vault backup: 2025-12-02 21:45:23
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m55s
All checks were successful
Deploy Quartz site to GitHub Pages / build (push) Successful in 1m55s
This commit is contained in:
250
content/Biokemi/Metabolism/Glykogen/Slides.md
Normal file
250
content/Biokemi/Metabolism/Glykogen/Slides.md
Normal file
@@ -0,0 +1,250 @@
|
||||
---
|
||||
föreläsare: Martin Lidell
|
||||
tags:
|
||||
- biokemi
|
||||
- glykogen
|
||||
- slides
|
||||
date: 2025-12-03
|
||||
---
|
||||
[OCR — Slides.pdf]
|
||||
|
||||
LPG001
|
||||
Martin Lidell
|
||||
Glykogenmetabolism
|
||||
|
||||
Glykogenmetabolism – föreläsningsupplägg
|
||||
• Glykogen – en lagringsform av glukos
|
||||
• Glykogens funktioner
|
||||
• Hur sker nedbrytningen av glykogen?
|
||||
• Hur bildas glykogen?
|
||||
• Hur regleras glykogenmetabolismen?
|
||||
|
||||
Gerty and Carl Cori
|
||||
The Nobel Prize in Physiology or Medicine 1947
|
||||
"for their discovery of the course of the catalytic conversion of glycogen"
|
||||
|
||||
Triglycerider – en reducerad och vattenfri form av energiupplagring
|
||||
1 gram fett innehåller ca 6.75 ggr mer energi än hydrerad glykogen
|
||||
(1 g glykogen binder normalt 2 g vatten)
|
||||
Del av Tabell 9.1 i ”Om kroppens omsättning av kolhydrat, fett och alkohol”,
|
||||
Anders Eklund, Studentlitteratur, 2004
|
||||
|
||||
Triglycerider en effektivare form av energilagring – varför har vi då glykogen?
|
||||
Varför behöver vi glykogen?
|
||||
Hjärnan behöver glukos även mellan måltider
|
||||
Muskel kan använda glukos som energikälla vid arbete; även anaerobt
|
||||
(fettsyror kan ej användas vid anaerobt arbete)
|
||||
Glukos kan ej bildas från fettsyror
|
||||
Kroppen behöver ett lager av glukos!
|
||||
|
||||
Glukos – en essentiell energikälla
|
||||
Problem:
|
||||
Glukos kan inte lagras eftersom molekylen är osmotiskt aktiv.
|
||||
Höga koncentrationer av glukos skulle förstöra den osmotiska balansen i en cell och orsaka cellskador/celldöd.
|
||||
Table 27.1 in ”Biochemistry, 4th ed”, Garrett and Grisham, Brooks/Cole, 2010
|
||||
|
||||
Hur kan en tillräcklig mängd glukos lagras utan att orsaka cellskador?
|
||||
Lösning:
|
||||
Glukos lagras som icke-osmotiskt aktiv polymer
|
||||
• Glykogen (djur)
|
||||
• Stärkelse; amylos och amylopektin (växter)
|
||||
Polymererna kan ses som lättmobiliserade lagringsformer av glukos, vilken kan frisättas när energi behövs
|
||||
|
||||
Glykogen – en väldigt stor och grenad polymer av “glukosenheter”
|
||||
Strukturen är optimerad för att lagra/frigöra energi snabbt
|
||||
Glykogenet tillgodoser behovet av glukos på kort sikt
|
||||
Glykogenmetabolismen styrs av allostera effektorer och hormoner
|
||||
Vi kan lagra upp till ca 450 g glykogen; ungefär 1/3 i levern
|
||||
och resterande del främst i skelettmuskulaturen.
|
||||
|
||||
Two types of glycosidic bonds in glycogen
|
||||
a-1,4-glycosidic linkages in linear parts
|
||||
a-1,6-glycosidic linkages at branching points
|
||||
|
||||
b-particles / a-rosettes
|
||||
The elementary particle of glycogen is sometimes called the b-particle.
|
||||
The particle is about 21 nm in diameter, consists of up to 55000 glucose residues with about 2000 nonreducing ends.
