vault backup: 2025-12-14 22:45:45
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m13s
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m13s
This commit is contained in:
435
anki_import.csv
Normal file
435
anki_import.csv
Normal file
@@ -0,0 +1,435 @@
|
||||
#deck column:3
|
||||
Describe L1/2 in terms of receptor and ligand binding.;L₁/₂ är den ligandkoncentration som ger 50 % receptorockupation, den speglar bindningsaffiniteten mellan ligand och receptor.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Explain the basic structure of myoglobin including the porphyrin ring and Fe.;Myoglobin är en monomerisk polypeptid med en heme-grupp, heme består av en porfyrinring med fyra pyrrolringar och en Fe²⁺-jon i centrum som binder O₂.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
What are proximal and distal histidine? How do they interact with the heme molecule?;Proximal histidin binder direkt till Fe²⁺ i heme, distal histidin stabiliserar bundet O₂ via vätebindning.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
How does O₂ bind to myoglobin? Compare with carbon monoxide (CO).;O₂ binder snett till Fe²⁺ och stabiliseras av distal histidin, CO binder linjärt till Fe²⁺ med mycket högre affinitet.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Explain the basic structure of hemoglobin and its structural states.;Hemoglobin är ett tetramert protein (α₂β₂) med fyra heme-grupper, det finns i T-state (låg O₂-affinitet) och R-state (hög O₂-affinitet).;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
What is cooperative binding? Describe in the context of hemoglobin.;Kooperativ bindning innebär att inbindning av en O₂-molekyl ökar affiniteten för nästa, i Hb sker detta via T→R-övergång.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Compare the dissociation curves of myoglobin and hemoglobin. What does this mean for O₂ transport?;Myoglobin har hyperbolisk kurva (hög affinitet), hemoglobin har sigmoidal kurva vilket möjliggör effektiv O₂-upptag i lungor och frisättning i vävnad.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Define an allosteric regulator.;En molekyl som binder till ett protein på annan plats än aktiva sätet och ändrar dess funktion eller affinitet.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
How is hemoglobin affected by CO, CO₂, H⁺, and 2,3-BPG?;CO binder heme starkt → blockerar O₂-bindning, CO₂ och H⁺ binder till globindelen → stabiliserar T-state, 2,3-BPG binder mellan β-kedjor → sänker O₂-affinitet.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Define Bohr effect and explain how it influences oxygen binding.;Bohr-effekten är att ökat H⁺/CO₂ minskar Hb:s O₂-affinitet, vilket underlättar syrefrisättning i vävnader.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
How does fetal hemoglobin (HbF) differ from adult hemoglobin (HbA) and what effect does this have?;HbF har γ-kedjor istället för β-kedjor, binder 2,3-BPG svagare och har därför högre O₂-affinitet.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Explain the molecular and structural background of sickle-cell disease.;En punktmutation i β-globin (Glu→Val) ger hydrofoba interaktioner, Hb-polymerisering vid låg O₂ och sickelformade erytrocyter.;Biokemi::Johan D - Instuderingsfrågor::Hemoglobin
|
||||
Redogör för nomenklaturen för fettsyror.;Antal kolatomer:antal dubbelbindningar (t.ex. 18:1), dubbelbindningars position anges från karboxyländen (Δ) eller metyländen (ω).;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Vad betyder det att en fettsyra är en omegafettsyra?;Den klassificeras efter positionen för första dubbelbindningen räknat från metyländen (ω-änden).;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
I vilken form lagras fett i adipocyter?;Som triacylglyceroler i lipiddroppar.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Varför bildas ett tvåfas-system av olja och vatten?;På grund av hydrofoba interaktioner, opolära lipider blandar sig inte med polärt vatten.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
a) kedjelängden?;Kortare kedjor ger högre fluiditet.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
b) antalet dubbelbindningar?;Fler dubbelbindningar ger högre fluiditet.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
c) typ av dubbelbindning?;Cis ökar fluiditet, trans ger mer packning och lägre fluiditet.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Vilken typ av dubbelbindningar bildar människans celler?;Endast cis-dubbelbindningar.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Rita strukturen för kolesterol.;Steroidkärna med fyra sammanfogade ringar, en OH-grupp och en kolvätesvans.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Rita den principiella strukturen för triacylglycerol.;Glycerolryggrad med tre fettsyror bundna via esterbindningar.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Rita den principiella strukturen för fosfolipider.;Glycerol med två fettsyror och en fosfatgrupp med polär huvudgrupp.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Rita den principiella strukturen för glykolipider.;Lipidryggrad med fettsyror och en eller flera kolhydrater som huvudgrupp.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Ange hydrofil och hydrofob del hos amfipatiska lipider.;Kolesterol: OH = hydrofil, ringsystem/svans = hydrofob. Fosfolipider: fosfat-huvud = hydrofil, fettsyror = hydrofoba. Glykolipider: kolhydrat = hydrofil, fettsyror = hydrofoba.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Varför bildar fria fettsyror miceller medan fosfo- och glykolipider bildar dubbelskikt?;Fettsyror har en hydrofob svans → miceller, fosfo-/glykolipider har två svansar → stabilt dubbelskikt.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
a) Fettsyror från födan till celler?;Kylomikroner.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
b) Kolesterol från födan till levern?;Kylomikronrester.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
c) Fettsyror från levern till övriga celler?;VLDL.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
d) Kolesterol till celler med rätt receptor?;LDL.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
e) Kolesterol från celler till levern?;HDL.;Biokemi::Johan D - Instuderingsfrågor::Lipider
|
||||
Kolhydrater kan klassificeras som ketoser eller aldoser. Vad innebär detta?;Aldoser har en aldehydgrupp (–CHO) ytterst i kedjan, ketoser har en ketongrupp (C=O) inne i kolkedjan.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad är en Fischer-projektion?;En 2D-representation av stereokemi där kolkedjan ritas vertikalt och horisontella bindningar pekar ut ur planet.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad är en Haworth-projektion?;En ringformad 2D-representation av cykliska kolhydrater som visar α- och β-anomerer.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
En cyklisk kolhydrat är antingen i α- eller β-form. Vad innebär detta?;Det beskriver orienteringen av OH på det anomera kolet relativt CH₂OH, samma sida = β, motsatt = α.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad är en glykosidbindning?;En kovalent bindning mellan det anomera kolet i en monosackarid och en OH- eller NH-grupp.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Beskriv skillnader och likheter mellan glukos, N-acetylglukosamin och sialinsyra.;Alla är monosackarider, N-acetylglukosamin har en acetamidgrupp och sialinsyra är negativt laddad och mer komplex.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Glukos lagras hos människa i form av glykogen. Hur är glykogen uppbyggt?;En starkt förgrenad polymer av glukos med α(1→4)-bindningar och α(1→6)-förgreningar.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Hos växter lagras glukos som stärkelse. Skillnader och likheter med glykogen?;Stärkelse består av amylose och amylopektin, mindre förgrenat än glykogen men samma bindningstyper.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Varför kan människor inte tillgodogöra sig glukos från cellulosa?;Cellulosa har β(1→4)-bindningar som människan saknar enzym (cellulas) för att bryta.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Tre skäl till att tre monosackarider kan bära mer information än en tripeptid.;Fler bindningspositioner, α/β-anomerer och möjlighet till förgrening.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad innebär laktosintolerans?;Brist på enzymet laktas → laktos spjälkas ej, fermenteras i tjocktarmen och ger GI-symtom.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad innebär galaktosemi?;Enzymdefekt i galaktosmetabolismen som leder till ansamling av galaktos/galaktos-1-fosfat.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad är:;Långa, linjära polysackarider av upprepade disackarider, ofta negativt laddade.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
b) proteoglykan?;Protein med kovalent bundna glykosaminoglykaner.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
c) glykoprotein?;Protein med korta, förgrenade kolhydratkedjor.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
d) glykolipid?;Lipid med kovalent bunden kolhydrat, ofta i cellmembran.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Skillnader och likheter mellan proteoglykaner och glykoproteiner.;Båda är protein–kolhydrat-komplex, proteoglykaner domineras av kolhydrat, glykoproteiner av protein.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Redogör för AB0-blodgruppssystemet.;Blodgrupper baseras på kolhydratantigener (A, B) på erytrocyter, O saknar dessa.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Hur är barns blodgrupp kopplad till föräldrarnas?;AB0 ärvs autosomalt med A och B som kodominanta och O recessiv.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Antikroppar mot blodgrupper vid:;Anti-B.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
