cell. The axons of the vestibular nerve +originate from the vestibular ganglion, enter the brainstem, and terminate in +four vestibular nuclei. Some secondary neuronal fibers travel to the +cerebellum and to the nuclei of cranial nerves III, IV, and VI, which +innervate the muscles of the eye. + + +**The cochlear nerve originates from the sensory receptors of the** +**spiral organ of Corti.** + + +Neurons of the **cochlear nerve** are also bipolar, and their cell bodies are +located in the **spiral ganglion of Corti** within the modiolus. Dendritic +processes of spiral ganglion cells exit the modiolus through the small +openings in the bony spiral lamina and enter the spiral organ. +Approximately 90% of dendrites originating from the spiral ganglion cells +synapse with the inner hair cells; the remaining 10% of dendrites synapse +with the outer hair cells of the spiral ganglion. The axons of the spiral +ganglion cells form the cochlear nerve, which enters the bony cochlea +through the modiolus to appear in the internal acoustic meatus (see Fig. +25.25). From the internal acoustic meatus, the cochlear nerve enters the +brainstem and terminates in the cochlear nuclei of the medulla. Nerve fibers +from these nuclei pass to the geniculate nucleus of the thalamus and then to +the auditory cortex of the temporal lobe. + +The organ of Corti also receives a small number of efferent fibers +conveying impulses from the brain that pass parallel to the afferent nerve +fibers of the vestibulocochlear nerve (olivocochlear tract, cochlear efferents +of Rasmussen). Efferent nerve fibers from the brainstem pass through the +vestibular nerve. They synapse either on afferent endings of the inner hair +cell or on the basal aspect of an outer hair cell. Efferent fibers are thought to +affect the control of auditory and vestibular input to the central nervous +system, presumably by enhancing some afferent signals while suppressing +other signals. Damage to the organ of Corti, cochlear nerve, nerve +pathways, or auditory cortex is responsible for **sensorineural** +**hearing loss** (see Folder 25.2). + + +The sensation of rotation without equilibrium ( **dizziness**, **vertigo** ) +signifies dysfunction of the vestibular system. Causes of vertigo include + + +viral infections, certain drugs, and tumors such as **acoustic neuroma** . +Acoustic neuromas develop in or near the internal acoustic meatus and +exert pressure on the vestibular division of cranial nerve VIII or branches +of the labyrinthine artery. Vertigo can also be produced normally in +individuals by excessively stimulating the semicircular ducts. Similarly, +excessive stimulation of the utricle can produce motion sickness +(seasickness, carsickness, or airsickness) in some individuals. + +The most common vestibular disorder is **benign paroxysmal** +**positional vertigo (BPPV)** . In this condition, otoconia become +detached from the macula of the utricle and lodge in one of the three +cristae ampullares. The anatomic position of the posterior semicircular +canal (it has an opening inferior to the macula) makes it the most +common site for the detached otoconia to enter (81%–90%). The +otoconia remain either free floating within the canal ( **canalithiasis** ) or +are attached to the cupula ( **cupulolithiasis** ), causing inappropriate +movement of the stereocilia at the apical surface of the receptor hair +cells. Individuals with BPPV report episodes of an erroneous sensation +of spinning evoked by certain movements of the head. Otoconia may +detach following trauma or viral infections, but in many instances, it +occurs idiopathically. + +Some diseases of the internal ear affect both hearing and +equilibrium. For example, people with **Ménière disease** initially +complain of episodes of dizziness and tinnitus (ringing in the ears) and +later develop low-frequency hearing loss. The causes of Ménière +disease are related to blockage of the cochlear aqueduct, which drains +excess endolymph from the membranous labyrinth. Blockage of this +duct causes an increase in endolymphatic pressure and distension of +the membranous labyrinth (endolymphatic hydrops). + +### **Blood Vessels of the Membranous Labyrinth** + + +**Arterial blood is supplied to the membranous labyrinth by the** +**labyrinthine artery; venous blood drainage is to the venous dural** +**sinuses.