vault backup: 2026-01-19 14:08:41
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 5m15s
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 5m15s
This commit is contained in:
@@ -0,0 +1,557 @@
|
||||
# Nervcellsfysiologi HT25.pdf
|
||||
|
||||
**OCR Transcript**
|
||||
|
||||
- Pages: 32
|
||||
- OCR Engine: pymupdf
|
||||
- Quality Score: 1.00
|
||||
|
||||
---
|
||||
|
||||
## Page 1
|
||||
|
||||
Nervcellsfysiologi
|
||||
Textbooks:
|
||||
Bear kap:2-6
|
||||
Purves kap:2-8
|
||||
Block 1
|
||||
Nervcellsfysiologi
|
||||
Eric Hanse
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 2
|
||||
|
||||
Action potentials ”in action”
|
||||
www.sciencemag.org SCIENCE VOL 338 5 OCTOBER 2012
|
||||
Functional cell assemblies,
|
||||
or engrams
|
||||
The withdrawal reflex
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 3
|
||||
|
||||
Excitability
|
||||
– the likelihood of evoking action potentials
|
||||
-90
|
||||
-70
|
||||
+60
|
||||
Membrane
|
||||
potential (mV)
|
||||
10 ms
|
||||
Threshold
|
||||
0
|
||||
Excitation
|
||||
Inhibition
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 4
|
||||
|
||||
Synaptic and Intrinsic Excitability
|
||||
Synaptic
|
||||
excitation
|
||||
+
|
||||
Intrinsic
|
||||
Excitation
|
||||
+
|
||||
Intrinsic
|
||||
inhibition
|
||||
Synaptic
|
||||
inhibtion
|
||||
Glutamate
|
||||
synapses
|
||||
GABA
|
||||
synapses
|
||||
Na channels
|
||||
Ca channels
|
||||
Extrasynaptic GluRs
|
||||
K channels
|
||||
Cl channels
|
||||
Extrasyn GABARs
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 5
|
||||
|
||||
Modulation and Plasticity of Excitability
|
||||
Pl
|
||||
M d
|
||||
Pl
|
||||
M d
|
||||
Pl
|
||||
M d
|
||||
Pl
|
||||
M d
|
||||
Synap
|
||||
excitat
|
||||
Intrin
|
||||
Excitat
|
||||
Intrins
|
||||
inhibiti
|
||||
Synapt
|
||||
inhibtio
|
||||
Plasticity – based on neuronal activity - aims to create / erase engrams
|
||||
Modulation – based on realease of modulatory neurotransmitters –
|
||||
modulate the accessability of engrams
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 6
|
||||
|
||||
Electrophysiology – different levels of reductionism
|
||||
Single protein
|
||||
Single synapse
|
||||
Single cell
|
||||
Cell assemblies
|
||||
Isolated cells
|
||||
Cell cultures
|
||||
Brain slices
|
||||
In vivo
|
||||
Patch-clamp recordings
|
||||
Extracellular recordings
|
||||
Network oscillations
|
||||
Brain organoids
|
||||
Optical recordings
|
||||
Multielectrode array
|
||||
recordings
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 7
|
||||
|
||||
Membrane potential
|
||||
Na/K-pump &
|
||||
Transporters
|
||||
Equilibrium
|
||||
potentials
|
||||
Membrane
|
||||
potential
|
||||
Selective
|
||||
permeability
|
||||
Ion
|
||||
channels
|
||||
Concentration
|
||||
gradients
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 8
|
||||
|
||||
Pumps, concentration differences and
|
||||
equilibrium potential
|
||||
Nernst equation
|
||||
Ejon = 2.303 (RT/zF) log([jon]u/[jon]i)
|
||||
Ejon = 61.54 log([jon]u/[jon]i)
|
||||
Ion concentrations in human cerebrospinal fluid and serum (in mM)
|
||||
|
||||
Cerebrospinal fluid
|
||||
Serum
|
||||
Correlation
|
||||
K+
|
||||
2.9
|
||||
4.2
|
||||
No
|
||||
Na+
|
||||
147
|
||||
140
|
||||
Yes
|
||||
Cl-
|
||||
125
|
||||
100
|
||||
No
|
||||
Ca2+ Total
|
||||
1.2
|
||||
2.4
|
||||
Yes
|
||||
Ca2+ Free
|
||||
1.0
|
||||
1.2
|
||||
|
||||
Mg2+ Total
|
||||
1.2
|
||||
0.8
|
||||
No
|
||||
Mg2+ Free
|
||||
1.0
|
||||
0.5
|
||||
|
||||
Lyckenvik et al (2025) Brain Commun 24:fcaf201
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 9
|
||||
|
||||
Ion channels
|
||||
Gating
|
||||
Selectivity
|
||||
Voltage
|
||||
Ligand
|
||||
Ca2+,
|
||||
cAMP,
|
||||
cGMP
|
||||
Temp
|
||||
Mech
|
||||
H+
|
||||
“leak”
|
||||
Na
|
||||
K
|
||||
N/K
|
||||
N/K/Ca
|
||||
Ca2+
|
||||
Cl/HCO3
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 10
|
||||
|
||||
Leak channels
|
||||