b) blodgrupp B;Anti-A.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
c) blodgrupp O;Anti-A och anti-B.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Hur påverkar blodgrupper vid transfusion av:;Plasmans antikroppar är avgörande, kompatibilitet krävs.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
b) röda blodkroppar;Erytrocyternas antigen måste vara kompatibla med mottagarens antikroppar.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Två vanliga bindningstyper mellan kolhydrat och protein?;N-länkad (Asn) och O-länkad (Ser/Thr) glykosylering.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad är ett lektin?;Ett protein som specifikt binder kolhydrater utan enzymatisk aktivitet.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad kallas enzymer som bildar glykosidbindningar?;Glykosyltransferaser.;Biokemi::Johan D - Instuderingsfrågor::Kolhydrater
|
||||
Vad är den centrala dogmen?;Genetisk information flödar från DNA → RNA → protein.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Hur skiljer sig RNA från DNA?;RNA har ribos, uracil och är oftast enkelsträngat, DNA har deoxyribos, tymin och är dubbelsträngat.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Hur numreras kolatomer i ribos/deoxyribos och var bildas fosfodiesterbindningar?;Kolatomer numreras 1′–5′, fosfodiesterbindningar bildas mellan 3′-OH och 5′-fosfat, baser sitter på 1′-kolet.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Vad är skillnaden mellan en nukleosid och en nukleotid?;Nukleosid = socker + bas, nukleotid = nukleosid + fosfat.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Hur skiljer sig AMP, ADP och ATP?;De skiljer sig i antal fosfatgrupper: en, två respektive tre.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Namn på nukleosider och nukleotider i RNA och DNA.;RNA: adenosin, guanosin, cytidin, uridin, DNA: deoxiadenosin, deoxiguanosin, deoxicytidin, deoxitymidin.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
I vilken riktning syntetiseras DNA och RNA?;Alltid i 5′→3′-riktning.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Beskriv en dubbelsträngad DNA-helix av B-typ.;Högergängad helix med ~10,5 bp per varv, strängarna är antiparallella (5′→3′ och 3′→5′) och komplementära (A–T, G–C).;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Vad innebär antiparallella och komplementära strängar?;Antiparallella: motsatt riktning, komplementära: basparar specifikt via vätebindningar.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Vad menas med major och minor groove?;Ojämna fåror i DNA-helixen där proteiner kan binda, major groove är bredare än minor groove.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Vilka krafter stabiliserar DNA-helixen?;Vätebindningar mellan baser, basstackning (hydrofoba/van der Waals) och joninteraktioner med ryggraden.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Hur påverkar basinnehåll DNA:s smältpunkt (Tm)?;Högre GC-innehåll ger högre Tm, A–T har 2 vätebindningar, G–C har 3.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Vad menas med att replikation är semikonservativ?;Varje dotter-DNA innehåller en gammal och en nysyntetiserad sträng.;Biokemi::Johan D - Instuderingsfrågor::Nukleotider
|
||||
Vilka organeller finns i eukaryota celler?;Cellkärna, mitokondrier, ER (rER och sER), Golgiapparaten, lysosomer, peroxisomer, ribosomer, cytoskelett och cellmembran.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad sker i den eukaryota cellens olika organeller?;Mitokondrier: ATP-produktion, rER: proteinsyntes, sER: lipidsyntes/avgiftning, Golgi: modifiering och sortering, lysosomer: nedbrytning, cellkärna: DNA/RNA, cytoskelett: struktur och transport, cellmembran: barriär och signalering.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad säger termodynamikens första lag?;Energi kan inte skapas eller förstöras, endast omvandlas.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad säger termodynamikens andra lag?;Den totala entropin i ett isolerat system ökar.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad är entropi?;Ett mått på oordning eller antalet möjliga mikrotillstånd i ett system.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Varför måste en cell orsaka oordning någon annanstans för att behålla sin ordning?;Cellen är inte ett isolerat system och exporterar entropi genom energiförbrukning.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vilka grundämnen är vanligast i biokemiska molekyler och vad karaktäriserar dem?;Kol (4 bindningar, molekylryggrad), väte (1 bindning), syre (2 bindningar, elektronegativt), kväve (3 bindningar).;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad karaktäriserar en hydrofil molekyl?;Polär eller laddad, kan bilda vätebindningar med vatten.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad karaktäriserar en hydrofob molekyl?;Opolär, kan inte bilda vätebindningar med vatten.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad karaktäriserar en kovalent bindning?;Delning av ett eller flera elektronpar mellan atomer, stark bindning.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vilka typer av kovalenta bindningar kan bildas mellan två kolatomer?;Enkel-, dubbel- och trippelbindning.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Hur stark är en kovalent bindning?;Mycket stark, starkare än de flesta icke-kovalenta bindningar.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad menas med resonansstabilisering?;Elektroner är delokaliserade över flera atomer, vilket stabiliserar bindningen.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Mellan vad bildas jonbindningar/interaktioner?;Mellan motsatt laddade joner (katjon och anjon).;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad påverkar styrkan hos en jonbindning/interaktion?;Jonernas laddning, avståndet mellan dem och omgivningens dielektricitetskonstant.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad innebär det att en molekyl är polär?;Ojämn laddningsfördelning som ger en permanent dipol.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad karaktäriserar en vätebindning?;Attraktion mellan H bundet till O/N och ett fritt elektronpar på O/N.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Hur stark är en vätebindning?;Svagare än kovalent bindning men starkare än vanliga dipol–dipol-interaktioner.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vilka atomer kan vara acceptorer i vätebindningar?;Syre och kväve (ibland fluor).;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad gör vatten till ett bra lösningsmedel i celler?;Poläritet och förmåga att bilda många vätebindningar.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad är van der Waals-krafter?;Mycket svaga, kortdistansinteraktioner från tillfälliga dipoler.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
På vilket avstånd förekommer van der Waals-krafter?;Vid mycket korta avstånd, cirka 1,5–2,0 Å.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Hur starka är van der Waals-krafter?;Mycket svaga, men betydelsefulla när många samverkar.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad menas med den hydrofoba effekten?;Opolära molekyler klustrar för att minimera kontakt med vatten.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad orsakar den hydrofoba effekten?;Vattnets strävan att maximera sina vätebindningar.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vad karaktäriserar en svag syra?;Högt pK_a, avger protoner endast delvis i vatten.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vid vilket pH fungerar en svag syra som buffert?;Vid pH ≈ pK_a ±1.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Hur fungerar en svag syra som buffert?;Syra och konjugerad bas kan ta upp eller avge H⁺.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Vilka typer av bindningar påverkas av pH-förändring?;Jonbindningar och vätebindningar.;Biokemi::Johan D - Instuderingsfrågor::Kemiska bindingar
|
||||
Nedbrytning och utsöndring av heme;Heme → biliverdin → bilirubin (makrofager). Bilirubin transporteras bundet till albumin till levern, konjugeras med glukuronsyra och utsöndras via galla till tarmen som urobilinogen/stercobilin.;Biokemi::Johan D - Instuderingsfrågor::Heme
|
||||
Direkt- och indirektreagerande bilirubin;Indirekt: okonjugerat, vattenolösligt bilirubin bundet till albumin. Direkt: konjugerat, vattenlösligt bilirubin i lever/galla.;Biokemi::Johan D - Instuderingsfrågor::Heme
|
||||
Reglering av hemesyntesen;Heme hämmar ALA-syntas (första och hastighetsbestämmande steget) via feedback.;Biokemi::Johan D - Instuderingsfrågor::Heme
|
||||
Orsak till porfyrisjukdomar;Ärftliga enzymdefekter i hemesyntesens steg → ansamling av porfyriner/prekursorer.;Biokemi::Johan D - Instuderingsfrågor::Heme
|
||||