** + + +The blood supply to the external ear, middle ear, and bony labyrinth of the +internal ear is from vessels associated with the external carotid arteries. The +**arterial blood supply** to tissues of the membranous labyrinth of the +internal ear is from the intracranial **labyrinthine artery**, a common branch +of the anterior inferior cerebellar or basilar artery. The labyrinthine artery is +a terminal artery: It has no anastomoses with other surrounding arteries. +Branches of this artery are exactly parallel to the distribution of the superior +and inferior parts of the vestibular nerve. + + +**Venous drainage** from the cochlear labyrinth is via the posterior and +anterior spiral modiolar veins that form the **common modiolar vein** . The +common modiolar vein and the vestibulocochlear vein form the vein of the +cochlear aqueduct, which empties into the inferior petrosal sinus. Venous +drainage from the vestibular labyrinth is via **vestibular veins** that join the +vein of the cochlear aqueduct and by the vein of vestibular aqueduct, which +drains into the sigmoid sinus. + +## EAR + + +**OVERVIEW OF THE EAR** + + +The **ear** is a paired specialized sensory organ that is responsible for +sound perception and balance. +Tissues of the ear are derived from **surface ectoderm** (epithelia lining +of the membranous labyrinth) and components of the **first pharyngeal** +**pouch** (auditory tube and middle ear cavity), **first pharyngeal** +**groove** (external acoustic meatus), **first pharyngeal arch** (malleus, +incus, and anterior part of the auricle), and **second pharyngeal arch** +(stapes and posterior part of the auricle). + + +**EXTERNAL EAR** + + +The **auricle** is the external component of the ear that collects and +amplifies sound. +The **external acoustic meatus** extends from the auricle to the + +tympanic membrane. It is lined by skin that contains hair follicles as +well as sebaceous and ceruminous glands (which produce **cerumen**, or +**earwax** ). + + +**MIDDLE EAR** + + +The **middle ear** is an air-filled space lined by a mucous membrane that +contains three **auditory ossicles** (malleus, incus, and stapes). It is +separated from the external acoustic meatus by the tympanic membrane +and is connected by the **auditory (Eustachian) tube** to the +nasopharynx. +The middle ear **amplifies mechanical forces** generated by the +vibration of the tympanic membrane. +The **tympanic membrane** is composed of skin of the external +auditory meatus, a thin core of connective tissue, and mucous +membrane of the middle ear. + +The auditory ossicles ( **malleus**, **incus**, and **stapes** ) cross the space of +the middle ear in series and connect the tympanic membrane to the oval +window. Movement of the ossicles is modulated by the **tensor** +**tympani muscle** that inserts to the malleus and the **stapedius** +**muscle** that inserts to the stapes. + + +**COMPARTMENTS OF THE INTERNAL EAR** + + +The **internal ear** consists of two compartments within the temporal +bone: the **bony labyrinth** and the **membranous labyrinth**, which is +contained within the bony labyrinth. +The internal ear has three fluid-filled spaces: the **endolymphatic** +**space** within the membranous labyrinth (which has a high K [+] and a +low Na [+] concentration), the **perilymphatic space** between the wall of +the bony and membranous labyrinth (which has a low K [+] and a high +Na [+] concentration), and the **cortilymphatic space** that lies within the +tunnels of the organ of Corti of the cochlea. +The **bony labyrinth** consists of three connected spaces: **semicircular** +**canals**, **vestibule**, and **cochlea**, each containing different parts of the +membranous labyrinth. +The **membranous labyrinth** consists of a series of communicating +sacs ( **utricle**, **saccule**, and endolymphatic sac) and ducts ( **three** +**semicircular** **ducts**, **cochlear** **duct**, utriculosaccular duct, +endolymphatic duct, and ductus reuniens) that