Trends in Pharmacological Sciences (2008) 29:11
|
||||
The resting permeability
|
||||
for K+ is much higher
|
||||
than for Na+, but the
|
||||
driving force (at resting
|
||||
membrane potential) is
|
||||
much higher for Na+ than
|
||||
for K+. The resultant
|
||||
currents for K+ and Na+
|
||||
are therefore equal
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 11
|
||||
|
||||
Membrane potential
|
||||
-90
|
||||
-70
|
||||
+60
|
||||
Vm (mV)
|
||||
10 ms
|
||||
Threshold
|
||||
0
|
||||
Excitation
|
||||
Inhibition
|
||||
EK
|
||||
ECl
|
||||
ENa
|
||||
Depol
|
||||
Hyperpol
|
||||
RMP
|
||||
Glu
|
||||
GABA
|
||||
Vm = 61.54 mV log
|
||||
PK [K+]u + PNa[Na+]u
|
||||
PK [K+]i + PNa[Na+]i
|
||||
The Goldman equation
|
||||
Repol
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 12
|
||||
|
||||
Action potential – ”all-or-none”
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 13
|
||||
|
||||
Propagation of the action potential
|
||||
Myelin
|
||||
Diameter
|
||||
Temperatur
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 14
|
||||
|
||||
Extracellular recording of action potentials
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 15
|
||||
|
||||
Refractory period following the action
|
||||
potential
|
||||
Absolute refractory period = Voltage-gated Na+-channels
|
||||
are inactivated, making a new action potential impossible.
|
||||
Relative refractory period = Voltage-gated Na+-channels de-
|
||||
inactivates during this period and the membrane potential is
|
||||
hyperpolarized. A stronger than normal depol is required to
|
||||
evoke an action potential.
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 16
|
||||
|
||||
Optical recording of the action potential
|
||||
Hochbaum et al (2014) All-optical electrophysiology in mammalian neurons using
|
||||
engineered microbial rhodopsins Nature Methods 11: 825-833
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 17
|
||||
|
||||
Synaptic excitation and inhibition
|
||||
Synaptic
|
||||
excitation
|
||||
+
|
||||
Synaptic
|
||||
inhibtion
|
||||
AMPAR
|
||||
NMDAR
|
||||
Excitatory synapse
|
||||
”Modulatory Rec”
|
||||
Inhibitory synapse
|
||||
(GABA)
|
||||
”Modulatory Rec”
|
||||
GABAAR
|
||||
GABABR
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 18
|
||||
|
||||
Glu and GABA synapses
|
||||
Input →
|
||||
Output →
|
||||
Cortical pyramidal cell:
|
||||
ca. 30000 Glutamate synapses (90%)
|
||||
ca. 2000 GABA synapses (10%)
|
||||
Megías, Emri, Freund & Gulyás (2001) Neuroscience 102:527
|
||||
Kasthuri et al (2015) Saturated reconstruction of a
|
||||
volume of neocortex Cell 162: 648661
|
||||
1 µm
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 19
|
||||
|
||||
Presynaptic release of transmitter vesicle
|
||||
SNARE-mediated exocytosis
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 20
|
||||
|
||||
Glutamate uptake in astrocytes
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 21
|
||||
|
||||
Synapses are usually small and unreliable, but
|
||||
many (and plastic)
|
||||
3 quantal parameters determine the signalling
|
||||
strength of a synaptic connection
|
||||
Synaptic strength = n x p x q
|
||||
n = no. of release sites
|
||||
p = release probability
|
||||
The probability that an action potential will cause the release of one vesicle
|
||||
q = quantal size
|
||||
The magnitude of the postsynaptic response to one vesicle
|
||||
2 ms
|
||||
10 pA
|
||||
Recording from one synapse
|
||||
1 µm
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 22
|
||||
|
||||
1. The AMPA receptor channel:
|
||||
-opened by glutamate
|
||||
-permeates Na+ and K+
|
||||
-gives rise to a brief (ca. 10 ms) EPSP
|
||||
2. The NMDA receptor channel:
|
||||
-opened by glutamate (and Gly/D-Ser) + depol
|
||||
-permeates Na+, K+ and Ca2+
|
||||
- gives rise to a brief long-lasting (ca. 100 ms) EPSP
|
||||
-is necessary for the induction of synaptic plasticity; Long-
|
||||
term potentiation (LTP) och long-term depression (LTD).