Beskriv den generella strukturen för en α-aminosyra;Ett α-kol bundet till en aminogrupp (–NH₃⁺), en karboxylgrupp (–COO⁻), ett väte och en sidokedja (R).;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Proteinogena vs icke-proteinogena aminosyror;Proteinogena byggs in i proteiner, icke-proteinogena gör det inte. Exempel: ornitin, citrullin.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Andra viktiga funktioner hos aminosyror;Kvävetransport, energikälla, prekursorer till biomolekyler, syra–bas-buffring, neurotransmittorer.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Hur får vi tillgång till aminosyror?;Essentiella via kosten, icke-essentiella syntetiseras från intermediärer i metabolismen.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Proteiners nedbrytning i mag-tarmkanalen;Pepsin i magsäcken, pankreasproteaser i tunntarmen → fria aminosyror absorberas.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Hur tar sig aminosyror över cellmembran?;Via specifika transportproteiner (sekundär aktiv transport), inte jonkanaler.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Vad är en essentiell aminosyra? Vilka är essentiella?;Kan inte syntetiseras i tillräcklig mängd. Essentiella: Phe, Val, Thr, Trp, Ile, Met, His, Leu, Lys.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Vad menas med konditionellt essentiella aminosyror?;Normalt syntetiserbara men krävs via kosten vid särskilda tillstånd (t.ex. arginin hos spädbarn).;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Fem prekursorer för icke-essentiella aminosyror;Pyruvat, 3-fosfoglycerat, oxaloacetat, α-ketoglutarat, ribos-5-fosfat.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Generell transamineringsreaktion;Aminosyra₁ + ketosyra₂ ⇌ ketosyra₁ + aminosyra₂.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
ALT och AST – fullständiga namn och reaktioner;ALT: alaninaminotransferas (alanin ↔ pyruvat). AST: aspartataminotransferas (aspartat ↔ oxaloacetat).;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Vanligaste aminogruppdonator/acceptor-paret;Glutamat ↔ α-ketoglutarat.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Vad indikerar förhöjt ALT och AST i plasma?;Cellskada, främst leverpåverkan (hepatit, alkoholskada).;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Viktig aminogruppdonator;Glutamat, bildas via transaminering. Prekursor till glutamin, prolin och arginin.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Fenylketonuri (PKU);Brist på fenylalaninhydroxylas → högt Phe, lågt Tyr. Behandling: Phe-reducerad kost.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Syftet med PKU-screening;Tidigt upptäcka behandlingsbara, allvarliga metabola sjukdomar.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Sju metaboliter från aminosyrors kolskelett;Pyruvat, acetyl-CoA, acetoacetyl-CoA, α-ketoglutarat, succinyl-CoA, fumarat, oxaloacetat.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Var sker aminosyranedbrytning? BCAA?;Främst i levern, grenade aminosyror bryts i hög grad ned i skelettmuskel.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Varför är deaminering problematisk?;Ammoniak är toxiskt, löses genom ureacykeln och transport som alanin/glutamin.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Oxidativ deaminering av glutamat;Enzym: glutamatdehydrogenas, plats: mitokondriematrix, produkter: α-ketoglutarat + NH₄⁺.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Direkt deaminering – exempel;Serin och treonin → NH₄⁺.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Omvandling av ammoniak till urea;Sker i ureacykeln. Energi krävs i CPS-I-steget (2 ATP). Hastighetsreglerande: CPS-I, aktiveras av N-acetylglutamat. Första stegen i mitokondrien, resten i cytosolen.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Funktion och defekter i ureacykeln;Avgiftning av ammoniak i levern, defekter ger hyperammonemi (t.ex. argininosuccinatlyasbrist).;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Koppling mellan ureacykeln och citronsyracykeln;Fumarat och aspartat (aspartat–argininosuccinat-shunten).;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Alanin–glukos-cykeln;Muskeln: pyruvat → alanin → lever. Levern: alanin → glukos → tillbaka till muskel, kväve till urea.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Transport av ammoniak till levern;Som glutamin i blodet.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Roller för glutaminsyntetas och glutaminas;Glutaminsyntetas: binder NH₄⁺ till glutamat. Glutaminas: frigör NH₄⁺ i lever/njure.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Glukogena vs ketogena aminosyror;Glukogena ger glukoneogenesintermediärer, ketogena ger acetyl-/acetoacetyl-CoA. Ketogena: leucin, lysin.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Varför kan ketogena aminosyror inte bilda glukos?;Acetyl-CoA ger inget netto tillskott till glukoneogenes.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
Aminosyror som direkt ger glykolys/TCA-intermediärer;Alanin → pyruvat, aspartat → oxaloacetat, glutamat → α-ketoglutarat.;Biokemi::Johan D - Instuderingsfrågor::Aminosyrametabolism
|
||||
När sker glukoneogenes?;Vid fasta, svält, långvarig fysisk aktivitet och låg kolhydrattillgång.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Var i cellen sker glukoneogenes?;I mitokondrien, cytosolen och sista steget i ER.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilka tre steg i glykolysen är irreversibla och varför?;Hexokinas/glukokinas, PFK-1 och pyruvatkinas, de har stort negativt ΔG och regleras hårt.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilken reaktion katalyserar pyruvatkarboxylas och hur?;Pyruvat + CO₂ + ATP → oxaloacetat, sker i mitokondrien och kräver ATP.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vad är biotin och dess roll i glukoneogenesen?;Ett vitamin (B7) som fungerar som CO₂-bärare i pyruvatkarboxylas.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
I vilken form förekommer koldioxid i vattenlösning?;Som CO₂, H₂CO₃, HCO₃⁻ och CO₃²⁻ (främst bikarbonat).;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Hur transporteras oxaloacetat ut ur mitokondrien?;Reducerar till malat eller transamineras till aspartat för transport.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilken reaktion katalyserar fosfoenolpyruvatkarboxykinas (PEPCK)?;Oxaloacetat → fosfoenolpyruvat + CO₂ med GTP-förbrukning.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Var finns glukos-6-fosfatas och varför?;I lever (och njure), möjliggör frisättning av fritt glukos till blodet.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vad karaktäriserar ett bifunktionellt enzym?;Har två motsatta enzymaktiviteter i samma protein.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Hur kan triacylglycerider användas för glukoneogenes?;Via glycerol som omvandlas till DHAP, fettsyror kan inte ge glukos.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilka aminosyror är glukogena?;Alla utom leucin och lysin.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilka glukogena metaboliter kan bildas från aminosyror?;Pyruvat, oxaloacetat, α-ketoglutarat, succinyl-CoA och fumarat.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
När bildas laktat i glykolysen och varför?;Vid anaeroba förhållanden för att regenerera NAD⁺.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Hur används laktat från skelettmuskler för glukoneogenes?;Transporteras till levern via Cori-cykeln → glukos.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilka celltyper kan använda laktat som energikälla?;Hjärta, lever och njure, laktat → pyruvat → TCA.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Vilka föreningar inhiberar respektive stimulerar glukoneogenes?;Inhibitorer: insulin, AMP, fruktos-2,6-bisfosfat. Stimulatorer: glukagon, ATP, acetyl-CoA.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Hur undviks samtidig full aktivitet av glykolys och glukoneogenes?;Reciprok reglering via allosteriska effekter och hormoner.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
På vilken tidsskala verkar regleringsmekanismer?;Sekunder–minuter: allosterisk/kovalent, timmar: genuttryck.;Biokemi::Johan D - Instuderingsfrågor::Glukoneogenes
|
||||
Hur är mitokondrier uppbyggda?;Yttre membran, intermembranrum, inre membran (cristae) och matrix.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vilka centrala metabola vägar finns i mitokondrier?;Citronsyracykeln, β-oxidation, oxidativ fosforylering och delar av ureacykeln.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad gör det fördelaktigt för acyl-CoA att släppa ifrån sig sin acylgrupp?;Tioesterbindningen är energirikare än esterbindningar → driver reaktioner.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Från vilka näringsämnen kan acetyl-CoA bildas?;Kolhydrater (via pyruvat), fettsyror (β-oxidation) och vissa aminosyror.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad gör pyruvatdehydrogenaskomplexet (PDH)?;Omvandlar pyruvat till acetyl-CoA med bildning av NADH och CO₂.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Var finns pyruvatdehydrogenaskomplexet?;I mitokondriens matrix.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vilka prostetiska grupper finns i PDH och deras funktion?;TPP (dekarboxylering), lipoamid (acylöverföring), FAD (redox), NAD⁺ (elektronacceptor), CoA (acylbärare).;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Hur regleras pyruvatdehydrogenaskomplexet?;Fosforylering (inaktiverar) och defosforylering (aktiverar), hämmes av ATP, NADH, acetyl-CoA.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad händer med PDH vid arsenik- och kvicksilverförgiftning?;Binder lipoamid → PDH hämmas.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vilka är metaboliterna i citronsyracykeln?;Citrat, isocitrat, α-ketoglutarat, succinyl-CoA, succinat, fumarat, malat, oxaloacetat.