|
||||
20–40 b-particles can cluster together to form a-rosettes.
|
||||
|
||||
Different functions of glycogen in liver and muscle
|
||||
Liver glycogen serves in the maintenance of the blood glucose level between meals.
|
||||
Muscle glycogen serves as an energy reserve for the muscle itself. Muscles lack glucose-6-phosphatase and cannot release glucose to blood.
|
||||
|
||||
The three steps in glycogen degradation (glycogenolysis)
|
||||
1. release of glucose 1-phosphate from glycogen
|
||||
2. remodeling of the glycogen substrate to permit further degradation
|
||||
3. conversion of glucose 1-phosphate into glucose 6-phosphate for further metabolism
|
||||
|
||||
Polysaccharides can be degraded by hydrolysis or phosphorolysis
|
||||
|
||||
Glycogen phosphorylase – key enzyme in glycogen degradation
|
||||
Cleaves substrate by addition of orthophosphate (Pi) to yield glucose 1-phosphate
|
||||
Phosphorolysis
|
||||
Allosteric enzyme regulated by reversible covalent modification
|
||||
|
||||
Glycogen phosphorylase cannot cleave α-1,6 bonds, stops 4 residues from branch → limited degradation
|
||||
|
||||
Debranching enzyme needed — dual activity: transferase + α-1,6-glucosidase
|
||||
|
||||
α-1,6 linkage hydrolyzed → glucose + shortened glycogen
|
||||
|
||||
Phosphoglucomutase converts G1P → G6P (reversible)
|
||||
|
||||
Glucose-6-phosphatase in liver/kidney allows release of glucose to blood
|
||||
|
||||
Metabolism of G6P:
|
||||
1. fuel (muscle)
|
||||
2. glucose release (liver)
|
||||
3. NADPH/ribose-5-P (many tissues)
|
||||
|
||||
Four steps in glycogen synthesis:
|
||||
1. UDP-glucose activation
|
||||
2. primer
|
||||
3. elongation
|
||||
4. branching
|
||||
(occurs in cytosol)
|
||||
|
||||
UDP-glucose: activated glucose donor
|
||||
Synthesized from G1P + UTP, catalyzed by UDP-glucose pyrophosphorylase
|
||||
Driven by pyrophosphate hydrolysis
|
||||
|
||||
Glycogen synthase: key enzyme in glycogenesis
|
||||
Adds glucosyl units to non-reducing end via α-1,4 bonds
|
||||
Needs existing chain ≥4 residues
|
||||
|
||||
Glycogen synthesis requires primer:
|
||||
Glycogenin (two subunits)
|
||||
Autocatalytic polymerization on tyrosine
|
||||
UDP-glucose donor
|
||||
Synthase later extends chain
|
||||
|
||||
Branching enzyme:
|
||||
Break α-1,4, form α-1,6
|
||||
Transfers block of ~7 residues
|
||||
Rules:
|
||||
• chain ≥11 long
|
||||
• block includes non-reducing end
|
||||
• new branch ≥4 residues away from existing
|
||||
|
||||
Summary of glycogen synthesis
|
||||
|
||||
Glycogen metabolism control:
|
||||
Key enzymes: glycogen phosphorylase & glycogen synthase
|
||||
Mechanisms:
|
||||
• Allosteric regulation (glucose, G6P, AMP, ATP)
|
||||
• Reversible phosphorylation (glucagon, epinephrine, insulin)
|
||||
|
||||
Regulation of glycogen degradation:
|
||||
Phosphorylase b ↔ phosphorylase a
|
||||
R ↔ T states
|
||||
Allosterics + phosphorylation
|
||||
|
||||
Different isozymes:
|
||||
Liver vs muscle glycogen phosphorylase → different responses
|
||||
|
||||
Liver phosphorylase:
|
||||
Purpose: export glucose
|
||||
Acts as glucose sensor:
|
||||
• senses glucose → inactive
|
||||
• no glucose → active