contain **endolymph** . + + +**SENSORY RECEPTORS OF THE MEMBRANOUS** + +**LABYRINTH** + + +Specialized sensory cells are located in six regions in the membranous +labyrinth: three **cristae ampullares** in the ampullae of the + + +semicircular ducts (receptors for angular acceleration of the head), two +**maculae** in the utricle and saccule (receptors for position of the head +and its linear movements), and the **spiral organ of Corti** (receptors +for sound). +Utricle and saccule maculae contain **hair cells** that are epithelial +mechanoreceptors. These hair cells contain **hair bundles** on their +apical surfaces (formed by rows of stereocilia with a single kinocilium) +and are overlaid with a gelatin-like **otolithic membrane** that contains +otoliths (otoconia). +Movement of the **otoliths** is detected by the hair bundles, which +activate **mechanically gated ion channels** to generate an action +potential. +Sensory receptors in the **crista ampullaris** are also covered by a +gelatin-like mass without otoliths called the **cupula** . The cupula is +deflected during the flow of endolymph through the semicircular canal. +Movement of the cupula stimulates **mechanically gated ion** +**channels** to generate an action potential. +The **cochlear canal** is divided into three parallel compartments: **scala** +**media** or **cochlear duct** (the middle compartment filled with +endolymph that contains the spiral organ of Corti), **scala vestibuli**, +and **scala tympani** (both containing perilymph). +The **scala media** is a triangular space with its lower wall forming the +**basilar membrane** on which the spiral organ of Corti resides. The +upper wall ( **vestibular membrane** ) separates the scala media from +scala vestibuli, and the lateral wall contains the **stria vascularis** that +produces endolymph. +The **spiral organ of Corti** is composed of **hair cells** (arranged in +inner and outer rows), supportive **phalangeal cells**, and **pillar cells** . +Movement of the stereocilia on hair cells during interaction with the +overlying **tectorial membrane** generates electrical impulses that are +transmitted to the cochlear nerve. +**Sound waves** are transmitted from the vibrating tympanic membrane +by the ossicles to the oval window, where they produce movement +(waves) of the perilymph in the scala vestibule. This movement deflects +the basilar membrane and spiral organ of Corti to generate electrical +nerve impulses, which are perceived by the brain as sounds. +Nerve impulses from the cristae ampullares and maculae travel with the +**vestibular nerve**, and the impulses from the spiral organ of Corti +travel with the **cochlear nerve** . These two nerves join together in the +internal acoustic meatus to form the **vestibulocochlear nerve** + +**(cranial nerve VIII)** . + + +##### Internal ear, ear, guinea pig, hematoxylin and +###### eosin (H&E) ×20. + +In this section through the **internal ear**, bone surrounds the +entire internal ear cavity. Because of its labyrinthine character, +sections of the internal ear appear as a number of separate +chambers and ducts. However, these structures are all +interconnected (except for the perilymphatic and endolymphatic +spaces, which remain separate). The largest chamber is the **vestibule** ( _V_ ). The left +side of this chamber ( _black arrow_ ) leads into the **cochlea** ( _C_ ). Just below the _black_ +_arrow_ and to the right is the oval ligament ( _OL_ ) surrounding the base of the stapes +( _S_ ). Both structures have been cut obliquely and are not seen in their entirety. The +facial nerve ( _FN_ ) is in an osseous tunnel to the left of the oval ligament. The +communication of the vestibule with one of the semicircular canals is marked by the +_white arrow_ . Note the crista ampullaris ( _CA_ ) that is projecting into the lumen of the +semicircular canal. At the _upper right_ are cross sections of the membranous labyrinth +passing through components of the semicircular duct system ( _DS_ ). + + +The cochlea is a spiral, cone-shaped structure. The specimen illustrated here +makes 3½ turns (in humans, there are 2¾ turns). The section goes through the central +axis of the cochlea. This consists of a bony stem called the **modiolus** ( _M_ ). It +contains the beginning of the cochlear nerve ( _CN_ ) and the spiral ganglion ( _SG_ ). +Because of the plane of section and the spiral arrangement of the cochlear tunnel, the +tunnel is cut crosswise in seven places (note 3½ turns). A more detailed examination +of the cochlea and the organ of Corti is provided in Plate 25.2 (page 1044). + + +##### Semicircular canal, ear, guinea pig, H&E ×85; +###### inset ×380. + +A higher magnification of one of the semicircular canals and +of the **crista ampullaris** ( _CA_ ) within the canal seen in the +_lower right_ corner of the previous figure is provided here. The +receptor for movement, the crista ampullaris (note its relationships +in the previous figure), is present in each of the semicircular +canals. The epithelial ( _EP_ ) surface of the crista consists of two cell types, supporting +cells and receptor hair cells. (Two types of hair cells are distinguished with the +electron microscope.) It is difficult to identify the hair and supporting cells on the +basis of specific characteristics; they can, however, be distinguished on the basis of +location (see _inset_ ), as the **hair cells** ( _HC_ ) are situated in a more superficial +location than the supporting cells ( _SC_ ). A gelatinous mass, the cupula ( _Cu_ ), +surmounts the epithelium of the crista ampullaris. Each receptor cell sends a hair-like +projection deep into the substance of the cupula. + + +The epithelium rests on a loose, cellular connective tissue ( _CT_ ) that also contains +the nerve fibers associated with the receptor cells. The nerve fibers are difficult to +identify because they are not organized into a discrete bundle. + + +**C,** cochlea +**CA,** crista ampullaris +**CN,** cochlear nerve +**CT,** connective tissue +**Cu,** cupula +**DS,** duct system (of membranous labyrinth) +**EP,** epithelium +**FN,** facial nerve +**HC,** hair cell +**M,** modiolus +**OL,** oval ligament +**S,** stapes +**SC,** supporting cell +**SG,** spiral ganglion +**V,** vestibule +**black arrow,** entry to cochlea +**white arrow,** entry to semicircular canal + + +##### Cochlear canal, ear, guinea pig, hematoxylin and +###### eosin (H&E) ×65; inset ×380. + +A section through one of the turns of the cochlea is shown +here. The most important functional component of the cochlea is +the organ of Corti, enclosed by the _rectangle_ and shown at higher +magnification in the next figure. Other structures are included in +this figure. The spiral ligament ( _SL_ ) is a thickening of the +periosteum on the outer part of the tunnel. Two membranes, the basilar membrane +( _BM_ ) and the vestibular membrane ( _VM_ ), join with the spiral ligament and divide the +cochlear tunnel into three parallel canals, namely, the **scala vestibuli** ( _SV_ ), the +**scala tympani** ( _ST_ ), and the **cochlear duct** ( _CD_ ). Both the scala vestibuli and +the scala tympani are perilymphatic spaces; these communicate at the apex of the +cochlea. The cochlear duct is the space of the membranous labyrinth and is filled +with endolymph. It is thought that the endolymph is formed by the portion of the +spiral ligament that faces the cochlear duct, the stria vascularis ( _StV_ ). This is highly +vascularized and contains specialized “secretory” cells. + + +A shelf of bone, the osseous spiral lamina ( _OSL_ ), extends from the modiolus to +the basilar membrane. Branches of the cochlear nerve ( _CN_ ) travel along the spiral +lamina to the modiolus, where the main trunk of the nerve is formed. The +components of the cochlear nerve are bipolar neurons whose cell bodies constitute +the spiral ganglion ( _SG_ ). These cell bodies are shown at higher magnification in the +_inset_ ( _upper right_ ). The spiral lamina supports an elevation of cells, the limbus +spiralis ( _LS_ ). The surface of the limbus is composed of columnar cells. + + +##### Organ of Corti, ear, guinea pig, H&E ×180; inset +###### ×380. + +The cross section of the **cochlear canal** ( _CD_ ) visible in this +image appears as a triangular space. The upper wall (roof) of this +canal is formed by the