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad sker i citronsyracykelns åtta reaktioner?;Kondensation, isomerisering, två oxidativa dekarboxyleringar, substratnivåfosforylering, två oxidationer, hydrering.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vilka enzymer katalyserar citronsyracykeln?;Citratsyntas, akonitas, isocitratdehydrogenas, α-ketoglutaratdehydrogenas, succinyl-CoA-syntetas, succinatdehydrogenas, fumaras, malatdehydrogenas.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad innebär dekarboxylering?;Avspjälkning av CO₂.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad innebär dehydrogenering?;Avlägsnande av väte/elektroner, ofta till NAD⁺/FAD.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vad är citronsyracykelns summaformel?;Acetyl-CoA + 3 NAD⁺ + FAD + GDP + Pi + 2 H₂O → 2 CO₂ + 3 NADH + FADH₂ + GTP + CoA.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Hur många varv krävs för att oxidera en glukos?;Två varv (två acetyl-CoA per glukos).;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Hur många varv krävs för att oxidera en fettsyra?;Ett varv per bildad acetyl-CoA.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Hur regleras citronsyracykeln?;Via energistatus, hämmas av ATP, NADH, aktiveras av ADP, Ca²⁺.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Vilken funktion har HIF-1 och hur regleras den?;Transkriptionsfaktor för hypoxisvar, stabiliseras vid låg O₂.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
När kan succinat och fumarat påverka HIF-1 och hur?;Vid ansamling hämmas prolylhydroxylaser → HIF-1 stabiliseras.;Biokemi::Johan D - Instuderingsfrågor::Citronsyracykeln
|
||||
Var sker glykolysen?;I cytosolen hos alla celler.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad sker i glykolysen?;Glukos bryts ner till pyruvat med samtidig bildning av ATP och NADH.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vilka är glykolysens tre faser?;Investeringsfas, klyvningsfas och utvinningsfas.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vilka är de tio stegen i glykolysen och vilken typ av reaktion sker?;1 Fosforylering 2 Isomerisering 3 Fosforylering 4 Klyvning 5 Isomerisering 6 Oxidation + fosforylering 7 Substratnivåfosforylering 8 Omvandling 9 Dehydrering 10 Substratnivåfosforylering;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vilka enzymer katalyserar glykolysens tio steg?;Hexokinas/glukokinas, fosfoglukosisomeras, PFK-1, aldolas, triosfosfatisomeras, GAPDH, fosfoglyceratkinas, fosfoglyceratmutas, enolas, pyruvatkinas.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad innebär substratnivåfosforylering?;ATP bildas direkt genom överföring av fosfat från ett substrat till ADP.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Hur kan fruktos användas i glykolysen?;Omvandlas till fruktos-6-fosfat (muskel) eller till DHAP och glyceraldehyd (lever).;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Hur kan galaktos användas i glykolysen?;Via Leloir-pathway till glukos-1-fosfat → glukos-6-fosfat.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
När sker glykolysen?;Kontinuerligt, ökar vid behov av snabb ATP-produktion.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vilken är glykolysens summaformel?;Glukos + 2 ADP + 2 Pi + 2 NAD⁺ → 2 pyruvat + 2 ATP + 2 NADH + 2 H₂O + 2 H⁺.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Hur regleras glykolysen i skelettmuskler?;Via energistatus: ATP och citrat hämmar, ADP/AMP aktiverar PFK-1 och pyruvatkinas.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Hur regleras glykolysen i levern?;Hormonellt via insulin/glukagon (PFK-2/FBPase-2) samt allosteriskt.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad karaktäriserar reglerade steg i glykolysen?;Irreversibla steg med stort negativt ΔG.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad innebär feedbackreglering?;Slutprodukt hämmar ett tidigt enzym i samma väg.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad innebär feedforwardreglering?;En tidig intermediär aktiverar ett senare enzym.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad innebär allosterisk reglering?;Effektor binder till annat säte än aktiva och ändrar enzymaktivitet.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad innebär kovalent reglering?;Enzymaktivitet ändras via kovalenta modifieringar, t.ex. fosforylering.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Hur skiljer sig glykolysen i levern från andra vävnader?;Levern har glukokinas och hormonell reglering för blodsockerkontroll.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad avgör hur glykolysens slutprodukt metaboliseras vidare?;Syretillgång, celltyp och energibehov.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad är fermentering?;Regenerering av NAD⁺ från NADH utan syre, t.ex. laktatbildning.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Skillnad mellan anaerob och aerob glykolys?;Anaerob: pyruvat → laktat. Aerob: pyruvat → acetyl-CoA → TCA.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Hur tas glukos upp i celler?;Via GLUT-transportörer genom faciliterad diffusion.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad reglerar glukosupptag i muskel och adipocyter?;Insulin → translokation av GLUT4 till cellmembranet.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vad innebär Warburgeffekten?;Cancerceller använder hög glykolys trots tillgång på syre.;Biokemi::Johan D - Instuderingsfrågor::Glykolysen
|
||||
Vilka är två huvudprinciper inom evolution?;Variation (mutationer) och naturligt urval.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Vilka fem liknande egenskaper har alla livsformer och varför?;Cellulär uppbyggnad, DNA/RNA som arvsmassa, proteinsyntes, metabolism och reproduktion, beror på gemensamt ursprung.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Förklara första huvudprincipens drivkrafter;Mutationer skapar genetisk variation, rekombination och genflöde bidrar ytterligare.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Förklara andra huvudprincipen för evolutionen;Naturligt urval: egenskaper som ökar överlevnad och reproduktion selekteras.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Förklara origin of life – RNA-världshypotesen;RNA fungerade både som arvsmolekyl och katalysator innan DNA och proteiner utvecklades.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Förklara endosymbios och hur teorin stöds;Mitokondrier/kloroplaster härstammar från bakterier, stöds av eget DNA, dubbla membran och bakteriella ribosomer.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Vad är fylogenetisk systematik och varför används den?;Klassificering baserad på evolutionära släktskap, används för att förstå gemensamt ursprung.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Hur kan cancerceller studeras bättre?;Genom somatisk evolution, sekvensering och jämförelse av mutationer över tid.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Vad är strukturbiologi och varför är den viktig?;Studerar molekylers 3D-struktur, förklarar funktion, interaktioner och läkemedelsmål.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Hur kan Multiple Sequence Alignment utnyttjas?;Identifierar konserverade regioner, funktionella motiv och evolutionära relationer.;Biokemi::Johan D - Instuderingsfrågor::Biokemi ur ett evolutionsperspektiv
|
||||
Vad säger termodynamikens lagar och vad har det för implikationer för levande organismer?;Energi bevaras (1:a lagen) och total entropi ökar (2:a lagen), organismer måste vara öppna system och exportera entropi.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Vad skiljer katabolism från anabolism?;Katabolism bryter ner molekyler och frigör energi, anabolism bygger upp molekyler och kräver energi.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Vad gör energiomvandling genom katabolism effektiv?;Stegvis oxidation kopplad till energibärare (ATP, NADH/FADH₂) minimerar energiförluster.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Hur kan reaktioner med höga positiva ΔG drivas?;Genom koppling till exergona reaktioner, oftast ATP-hydrolys eller elektrokemiska gradienter.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Vilka energirika molekyler är centrala i metabolismen och varför?;ATP, NADH, FADH₂, acetyl-CoA, de har energirika bindningar eller hög reduktionspotential.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Vilken koppling finns mellan B-vitaminer och metabolism?;B-vitaminer är prekursorer till koenzymer (NAD⁺, FAD, CoA, TPP) som krävs i enzymreaktioner.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Vilken typ av reaktioner är vanliga i metabolismen?;Oxidation–reduktion, gruppöverföringar, isomeriseringar, hydrolyser och klyvningsreaktioner.;Biokemi::Johan D - Instuderingsfrågor::Introduktion till metabolismen
|
||||