|
||||
3. Metabotropic glutamate receptors (mGluRs) are G-
|
||||
protein coupled receptors that, for example, can give rise
|
||||
to Ca2+ release from ER and facilitate synaptic plasticity.
|
||||
The Glutamate synapse
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 23
|
||||
|
||||
The GABA synapse
|
||||
GABAA Rec
|
||||
GABAB Rec
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 24
|
||||
|
||||
The i.c. Cl- concentration determines the
|
||||
response of the GABAA receptor channels
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 25
|
||||
|
||||
Intrinsic
|
||||
Excitation
|
||||
+
|
||||
Intrinsic
|
||||
inhibition
|
||||
Intrinsic excitability – all ion channels of the neuron,
|
||||
except the ligand-gated in the synapses
|
||||
From Hille ”Ion channels in excitable membranes”
|
||||
E.c. Calcium
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 26
|
||||
|
||||
Families of voltage-gated Na+, Ca2+ and K+
|
||||
channels
|
||||
Voltage-gated K-channels
|
||||
Neuron, Volume 85, Issue 2, 2015, 238 - 256
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 27
|
||||
|
||||
Regulation of action potential frequency –
|
||||
AfterHyperPolarisation (AHP) and gKca2+
|
||||
Nicoll, RA
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 28
|
||||
|
||||
Different firing patterns because of differences
|
||||
in intrinsic excitability
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 29
|
||||
|
||||
Modulation and Plasticity of Excitability
|
||||
Pla
|
||||
Modu
|
||||
Pla
|
||||
Modu
|
||||
Pla
|
||||
Modu
|
||||
Pla
|
||||
Modu
|
||||
Synaptic
|
||||
excitation
|
||||
+
|
||||
Intrinsic
|
||||
Excitation
|
||||
+
|
||||
Intrinsic
|
||||
inhibition
|
||||
Synaptic
|
||||
inhibtion
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 30
|
||||
|
||||
Neuromodulation
|
||||
Co-transmitters
|
||||
”Classical”
|
||||
ACh, NA, 5-HT,
|
||||
Histamin, DA
|
||||
Co-transmitters
|
||||
Peptides
|
||||
Orexin, Galanin,
|
||||
Endorphin, CCK, VIP,
|
||||
Oxytocin…
|
||||
Retrograde
|
||||
transmitters
|
||||
endocannabinoids,
|
||||
NO, neurotrophins
|
||||
Hormones
|
||||
Cortisol, Estrogen,
|
||||
Progersteron,
|
||||
Ghrelin, Insulin
|
||||
Vasopressin, AF…
|
||||
Gliotransmitters
|
||||
Glu
|
||||
ATP → Adenosine
|
||||
D-serine, Taurine
|
||||
Lactate
|
||||
Neurotransmitters
|
||||
Glu via mGluRs
|
||||
GABA via GABABRs
|
||||
Cytokines, Chemokines
|
||||
TNFα
|
||||
IL-1β….
|
||||
Modulate:
|
||||
*Release probability
|
||||
*Intrinsic excitability
|
||||
*Plasticity
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 31
|
||||
|
||||
Modulation and Plasticity of Excitability
|
||||
Pla
|
||||
Modu
|
||||
Pla
|
||||
Modu
|
||||
Pla
|
||||
Modu
|
||||
Pla
|
||||
Modu
|
||||
Synaptic
|
||||
excitation
|
||||
+
|
||||
Intrinsic
|
||||
Excitation
|
||||
+
|
||||
Intrinsic
|
||||
inhibition
|
||||
Synaptic
|
||||
inhibtion
|
||||
|
||||
|
||||
---
|
||||
|
||||
## Page 32
|
||||
|
||||
Long-term synaptic plasticity (min – years); LTP
|
||||
and LTD
|
||||
|
||||
|
||||
---
|
||||
|
||||
Reference in New Issue
Block a user