|
||||
|
||||
Muscle phosphorylase:
|
||||
Purpose: energy for contraction
|
||||
Sensors:
|
||||
• AMP → activate
|
||||
• ATP/G6P → inhibit
|
||||
|
||||
Regulation of glycogen synthase:
|
||||
G6P sensor:
|
||||
• senses G6P → activate
|
||||
• no G6P → inactive
|
||||
Phosphorylated form = inactive (b)
|
||||
Dephosphorylated = active (a)
|
||||
|
||||
Allosteric summary:
|
||||
Glc-6-P stimulates synthesis
|
||||
AMP stimulates degradation (muscle)
|
||||
ATP & G6P inhibit degradation (muscle)
|
||||
Glucose inhibits degradation (liver)
|
||||
|
||||
Hormones:
|
||||
INSULIN
|
||||
• released when blood glucose high
|
||||
• stimulates glucose uptake and storage as glycogen/fat
|
||||
|
||||
GLUCAGON
|
||||
• low blood glucose
|
||||
• targets liver to raise blood glucose via glycogenolysis & gluconeogenesis
|
||||
|
||||
ADRENALINE
|
||||
• stress
|
||||
• activates glycogenolysis & lipolysis
|
||||
|
||||
Hormonal overview:
|
||||
• Insulin → favors synthesis
|
||||
• Glucagon/Epinephrine → favor degradation
|
||||
Mechanism: phosphorylation states of phosphorylase and synthase
|
||||
|
||||
Hormonal stimulation of phosphorylase:
|
||||
Glucagon/epinephrine → kinase cascades → active phosphorylase
|
||||
|
||||
Phosphorylase kinase activated by Ca2+ + phosphorylation
|
||||
|
||||
Protein phosphatase 1 (PP1):
|
||||
Dephosphorylates phosphorylase & kinase → inhibits degradation
|
||||
|
||||
Hormonal regulation of PP1:
|
||||
• Glucagon/Epi inhibit PP1
|
||||
• Insulin activates PP1
|
||||
|
||||
Hormonal inhibition of glycogen synthase:
|
||||
Glucagon/Epi → phosphorylation → inactive synthase
|
||||
|
||||
Insulin stimulation of glycogen synthase:
|
||||
Insulin inactivates GSK3, activates PP1 → activates synthase (dephosphorylation)
|
||||
|
||||
Insulin favors synthesis:
|
||||
PP1 activates synthase + inactivates phosphorylase
|
||||
|
||||
Glucagon/Epi favor degradation:
|
||||
PKA activation → phosphorylase activation + synthase inhibition
|
||||
|
||||
Summary table:
|
||||
Glucagon (liver): synthesis ↓, degradation ↑
|
||||
Epinephrine (muscle/liver): synthesis ↓, degradation ↑
|
||||
Insulin: synthesis ↑, degradation ↓
|
||||
|
||||
Enzymes involved:
|
||||
Degradation:
|
||||
• Glycogen phosphorylase
|
||||
• Debranching enzyme
|
||||
• Phosphoglucomutase
|
||||
• Glucose-6-phosphatase
|
||||
• Protein kinase A
|
||||
• Phosphorylase kinase
|
||||
• PP1
|
||||
|
||||
Synthesis:
|
||||
• Hexokinase/glucokinase
|
||||
• Phosphoglucomutase
|
||||
• UDP-glucose pyrophosphorylase
|
||||
• Inorganic pyrophosphatase
|
||||
• Glycogenin
|
||||
• Glycogen synthase
|
||||
• Branching enzyme
|
||||
• Protein kinase A
|
||||
• GSK3
|
||||
• PP1
|
||||
|
||||
Summary:
|
||||
• Liver glycogen maintains blood glucose
|
||||
• Muscle glycogen fuels muscle
|
||||
• Glycogen phosphorylase → breakdown
|
||||
• Glycogen synthase → synthesis
|
||||
• Regulated by allosterics + hormones
|
||||
• Glucagon/Epi → degradation
|
||||
• Insulin → synthesis
|
||||
|
||||
Läsanvisningar:
|
||||
Kapitel 21 i Biochemistry, 10th ed, Berg et al. 2023
|
||||
Instuderingsfrågor på Canvas
|
||||
Reference in New Issue
Block a user