Varför måste kroppen även lagra glykogen?;Glykogen ger snabbt tillgängligt glukos för blodsockerreglering och anaerob ATP-produktion, vilket fett inte kan.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Den molekylära uppbyggnaden av glykogen;En starkt förgrenad polymer av glukos med α(1→4)-bindningar och α(1→6)-förgreningar.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Var lagras glykogen och vilken funktion har det?;Levern: upprätthåller blodglukos. Skelettmuskler: lokal energikälla vid arbete.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Tre steg i glykogennedbrytningen;Fosforolys, debranching (avförgrening) och omvandling till glukos-6-fosfat.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Enzym vid initial glykogennedbrytning och typ av klyvning;Glykogenfosforylas, fosforolys → glukos-1-fosfat.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Varför kan inte glykogenfosforylas bryta ner hela molekylen?;Det stannar fyra glukosenheter från α(1→6)-förgreningar, enzymet är glykogenfosforylas.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Enzym som flyttar grenarna och dess funktion;Debranching enzyme, har transferas- och α(1→6)-glukosidasaktivitet → glukos + G1P.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Varför kan levern men inte muskler frisätta glukos?;Levern har glukos-6-fosfatas, muskler saknar enzymet.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Fyra steg i glykogensyntes och enzymer;1) G6P → G1P (fosfoglukomutas) 2) Aktivering till UDP-glukos 3) Förlängning (glykogensyntas) 4) Förgrening (branching enzyme);Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Aktiverad form av glukos vid glykogensyntes;UDP-glukos.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Glykogenins funktion;Primer som initierar glykogensyntes genom att binda de första glukosenheterna.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Två centrala enzymer i reglering av glykogenmetabolism;Glykogenfosforylas och glykogensyntas, regleras via fosforylering och allosterisk reglering.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Vad är en alloster modulator och exempel i glykogenmetabolism?;En molekyl som binder ett annat säte än det aktiva. AMP aktiverar fosforylas, ATP och G6P hämmar.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Hormoner som reglerar glykogenmetabolism;Glukagon och adrenalin stimulerar nedbrytning, insulin stimulerar syntes via defosforylering.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Signalväg för aktivering av glykogenfosforylas och insulineffekt;Glukagon/adrenalin → cAMP → PKA → fosforylering → aktiv fosforylas. Samma väg fosforylerar och hämmar glykogensyntas. Insulin aktiverar fosfataser som defosforylerar enzymerna.;Biokemi::Johan D - Instuderingsfrågor::Glykogen
|
||||
Hur kan vi veta om en kemisk reaktion kan ske?;Genom Gibbs fria energi: ΔG < 0 ⇒ reaktionen är termodynamiskt möjlig (spontan).;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vad är katalys, hur kan den ske och vad kallas biologiska katalysatorer?;Katalys sänker aktiveringsenergin utan att förbrukas. Biologiska katalysatorer kallas enzymer och är oftast proteiner.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vilka generella strategier finns för enzymkatalys?;Syra–bas-katalys, kovalent katalys, metalljonkatalys, orientering/proximitet, stabilisering av transition state.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vad är ett coenzym och en co-faktor?;Cofaktor: icke-proteindel som krävs för enzymaktivitet (metalljon eller organisk). Coenzym: organisk cofaktor (ofta vitamin-derivat).;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vad har cellen för fördelar med biokatalysatorer?;Snabbare reaktioner, hög specificitet, milda betingelser (pH, temperatur).;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Förklara begreppet transition state;Ett kortlivat, energirikt tillstånd mellan substrat och produkt som enzymet stabiliserar.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vad är ett aktivt säte?;Den del av enzymet där substratet binder och katalysen sker.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vad är viktigt för optimal inbindning till ett enzym?;Komplementär form, laddning och svaga interaktioner (H-bindningar, jonbindningar, hydrofoba effekter).;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Kopplingen mellan struktur och funktion hos enzymer;3D-strukturen bestämmer det aktiva sätets form och därmed enzymets specificitet och funktion.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Två sätt som enzymer underlättar substratbindning/reaktion;Orienterar substrat korrekt och stabiliserar transition state.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Michaelis–Menten-kurvan – axlar;y-axel: reaktionshastighet (v), x-axel: substratkoncentration [S].;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Vad är kcat, Km och Vmax?;kcat: omsättningstal (substrat → produkt per enzym/sek). Km: [S] vid ½ Vmax. Vmax: maximal reaktionshastighet.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Faktorer som påverkar enzymaktivitet;Substratkoncentration, enzymkoncentration, pH, temperatur, inhibitorer, cofaktorer.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Olika typer av enzyminhibitorer och kinetisk skillnad;Kompetitiv (↑Km), icke-kompetitiv (↓Vmax), unkompetitiv (↓Km och ↓Vmax).;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Hur regleras enzymaktivitet?;Allosterisk reglering, kovalent modifiering (fosforylering), genuttryck, inhibitorer/aktivatorer.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Chymotrypsins katalys – generell strategi;Serinproteas, aktivt säte: Ser-His-Asp-triaden. Kovalent acylenzym-intermediär bildas → peptidbindning klyvs.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Andra enzymmekanismer (exempel);Oxidoreduktaser: elektronöverföring (NAD⁺/FAD). Ligaser/syntetaser: kopplar molekyler med ATP. Kinaser: överför fosfatgrupp från ATP.;Biokemi::Johan D - Instuderingsfrågor::Enzymer
|
||||
Hur lagras lipider i fettcellen?;Som triacylglyceroler (TAG) i lipiddroppar, tätt packade via raka fettsyror och van der Waals-interaktioner, mycket energirikare än kolhydrater.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vilka hormoner stimulerar nedbrytning av lagrade lipider? Mekanism och enzym?;Glukagon, adrenalin och noradrenalin → GPCR → cAMP → PKA → fosforylering av perilipin och HSL. ATGL: TAG → DAG, HSL: DAG → MAG, MGL: MAG → glycerol + fria fettsyror.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vad innebär aktivering av fettsyror före nedbrytning?;Fettsyran kopplas till CoA (acyl-CoA) med ATP-förbrukning, krävs för β-oxidation.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur transporteras aktiverade fettsyror över inre mitokondriemembranet?;Via karnitinskytteln: CPT-I → acyl-karnitin → translokas → CPT-II → acyl-CoA.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Redogör för β-oxidationen;Cykel med fyra steg: oxidation, hydrering, oxidation, tiolys → förkortning med två kol per varv.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur många acetyl-CoA och ATP från en 16-kolatomers fettsyra?;8 acetyl-CoA, totalt ~106 ATP netto.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
När bildas ketonkroppar och varför?;Vid svält eller insulinbrist, högt acetyl-CoA och låg oxaloacetat i levern.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Redogör för syntesen av ketonkroppar;I levermitokondrier: acetyl-CoA → acetoacetat → β-hydroxibutyrat och aceton.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Kan lipider omvandlas till glukos hos människa?;Nej, acetyl-CoA kan inte ge netto-glukos (undantag: glycerol).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur regleras acetyl-CoA-karboxylas?;Aktiveras av insulin och citrat, hämmas av glukagon, adrenalin och AMP (fosforylering).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur transporteras acetyl-CoA ut ur mitokondrien?;Via citratshutteln.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Redogör schematiskt för fettsyrasyntesen;Acetyl-CoA → malonyl-CoA → elongering via fettsyrasyntaskomplex → palmitat.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vad karaktäriserar essentiella fettsyror?;Kan inte syntetiseras, fleromättade med dubbelbindningar bortom Δ9 (ω-3, ω-6).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vilka tre hormoner påverkar lipidmetabolismen och hur?;Insulin (lagring), glukagon och adrenalin (lipolys via PKA).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vad är kroppens högsta prioritet för energitillförsel?;Att försörja hjärnan med energi.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Varför är lipaser viktiga och varför lagras fettsyror som TAG?;Lipaser frigör energi, TAG är osmotiskt neutrala och energitäta.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vilka fettsyror kan kroppen inte bryta ned?;Fettsyror med udda antal kol (slutprodukt: propionyl-CoA).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