vestibular membrane ( _VM_ ) that separates it +from the scala vestibuli ( _SV_ ). The lateral (outer) wall of the +cochlear canal is bordered the stria vascularis ( _StV_ ) and underlying +spiral ligament ( _SL_ ). The lower wall (or floor) is formed by the basilar membrane, an +extension of the osseous spiral lamina with visible branches of the cochlear nerve +( _CN_ ). The basilar membrane supports the spiral **organ of Corti** . The components +of the organ of Corti, beginning at the limbus spiralis ( _LS_ ), are as follows: inner +border cells ( _IBC_ ), inner phalangeal and hair cells ( _IP&HC_ ), and inner pillar cells +( _IPC_ ). The sequence continues, repeating itself in reverse as follows: outer pillar +cells ( _OPC_ ), hair cells ( _HC_ ) and outer phalangeal cells ( _OP_ ), and outer border cells +or cells of Hensen ( _CH_ ). Hair cells are receptor cells; the other cells are collectively +referred to as _supporting cells_ . The hair and outer phalangeal cells can be +distinguished in this figure by their location (see _inset_ ) and because their nuclei are +well aligned. Because the hair cells rest on the phalangeal cells, it can be concluded +that the upper three nuclei belong to outer hair cells, whereas the lower three nuclei +belong to outer phalangeal cells. + + +The supporting cells extend from the basilar membrane ( _BM_ ) to the surface of +the organ of Corti (this is not evident here but can be seen in the _inset_ ), where they +form a reticular membrane ( _RM_ ). The free surface of the receptor cells fits into +openings in the reticular membrane, and the “hairs” of these cells project toward, and +make contact with, the tectorial membrane ( _TM_ ). The latter is a cuticular extension +from the columnar cells of the limbus spiralis. In ideal preparations, nerve fibers can +be traced from the hair cells to the cochlear nerve ( _CN_ ). + + +In their course from the basilar membrane to the reticular membrane, groups of +supporting cells are separated from other groups by spaces that form spiral tunnels. +These tunnels are named the inner tunnel ( _IT_ ), the outer tunnel ( _OT_ ), and the internal +spiral tunnel ( _IST_ ). Beyond the supporting cells are two additional groups of cells, +the cells of Claudius ( _CC_ ) and the cells of Böttcher ( _CB_ ). + + +**BM,** basilar membrane +**CB,** cells of Böttcher +**CC,** cells of Claudius +**CD,** cochlear duct +**CH,** cells of Hensen +**CN,** cochlear nerve +**HC,** hair cells + + +**IBC,** inner border cells +**IPC,** inner pillar cells +**IP&HC,** inner phalangeal and hair cells +**IST,** internal spiral tunnel +**IT,** inner tunnel +**LS,** limbus spiralis +**OP,** outer phalangeal cells +**OPC,** outer pillar cells +**OSL,** osseous spiral lamina +**OT,** outer tunnel +**RM,** reticular membrane +**SG,** spiral ganglion +**SL,** spiral ligament +**ST,** scala tympani +**StV,** stria vascularis +**SV,** scala vestibule +**TM,** tectorial membrane +**VM,** vestibular membrane + + diff --git a/content/Anatomi & Histologi 2/Öra histologi/25 Ear.pdf b/content/Anatomi & Histologi 2/Öra histologi/25 Ear.pdf new file mode 100644 index 0000000..eb3be38 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öra histologi/25 Ear.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:77713a0a111f2d52efd5f12aa0960ec033d9f8f87ff34ed43362fcb5f34f21bb +size 3798708 diff --git a/content/Anatomi & Histologi 2/Öra histologi/Slides.pdf.pdf b/content/Anatomi & Histologi 2/Öra histologi/Slides.pdf.pdf new file mode 100644 index 0000000..ac2523a --- /dev/null +++ b/content/Anatomi & Histologi 2/Öra histologi/Slides.pdf.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:244d1786570f25ab6c80317de0ba98fd23e588c964922cb831b48cb4bbe5963e +size 10205052 diff --git a/content/Anatomi & Histologi 2/Öra histologi/Ögat histologi handout.pptx b/content/Anatomi & Histologi 2/Öra histologi/Ögat histologi handout.pptx new file mode 100644 index 0000000..9466cd2 --- /dev/null +++ b/content/Anatomi & Histologi 2/Öra histologi/Ögat histologi handout.pptx @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c3f2fbb9fe63df5fd5b24a7d7a12e670918402cee719ec327493b525cbef955c +size 31265162