När bryts fettsyror ned?;Vid fasta, svält, långvarigt arbete eller låg insulin/ hög glukagon.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vilka hormoner stimulerar avspjälkning av fettsyror och hur?;Glukagon och adrenalin via cAMP/PKA-aktivering av lipaser.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vilka är produkterna av lipolys?;Fria fettsyror och glycerol.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Varför använder CNS huvudsakligen glukos?;Fettsyror passerar inte blod-hjärnbarriären, ketoner används först vid svält.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vad händer med glycerol efter lipolys?;Transporteras till levern → glycerol-3-fosfat → DHAP → glykolys/glukoneogenes.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vad händer med fria fettsyror efter lipolys?;Transporteras bundna till albumin → β-oxidation i vävnader.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur förbereds fettsyror för β-oxidation?;Aktivering till acyl-CoA och transport via karnitinskytteln.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Var sker β-oxidation och hur många steg består den av?;I mitokondriematrix, fyra återkommande steg per varv.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur mycket ATP investeras vid aktivering?;Motsvarande 2 ATP (ATP → AMP + PPi).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Vad händer med produkterna från β-oxidation?;NADH/FADH₂ → ETC, acetyl-CoA → TCA eller ketonkroppar.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Varför har kroppen främst jämna fettsyror?;Fettsyrasyntes sker genom tvåkolsenheter (acetyl/malonyl-CoA).;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Likheter mellan svält och diabetes i metabolismen?;Ökad lipolys, β-oxidation, ketogenes och glukoneogenes.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur påverkar högt blodsocker diabetiker indirekt?;Osmotisk diures, dehydrering och ketonbildning.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Hur kan kroppen klara flera dagar vid svält?;Fettlager → fettsyror och ketonkroppar som energi.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Var produceras ketonkroppar?;I leverns mitokondrier.;Biokemi::Johan D - Instuderingsfrågor::β-oxidation
|
||||
Berätta kort om termodynamik och förklara isolerat, stängt och öppet system;Termodynamik beskriver energiomvandlingar. Isolerat system utbyter varken energi eller materia, stängt utbyter energi men inte materia, öppet utbyter både energi och materia.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad kallas reaktioner med negativ, positiv och noll nettoenergiöverföring?;Negativ: exergona (energi frigörs). Positiv: endergona (energi krävs). Noll: i jämvikt (ΔG = 0).;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Beskriv termodynamikens fyra lagar;0:e: Temperatur definierar termisk jämvikt. 1:a: Energi kan inte skapas eller förstöras. 2:a: Entropin ökar i isolerade system. 3:e: Entropin närmar sig noll vid 0 K.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Förklara entalpi och entalpiförändring;Entalpi (H) är värmeinnehåll vid konstant tryck. ΔH = H_produkter − H_reaktanter, viktigt för värmeutbyte.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Förklara intern energiändring;Intern energi (U) är total energi i systemet, ΔU = q − w.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad innebär att entalpi och intern energi är tillståndsfunktioner?;De beror endast på systemets tillstånd, inte på vägen dit.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad är entropi och vad händer vid spontana reaktioner?;Entropi (S) mäter oordning, vid spontana processer ökar total entropi.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Varför är hög entropi vanligt i naturen?;System tenderar mot flest möjliga mikrotillstånd.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Hur kan entropin förändras?;Genom värmeöverföring, fasövergångar och kemiska reaktioner.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad är Gibbs fria energi?;G = H − TS, ΔG < 0 spontan, ΔG > 0 icke-spontan, ΔG = 0 jämvikt.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad är standardförhållanden och varför biokemisk standard?;Standard: 1 M, 1 atm, 25 °C, biokemi använder ΔG°′ (pH 7) för fysiologisk relevans.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad är unikt för kemiska jämvikter?;Fram- och bakreaktion sker lika snabbt.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Samband mellan Gibbs fria energi och jämviktskonstanten;ΔG° = −RT ln K_eq.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Varför är biokemiska processer speciella?;De kopplas till energirikare reaktioner (t.ex. ATP-hydrolys).;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Skillnad isolerat vs öppet system – varför organismer är öppna;Organismer utbyter både energi och materia med omgivningen.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad är en endergon reaktion jämfört med exergon?;Endergon kräver energi (ΔG > 0), exergon frigör energi (ΔG < 0).;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Termodynamikens första huvudsats och konsekvens;Energi bevaras, energi kan endast omvandlas.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vilken innebörd har entalpivärden?;Anger värme som avges eller tas upp, mäts i kJ/mol.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Förklara entropi som drivkraft;Ökad oordning driver spontana reaktioner.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Hur förklaras diffusion molekylärt?;Slumpmässig rörelse ökar entropin när ämnen sprids.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Definition och användning av Gibbs fria energi;ΔG avgör om en reaktion är spontan.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vad är ΔG° och hur används det?;Gibbs energi vid standardförhållanden, jämför reaktioners energipotential.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Varför är koncentration viktig för reaktionsbenägenhet?;ΔG beror på aktuella koncentrationer, inte bara ΔG°.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Varför är många reaktioner långt från jämvikt?;De drivs kontinuerligt av metabolism och energikoppling.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Definiera jämviktskonstanten;Förhållandet mellan produkt- och reaktantkoncentrationer vid jämvikt.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Hur påverkar K < 1 reaktionens ΔG?;Ger positiv ΔG°, reaktionen är ogynnsam under standardförhållanden.;Biokemi::Johan D - Instuderingsfrågor::Termodynamik
|
||||
Vilka aktiviteter är förknippade med exonukleas och endonukleas?### Förklara begreppen replikationsbubbla och replikationsgaffel;Replikationsbubbla är området där DNA öppnats kring ett origin, replikationsgaffel är varje Y-formad ände där DNA syntetiseras.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Var är ett origin of replication?;En specifik DNA-sekvens där replikation initieras och DNA öppnas.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Hur skiljer sig DNA-syntes på leading och lagging strand?;Leading strand syntetiseras kontinuerligt, lagging strand syntetiseras diskontinuerligt som Okazaki-fragment.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Vilken funktion har 3’→5’-exonukleasaktiviteten hos DNA-polymeraser?;Proofreading, avlägsnar felinkorporerade nukleotider och ökar noggrannheten.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Vad är processivitet och hur stimulerar sliding clamp detta?;Processivitet är hur många nukleotider som adderas per bindning, sliding clamp håller polymeraset kvar på DNA.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Vad är ett primas och när behövs det?;Ett RNA-polymeras som syntetiserar primers, behövs för att starta DNA-syntes.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Hur går Okazaki fragment maturation till?;RNA-primer tas bort, gap fylls med DNA och fragmenten ligeras ihop.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Vilka aktiviteter har exonukleas respektive endonukleas?;Exonukleas tar bort nukleotider från ändar, endonukleas klyver inom en nukleotidkedja.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Hur fungerar helikas?;Använder ATP för att separera DNA-strängarna genom att bryta vätebindningar.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Vilken roll spelar enkelsträngsbindande proteiner och vad heter de i våra celler?;Stabiliserar ssDNA och förhindrar återparning, i eukaryoter heter de RPA.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Varför bildas positiva supercoils och hur tas de bort?;De bildas framför replikationsgaffeln vid uppvridning, topoisomeraser avlägsnar dem genom att klyva och återligera DNA.;Biokemi::Johan D - Instuderingsfrågor::DNA replikation
|
||||
Describe the main features of the genetic code.;Triplet code (codons of three nucleotides), non-overlapping, read continuously, nearly universal, and unambiguous (each codon specifies one amino acid or stop).;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What is degeneracy of the genetic code and its biological significance?;Multiple codons encode the same amino acid, this reduces the impact of point mutations and translation errors.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What is translation?;The process by which ribosomes synthesize proteins using mRNA as a template.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What is a tRNA and what is its function in protein synthesis?;A transfer RNA that carries a specific amino acid to the ribosome and matches it to the mRNA codon.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What are the general characteristics of a tRNA?;Small (~75 nt), cloverleaf secondary structure, L-shaped 3D structure, anticodon loop, and 3′-CCA end.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Why is the 3′ CCA region called the acceptor arm?;It is the site where the amino acid is covalently attached to the tRNA.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What is the wobble effect and which base determines it?;Flexible base pairing at the third codon position, determined by the first base (5′ end) of the anticodon.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Why are aminoacyl-tRNA synthetases the ‘true readers’ of the genetic code?;They ensure correct amino acid is attached to the correct tRNA, enforcing codon–amino acid fidelity.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
How do aminoacyl-tRNA synthetases work?;Two-step reaction: amino acid activation with ATP, then transfer to tRNA, editing site removes mischarged amino acids.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What is a ribosome and what are its components?;A ribonucleoprotein complex of rRNA and proteins, composed of large and small subunits.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Which ribosomal components are critical for structure and function?;rRNA forms the structural core and catalyzes peptide bond formation.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Describe the A, P, and E sites.;A-site binds aminoacyl-tRNA, P-site holds peptidyl-tRNA, E-site releases empty tRNA.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Differences between bacterial and eukaryotic ribosomes?;Bacterial: 70S (30S+50S), eukaryotic: 80S (40S+60S).;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
How can ribosomes be targets for antibiotics?;Antibiotics selectively bind bacterial ribosomes, inhibiting translation without affecting eukaryotic ribosomes.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What are the steps of protein translation?;Initiation, elongation, and termination.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Characteristics of the bacterial initiation region?;Shine–Dalgarno sequence upstream of start codon aligns mRNA with ribosome.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Why is the reading frame established during initiation?;Start codon positioning defines triplet grouping for the entire mRNA.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
How does protein initiation start and what is the role of initiation factors?;Initiation factors assemble ribosomal subunits at the start codon and recruit initiator tRNA.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Role of elongation and translocation factors?;Deliver aa-tRNAs (EF-Tu/eEF1A) and move ribosome along mRNA (EF-G/eEF2).;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Role of release factors?;Recognize stop codons and trigger peptide release.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
What is a polysome and its significance?;Multiple ribosomes translating one mRNA simultaneously, increasing efficiency.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Differences between bacterial and eukaryotic protein biosynthesis?;Different ribosomes, initiation mechanisms, factors, and cellular localization.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
How does streptomycin inhibit protein biosynthesis?;Binds 30S subunit, causes misreading of mRNA, and blocks initiation.;Biokemi::Johan D - Instuderingsfrågor::Translation
|
||||
Vad är definitionen av ”genom”?;Allt genetiskt material (DNA) i en organism eller cell.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad menas med ”proteom”?;Samtliga proteiner som uttrycks i en cell, vävnad eller organism vid ett givet tillfälle.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad menas med ett homogenisat?;En cell- eller vävnadssuspension där celler har brutits sönder.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Egenskaper hos proteiner som kan användas för rening;Storlek, laddning, hydrofobicitet och specifik bindningsförmåga.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
I vilken ordning elueras proteiner vid gelfiltrering?;Stora proteiner först, små sist.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken laddning har proteiner som binder en katjonbytare?;Positiv laddning.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken laddning har proteiner som inte binder till katjonbytare?;Negativ eller neutral laddning.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken laddning har proteiner som binder en anjonbytare?;Negativ laddning.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken laddning har proteiner som inte binder till anjonbytare?;Positiv eller neutral laddning.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Hur eluerar man protein från en katjonbytare?;Genom ökad salthalt eller ändrat pH.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad menas med affinitetskromatografi?;Rening baserad på specifik bindning mellan protein och ligand.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Hur elueras 6xHis-protein från Ni²⁺-kolonn?;Med imidazol.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad kallas det automatiserade systemet för proteinrening?;ÄKTA-system.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken parameter följs oftast?;Absorbans vid 280 nm.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken gel används i SDS-PAGE?;Polyakrylamidgel.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är SDS?;Ett anjoniskt detergent (natriumdodecylsulfat).;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken laddning har SDS?;Negativ.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad hamnar högst upp respektive längst ner i SDS-PAGE?;Stora proteiner överst, små längst ner.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Hur visualiseras SDS-PAGE?;Coomassie-färgning eller silverfärgning.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad menas med proteinreferens?;Molekylviktsmarkör (protein ladder).;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är isoelektrisk fokusering?;Separation av proteiner efter deras isoelektriska punkt (pI).;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är tvådimensionell gelelektrofores?;Kombination av isoelektrisk fokusering och SDS-PAGE.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Hur används SDS-PAGE för att följa proteinrening?;Genom att analysera renhet och bandintensitet över reningssteg.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är en antikropp?;Ett protein som specifikt binder ett antigen.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är ett antigen?;En molekyl som känns igen av antikroppar.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är en epitop?;Den del av antigenet som antikroppen binder.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad kännetecknar en monoklonal antikropp?;Binder en enda specifik epitop.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad kännetecknar polyklonala antikroppar?;Binder flera epitoper på samma antigen.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Hur tillverkas monoklonala antikroppar?;Via hybridomteknik (B-cell + myelomcell).;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Beskriv ELISA;En enzymbaserad metod för att detektera antigen eller antikroppar.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Beskriv indirekt ELISA;Antigen på platta → primärantikropp → enzymkopplad sekundärantikropp.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Beskriv Sandwich ELISA;Antigen fångas mellan två antikroppar.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vilken ELISA-metod är mest specifik?;Sandwich ELISA.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Kliniska applikationer för ELISA;Indirekt: antikroppsdetektion (infektioner). Sandwich: antigen-/hormondetektion.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad är Western blot?;Proteiner separeras med SDS-PAGE, överförs till membran och detekteras med antikroppar.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Skillnad mellan SDS-PAGE och Western blot?;SDS-PAGE separerar proteiner, Western blot identifierar specifika proteiner.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vad kan masspektrometri detektera?;Proteiner, peptider, metaboliter och lipider.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Användningsområden för masspektrometri;Proteomik, identifiering av proteiner, posttranslationella modifieringar.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Varför behövs kristaller för röntgenkristallografi?;För att ge regelbundet diffraktionsmönster.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Varför är hög upplösning viktig?;För att kunna se atomära detaljer i strukturen.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Vanligaste atomen i NMR?;¹H (väte).;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Fördel med kryo-EM jämfört med röntgenkristallografi?;Kräver inga kristaller och kan studera stora komplex i nära nativt tillstånd.;Biokemi::Johan D - Instuderingsfrågor::Utforska proteiner
|
||||
Definiera begreppen kromosom respektive kromatin;Kromatin är DNA bundet till histoner, kromosom är den starkt kondenserade formen av kromatin vid celldelning.;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Beskriv nukleosomens uppbyggnad;~147 bp DNA lindat runt en histonoktamer (2×H2A, H2B, H3, H4).;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Vilken roll spelar histon H1?;Binder linker-DNA och stabiliserar högre ordningens kromatinstruktur.;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Vilken roll spelar histonsvansar?;Reglerar kromatinstruktur via kovalenta modifieringar som påverkar genuttryck.;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Vad händer med nukleosomer under DNA-replikation?;Histoner återfördelas till dottersträngar och kompletteras med nybildade histoner.;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Hur packas DNA till en kromosom? Vilken roll spelar protein scaffold?;DNA bildar loopar fästa till ett protein scaffold som organiserar och kondenserar kromatinet.;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Hur kan aktiviteten i kromatin-loopar regleras?;Via histonmodifieringar, kromatinremodellering och bindning av regulatoriska proteiner.;Biokemi::Johan D - Instuderingsfrågor::Kromatin
|
||||
Vad är en gen?;En DNA-sekvens som innehåller information för att syntetisera ett funktionellt RNA eller protein.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vilken sträng i DNA skrivs av till RNA – vad styr detta?;Templatsträngen skrivs av, promotorns orientering avgör vilken sträng som används.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vad är ett operon?;En grupp gener med gemensam promotor som transkriberas tillsammans till ett polycistroniskt mRNA.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vad är en Shine–Dalgarno-sekvens?;En ribosombindningssekvens i bakteriellt mRNA som basparar med 16S rRNA.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Hur är RNA-polymeras uppbyggt i E. coli?;Kärnenzym: α₂ββ′ω (katalytiskt aktivt). Holoenzym: kärnenzym + σ-faktor (kan initiera transkription).;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vilken roll spelar sigma-faktorn?;Känner igen promotorn och positionerar RNA-polymeraset korrekt för initiering.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Hur hittar RNA-polymeraset till promotorn i E. coli?;Via sigma-faktorns specifika bindning till promotorelement (-10 och -35).;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vad menas med att gener i ett operon regleras gemensamt?;Alla gener påverkas samtidigt av samma regulatoriska element.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vad är en repressor? Hur regleras Trp-operonet?;En repressor är ett protein som blockerar transkription, i Trp-operonet aktiveras repressorn av tryptofan och stänger operonet.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
CAP är en aktivator – hur fungerar den?;CAP binder cAMP och fäster vid DNA för att öka RNA-polymerasets inbindning.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Förklara hur lac-operonet fungerar.;Inducerbart operon, laktos inaktiverar repressorn och låg glukos → cAMP–CAP aktiverar transkription.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Vad är en bakteriofag och hur har den bidragit till vaccinproduktion?;Ett virus som infekterar bakterier, används som vektor för antigenproduktion.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Hur fungerar Rifampicin respektive Actinomycin?;Rifampicin hämmar bakteriellt RNA-polymeras, Actinomycin binder DNA och blockerar transkription.;Biokemi::Johan D - Instuderingsfrågor::Kontroll av genuttryck i prokaryoter
|
||||
Initiering och terminering av eukaryot DNA-replikation;Initiering sker vid origins med ORC och licensiering, terminering när replikationsgafflar möts och kromatinet återställs.;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
Vad är PCNA?;En ringformad sliding clamp som ökar DNA-polymerasets processivitet.;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
ORC, Cdc6, Cdt1 och MCM-helikasets roller vid initiering;ORC binder origins, Cdc6 och Cdt1 laddar MCM-helikaset som licensierar replikation.;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
När och hur aktiveras MCM-helikaset?;Aktiveras i S-fas via fosforylering av CDK och DDK.;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
Vilka DNA-polymeraser verkar vid replikationsgaffeln och deras aktiviteter?;Pol α (primase/initiator), Pol δ (lagging strand), Pol ε (leading strand).;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
Beskriv den eukaryota replikationsgaffeln;Innehåller MCM-helikas, primase/Pol α, Pol δ/ε, PCNA, RFC, RPA och topoisomeras.;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
Hur fungerar telomeras och säkerställer korrekt replikation av kromosomändar?;Ett RNA-beroende DNA-polymeras som förlänger telomerer med repetitiva sekvenser.;Biokemi::Johan D - Instuderingsfrågor::Initiering och terminering av DNA replikation
|
||||
Hur ser en transkriptionsbubbla ut?;Ett lokalt uppsmält DNA-område (~12–17 bp) där strängarna separeras så RNA-polymeras kan läsa templatsträngen.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vilka tre typer av RNA-polymeraser finns i kärnan och vilka gener transkriberar de?;RNA-pol I: rRNA (28S, 18S, 5.8S). RNA-pol II: mRNA och vissa snRNA. RNA-pol III: tRNA, 5S rRNA och små RNA.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vad är alfa-amanitin?;Ett toxin från flugsvamp som hämmar RNA-polymeras II (och svagt III).;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vilka sekvenselement hittar man vid en eukaryot promotor?;TATA-box, Inr (initiator), BRE och ibland CAAT- och GC-boxar.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Hur bildas preinitieringskomplexet?;Generella transkriptionsfaktorer och RNA-pol II binds stegvis till promotorn.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vilka aktiviteter hos TFIIH startar transkriptionen?;Helikasaktivitet som öppnar DNA och kinasaktivitet som fosforylerar CTD.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vilken roll spelar CTD vid transkription och mRNA-processning?;CTD fosforyleras och rekryterar faktorer för capping, splicing och polyadenylering.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Hur processas den primära RNA-molekylen till moget mRNA?;5’-capping, borttagning av introner (splicing) och poly(A)-svans.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vad är en 5’-cap och vilken funktion har den?;En 7-metylguanosin-kap som skyddar mRNA, krävs för export och translation.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vad är en poly(A)-svans och vilken funktion har den?;En kedja av adenosiner som sätts på posttranskriptionellt, ökar stabilitet och translation.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vad är intron och exon?;Introner är icke-kodande sekvenser som tas bort, exoner är sekvenser som ingår i moget mRNA.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Beskriv de grundläggande stegen vid splicing!;Spliceosomen klipper vid 5’-splice site, bildar lariat, klipper 3’-splice site och ligerar exoner.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vad är alternativ splicing och dess betydelse?;Olika kombinationer av exoner ger flera proteiner från samma gen och ökar proteomets komplexitet.;Biokemi::Johan D - Instuderingsfrågor::RNA syntes
|
||||
Vilka lipider ingår i det eukaryota cellmembranet?;Fosfolipider, glykolipider och kolesterol.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilken roll har kolesterolet?;Reglerar membranets fluiditet och stabilitet, minskar permeabilitet.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Cellmembranet sägs vara asymmetriskt – vad innebär detta?;Olika lipider och proteiner är ojämnt fördelade mellan inre och yttre membranbladet.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilka molekyler kan spontant diffundera över cellmembranet?;Små opolära molekyler och små oladdade polära molekyler (t.ex. O₂, CO₂).;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilka molekyler kan inte spontant diffundera över cellmembranet?;Laddade joner och stora polära molekyler (t.ex. Na⁺, glukos).;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilka typer av rörlighet finns i cellmembranet vid 37°?;Lateral diffusion, rotation och flexion av lipidkedjor.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Hur är lipid rafts uppbyggda?;Kolesterol- och sfingolipidrika, mer ordnade membrandomäner med specifika proteiner.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilka typer av integrala membranproteiner finns?;Single-pass, multi-pass (α-helixar) och β-tunnor.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vad är en hydropatiplot?;Ett diagram som visar hydrofoba och hydrofila regioner i ett protein.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vad ger en hydropatiplot information om?;Förekomst och position av transmembrana segment.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Hur är perifera membranproteiner associerade till cellmembranet?;Via icke-kovalenta interaktioner med lipider eller integrala membranproteiner.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilka typer av celladhesionsproteiner finns?;Cadheriner, integriner, selektiner och Ig-superfamiljen.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vad binder celladhesionsproteiner till?;Andra celler eller extracellulär matrix.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
Vilken är deras huvudsakliga funktion?;Mediar cell–cell- och cell–matrix-adhesion samt signalering.;Biokemi::Johan D - Instuderingsfrågor::Transport över cellmembran
|
||||
|
@@ -57,10 +57,10 @@ def parse_markdown_file(filepath, deck_name):
|
||||
continue
|
||||
|
||||
# 2. Hantera spoiler-block
|
||||
if line.startswith("|spoiler-block:"):
|
||||
if line.startswith("```spoiler-block:"):
|
||||
in_spoiler = True
|
||||
continue
|
||||
if line == "|" and in_spoiler:
|
||||
if line == "```" and in_spoiler:
|
||||
in_spoiler = False
|
||||
continue
|
||||
|
||||
@@ -102,11 +102,8 @@ def main():
|
||||
full_path = os.path.join(root, filename)
|
||||
print(f"Bearbetar: {filename} i mappen '{raw_folder_name}' -> Kortlek: {full_deck_name}")
|
||||
|
||||
try:
|
||||
cards = parse_markdown_file(full_path, full_deck_name)
|
||||
all_cards.extend(cards)
|
||||
except Exception as e:
|
||||
print(f"!! Fel vid läsning av {full_path}: {e}")
|
||||
cards = parse_markdown_file(full_path, full_deck_name)
|
||||
all_cards.extend(cards)
|
||||
|
||||
# Skriv till fil
|
||||
with open(OUTPUT_FILE, 'w', encoding='utf-8') as f:
|
||||
|
||||
Reference in New Issue
Block a user